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Abstract

We study the directed transport of commensurate and incommensurate modulated phases of the Frenkel–Kontorova model
by (parametric driving) periodic pulsed variation of the nearest-neighbor coupling in the dissipative limit of the dynamics. We
obtain that a directed current flow appears as the amplitude of the pulsating couplingC increases above a threshold coupling
Cth. This threshold coupling depends on the average interspacingω between the oscillators displaying singularities as the
system becomes commensurable with the underlying lattice. By making use of the discommensuration theory of modulated
phases we obtain that the dependence of the directed current onω is a piecewise linear function with integer slope. Numerical
results confirm these predictions.
Published by Elsevier B.V.
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1. Introduction

The various ratchet effects have attracted a lot of interest[1] as they appear in diverse biological systems (molecular
motors)[2], superlattices[3], Josephson coupled systems[4–6] just to name a few. In particular such systems display
adirected currentin the presence of deterministic and/or random ac force having a zero mean value and in the absence
of the directed force. In order to quantitatively analyze the appearance of directed current, the dissipative dynamics
of a single particle moving in a potentialU(x, t) has been used[1]. Here, the force−∂U(x, t)/∂x is a periodic
function of both the particle coordinatex and timet. In the case of a large dissipation the equation of particle motion
is given by

dx

dt
= −∂U(x, t)

∂x
+ ξ(t), (1)
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where the Langevin forceξ(t) characterizes the equilibrium thermal fluctuations. The appearance of a directed
current is the direct consequence of a broken symmetry of the potentialU(x, t) in space and/or time[1,7]. Moreover,
the time dependence of the external potentialU(x, t) can be of a parametric type, asU(x, t) = C(t)U(x) (flashing
ratchet), or of an additive type, asU(x, t) = U(x) + C(t)x (rocked ratchet). A crucial difference between these
two types of ratchet systems is that the parametrically driven single particledoes notdisplay directed motion in
the absence of thermal fluctuations, i.e. in the limit of zero temperature. This is so because a single particle has
to overcome a potential barrier, and it is just impossible in the absence of thermal fluctuations. At variance with
the flashing ratchets, the directed current may persist even in the absence of thermal fluctuations for large enough
values of the ac driving forceC(t) in rocked ratchet systems.

There is also a great interest in the problem of directed transport in systems of interacting many-particles[8–10].
It was shown that the directed current may indeed occur when the ac driving force is additive (rocked many-particle
ratchet)[8,10]. In the case of a nonlinear discrete lattice such a directed current is realized in the form of a
directed motion of soliton chain. Thus, the question naturally arises: is it possible to observe a directed current in
parametrically driven many-particle systemswhen equilibrium thermal fluctuations are absent?

We present here a well supported answer to this question by analyzing a discrete nonlinear lattice of interacting
particles (the generalized Frenkel–Kontorova model) subject to parametric time-periodic driving. InSection 2we
formulate the model along with the specific conditions of the driven dynamics that we have considered. Some
technical advantages coming from the model symmetries, which play a central role in the subsequent analysis, are
emphasized.

In Section 3we argue the existence of a threshold value of the parametric driving strength for generic values
of the inverse density of particlesω. We present also specific numerical computations of the this threshold as a
function ofω, showing a complex structure of singularities. InSection 4we show that the discommensuration
theory of modulated phases of the Frenkel–Kontorova model provides not only a satisfactory understanding of the
threshold singularities, but also sharp predictions on the flow, which are afterwards confirmed by numerics. Finally,
we conclude with a summary of the main results and some concluding remarks in the last section.

2. The model

The Frenkel–Kontorova model, first introduced more than 60 years ago[11] to study crystal dislocations, has been
since then successfully used for the description of a vast number of different condensed matter physical systems and
phenomena: commensurate–incommensurate phase transitions[12,13], ionic conductors[14], adsorbates[15,16],
charge density waves[17,18], Josephson junction arrays[18,19], dry friction[20–22]and anomalous heat conduction
[23]. It is also a model of central interest in nonlinear physics, often under the name of discrete sine-Gordon equation
[24,25]. The characterization of the equilibrium configurations of the model and its physical properties (still a subject
of ongoing research[26]) were much clarified after the works of Aubry[27], via its connection to the Aubry–Mather
theory for the break-up of Kolmogorov–Arnold–Moser tori.

In the Frenkel–Kontorova (FK) model a real variableun is defined at each siten of a one-dimensional macroscopic
lattice. One can, as well, visualizeun as the position of a nonlinear oscillator. There are two competing interactions: a
periodic (period 1) potentialV(u) = V(u+1) and a nearest-neighbour interactionW(�u) which will be assumed to
be a convex function of the intersite increment (oscillator interspacing)�u. Formally, the energy of the FK model is

H =
∑
n

[V(un) + CW(un+1 − un)], (2)

where the parameterC controls the relative strength of both interactions,V andW , which are here the analytic
functions. We restrict consideration to potentialsV possessing a single minimum per period atu = a (mod 1), and
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maxima at integer values ofu, and harmonic interactionsW(�u) = (1/2)(�u)2. The competition between the
two interactions translates intolength scalescompetition, becauseV favors integer values of�u, whileW favors a
constant valueω of �u, fixed by boundary conditions. We are interested in the thermodynamic (infinite size) limit,
and choose to work at fixed (arbitrary)ω = 〈un+1 − un〉 = limN→∞ N−1 ∑

n(un+1 − un). Commensurate and in-
commensurate structures correspond, respectively, to rational and irrational values ofω, the modulating wavevector
(or oscillator average interspacing) of the structure.

We study the directed transport of modulated (commensurate and incommensurate) structures of the FK model,
in the dissipative limit of the dynamics:

u̇n = − ∂H

∂un
, (3)

where the parameterC in Eq. (2)varies on timeC(t), as a squared-wave of periodT = τ0 + τC taking alternatively
the values 0 andC. A convenient further simplification is to consider semicycle times,τ0 andτC, which are large
compared to the characteristic relaxation times to equilibrium (for zero andC values of coupling, respectively).
Thus during each semicycle the configuration relaxes to the corresponding equilibrium structure, and the system
performs a two-(equilibrium) states cycle.

The dissipative dynamics of the FK model with convex interparticle interactions has the property that the asymp-
totic velocity of all trajectories is unique[18,28]for fixed model parameters. This allows us to restrict consideration
to the simplest kind of structures(un) of the model, technically known as rotationally ordered. These are character-
ized by the followingcross-avoidingproperty:(un) does not cross any of its own translates(u′

n) = (un+r − s) (r, s
arbitrary integers). Non-crossing means that there are notn �= m with u′

n < un andu′
m > um. Rotationally ordered

configurations form an invariant subset under dynamics(3), i.e. any rotationally ordered configuration remains so
at any time.

It can be easily seen[18] that a rotationally ordered configuration(un) satisfy the following inequality, for alln:

|un+1 − un − ω| < 1. (4)

In the next section we will make use of this simple bound on the interparticle distance to discuss the existence of a
threshold coupling.

3. Existence of threshold coupling

The current is determined by

J = T−1
∫ T

0
〈u̇n〉 dt. (5)

To compute this quantity, one can think of an observer measuring the density of sites (or oscillators) for whichun

(mod 1) crosses the valueu = 0 during each semicycle, sayJ0
0 andJ0

C. Thus the flow(5) will be the sum of both
local flowsJ = J0

0 + J0
C.

It is easy to realize thatJ0
0 = 0: in the absence of coupling and thermal fluctuations, no oscillator can cross a

potential maximum. The oscillator positions in the equilibrium configuration after this semicycle will be located at
potential minima, and the condition of rotational order fixes this configuration to be of the form:

un = Int(nω + α) + a, (6)
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Fig. 1. Inverse(C−1
th ) of the threshold coupling parameter as function ofω. Drop lines are guides for the eyes.

where Int(x) is the integer part ofx, a the position of the minimum ofV(u), andα an arbitrary phase (whose value
can be brought to zero by relabeling the oscillators). This configuration(6) is the initial condition for the evolution
when the coupling parameter is switched on to the valueC and the next semicycle starts.

WhenC is very small compared to the absolute value of the maximal slope of the substrate potential (C 
 K∗ =
maxu|V ′(u)|) no oscillator will cross a potential maximum. Indeed, the interspacing�u which would be needed for
the elastic force,C�u, to overcomeK∗ would be so large as to violate the bound(4) imposed on�u by rotational
order. Thus, the couplingC must exceed some threshold valueCth > 0 in order to have directed currentJ �= 0.

Note that the argument above allows the threshold coupling to be infinite (and then no directed current), but
we now provide some arguments supporting that it is generically finite. Detailed arithmetics[29,30] for the limit
C → ∞ shows that the flow for commensurate,ω = p/q (p, q coprime integers), and incommensurate (irrational
ω) in that limit is given by

J

(
C → ∞, ω = p

q

)
= q−1Int

[
q

(
a − 1

2

(
1 − 1

q

))]
, (7)

J

(
C → ∞, ω �= p

q

)
= a − 1

2
. (8)

For a �= 1/2 this expression vanishes only for a finite number of rational values ofω (0 ≤ ω ≤ 1), and thus the
threshold is non-infinite for all except a finite number of rationalω values. Whenever the (single) minimum per
period ofV(u) is not located at 1/2,the threshold is finite for all incommensurate structures. Note that only potential
functionsV(u) lacking mirror symmetry could possibly satisfya �= 1/2, in agreement with the necessary breaking
of this symmetry in order to have directed transport. The argument above will be adequately formalized elsewhere
[30].

While a single-particle in a “flashing ratchet” potential does not show directed current in the absence of thermal
fluctuations, we have just proved that the existence of directed current with no thermal fluctuations is generic for a
many-particle system. In physical terms, the interparticle interaction provides the diffusive mechanism needed for
the transport, so that thermal fluctuations are not anymore necessary.

We have numerically computedCth(ω) for the particular (but arbitrary) potential functionV(u) = (2π)−2 ×
[ sin (2π(u+ b))+ 0.22 sin(4π(u+ b))] (whereb = 0.194969. . . ), with maxima atu = 0 (mod 1) and minima at
u = a = 0.610061. . . (mod 1). InFig. 1we show the computedCth(ω) for a fine grid ofω values in the interval
[0,1/2]. No other values have to be considered, for it can be proved thatCth(1 + ω) = Cth(1 − ω) = Cth(ω). For
the threshold computation we have used a simple bisection scheme, and the integration of the equations of motion
was made with a Runge–Kutta method.
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The computed threshold function shown inFig. 1exhibits singularities at rational values ofω = p/q, in the sense
that the three values

Cth

(
p+

q

)
, Cth

(
p−

q

)
, Cth

(
p

q

)

are different, i.e. there are both point and jump discontinuities at all rationals. However, the size of the discontinuities
quickly decreases for increasing values ofq. Note also that no jump discontinuity exist atω = 0 andω = 1/2 due
to the symmetryCth(1 + ω) = Cth(1 − ω) = Cth(ω) stated above.

As we will see below, this complex singular behavior admits a natural explanation and physical interpretation
from the perspective of the theory of discommensurations. It is therefore convenient to remind briefly some known
ideas and basic notions on theemergent[24] concept of discommensuration (DC); this will allow not only a correct
understanding of the singular behavior of the threshold function, but also will enable us to make precise predictions
on the flowJ(C, ω) as a function of the model parameters, which we will check against detailed numerical results
presented below.

4. Discommensuration theory

One of the most relevant physical properties of rotationally ordered commensurate(ω = p/q) stable equilibria,
(un), of the FK model is that they have a finite decay range orcoherence lengthξ, defined as follows: if the position
of some arbitrary oscillatorn is fixed atun + δn, with δn small, and the rest of oscillators are left to relax subject to
this restriction, their displacementsδj behave asδj = exp[−|j−n|/ξ]. The physical consequence of this property is
that commensurates admit localized defects[18,30,31]. If (u′

n) is the contiguous translate of the commensurate(un),
such that, for alln, u′

n > un, anadvancedDC is a rotationally ordered configuration(w+
n ) satisfyingw+

n → u′
n as

n → +∞, andw+
n → un asn → −∞. For the definition of a delayed orretardedDC (w−

n ), one has to interchange
u′
n andun in the limits above.
Theexcess length∆ of a DC is the average amount by whichwN − wM (M < N) exceeds the corresponding

quantityuN − uM in the commensurate, and it is 1/q (−1/q) for an advanced (retarded) DC. The number of
oscillators in the DC whose positions are appreciably distinct from the commensurate (the DCwidth) is of the order
of the decay rangeξ of the commensurate. Thecenterof the DC can be defined as the oscillator index where the
deviation from commensurate is maximum.

The discommensuration theory of modulated phases is based on the fact that any (commensurate or incommen-
surate) structure ofω close to the rationalω0 = p/q is correctly described as an array of nearly equispaced DC’s
with a densityc = (ω − ω0)/∆ = q|ω − ω0|, which is the inverse average DC’s interspacing in the array. In
an equivalent way, one can say that a DC configuration is the one-sided limit of a sequence of (commensurate or
incommensurate) structures of average interspacingsωm approaching the rationalp/q from left (retarded DC) or
right (advanced DC) side.

From this perspective, the interpretation of the singularities of the threshold functionCth(ω) become crystal-clear:
the threshold couplings of commensurateCth(p/q), advanced DCCth((p/q)

+) and retarded DCCth((p/q)
−), are

generally different because the structures are indeed different. However, asq → ∞ (incommensurate limit) the three
thresholds converge to the corresponding incommensurate threshold. Moreover, these features are clearly generic,
in the sense that they have to be expected for arbitraryV(u) potential functions.

Now think of a DC configuration at time 0,(w±
n (0)), that evolves to(w±

n (T)) after a time intervalT , and assume
that both configurations are related by a symmetry translation, i.e.(w±

n (T)) = (w±
n+r(0)− s), where the superscript

± refers to advanced/retarded. In this case the net number of oscillator positions which have crossedu = 0 (mod 1)
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Fig. 2. FlowJ vs.ω at four differentC−1 values printed inside figures.

is the integer̃v = j±
DC(T)− j±

DC(0), that is the difference between DC centersj±
DC at both times. Whenever the DC

center advancẽv is finite, the macroscopic flow produced by the motion of the DC relative to commensurate is zero;
however, for a densityc of identical DC’s the macroscopic flow associated to the relative DC’s motion is−ṽc∆,
and thus one can write the macroscopic flow of that structure as

J(ω) = J(ω0) − ṽ(ω − ω0), (9)

whereJ(ω0) is the flow of the commensurate substrate where the DC’s array lays upon. Note that(9) is a linear
function with integer slope. The improvement of(9) through the inclusion of DC’s overlap effects introduces
corrections which are exponentially small in the ratio (DC width)/(DC interspacing); in other words, the power
expansion ofJ(ω) around any rational has no terms higher than linear.

An immediate consequence of(9) is the following: whenever the retarded and advanced DC’s on the rationalω0

move at the same velocity (i.e.ṽ+ = ṽ−), the flow is differentiable atω0 with integerslope; if it is the case that
retarded and advanced DC’s move at different velocities, the flow shows anintegerjump in first derivative. We have
to emphasize that these predictions of the discommensuration theory on the flow are remarkably sharp.

In Fig. 2we show the computed values of the flowJ(C, ω) as a function ofω for different values of the coupling
C. The sharp predictions of the DC theory are dramatically confirmed by our numerical results on the flow: at fixed
value ofC, the computed flow is a piecewise linear function ofω with exactly integer slopes.

5. Summary and concluding remarks

We have presented here some results on the directed transport of modulated structures of the Frenkel–Kontorova
model with mirror-asymmetric potentials. Our results correspond to the dissipative regime of the dynamics and
on–off pulsating coupling.
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Under these conditions, and provided the pulse strength is large enough, the existence of directed transport is
generic. Contrary to the single-particle “flashing ratchet”, no thermal fluctuations are needed to induce a directed
current in a many-particle system, the mutual interactions providing the diffusion mechanism for it.

We have provided heuristic arguments supporting that there exists a threshold functionCth(ω) whose complex
structures of singularities is satisfactorily explained by the discommensuration theory of modulated phases. This
also predicts a piecewise linear variation of the current flow with the commensurabilityω of the modulated structure.
These predictions are confirmed by the numerical computations that we have shown here.

Our results are based on the property of order preservation, which in turn relies on the dissipative character of
the dynamics. When inertial terms are included in the equations of motion, but still the dissipation is high enough,
certain extension of the property of order preservation has been recently proved by C. Baesens. Thus we expect that
our results will also hold qualitatively for the regime of high dissipation for inertial dynamics. Indeed, preliminary
numerical work seems to indicate that directed transport can be significantly enhanced by the inertial terms.
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