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Discrete breathers in transient processes and thermal equilibrium
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Abstract

We study four different aspects of the generation of discrete breathers in one-(1D) and two-dimensional (2D) lattices with soft
and hard nonlinearity. Breathers can be generated in thermal equilibrium and in various transient and nonequilibrium situations.
We use the numerically obtained information about the spatio-temporal evolution of nonlinear lattices and combine it with
analytical and heuristic results and arguments on breather existence, stability and interaction with plane waves to provide with
a coherent picture of the complex nature of breather excitation in nonlinear lattices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Discrete breathers (DBs) are time-periodic, spatially
localized solutions of equations of motion for classical
degrees of freedom interacting on a lattice. Over the last
decade much progress has been achieved in the under-
standing of DB properties [1–4] and their role in various
experimental situations ranging from charge-transfer
solids, Josephson junctions, photonic structures to mi-
cromechanical oscillator arrays [5]. It has been shown
that DBs exist due to the discreteness of the lattice and
the nonlinearity of the differential equations governing
the evolution of the system. There is good understand-
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ing in the requirements model parameters should fulfill
in order to allow for the existence of DBs. For some sys-
tem classes existence proofs of breather solutions have
been published (see e.g. [2,6–11]). Numerical meth-
ods for calculating exact (up to the machine precision)
breather solutions were also obtained [2,12–14].

The generic character of DBs as exact solutions
raises the question whether DBs can be excited in
transient processes and even in thermal equilibrium.
Considerable efforts were taken to elucidate this prob-
lem. It has been shown that DBs may appear in one-
dimensional (1D) lattices due to the modulational insta-
bility of a plane wave [15–21]. It has also been shown
that when thermalized 1D or two-dimensional (2D) lat-
tices are cooled down, DBs appear and may strongly in-
fluence the relaxation properties of the studied systems
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[22–24]. Besides, attempts to observe DBs in thermal
equilibrium (a lattice interacting with a thermal bath
was simulated) have been successful [17,25]. However
most of the results obtained so far leave gaps in the
understanding of the role of DBs in transient processes
and thermal equilibrium. This in particular is due to the
fact that DB properties depend strongly on the chosen
system classes and strongly affect the aforementioned
processes. Most of the results are spread over these dif-
ferent system classes, leaving us without a clear and de-
tailed systematic understanding of the considered phe-
nomena. Practically nothing is known about the exci-
tation of DBs in equilibrated systems by external local
perturbations.

In this paper, we will provide with a systematic anal-
ysis of four aspects of DB generation comparing one-
and two-dimensional lattices. The considered systems
describe the dynamics of coupled oscillators in so-
called optical lattices which show up with a gap in the
frequency spectrum of small amplitude plane waves.
First we will analyze the appearance of DBs in thermal
equilibrium. Second we will consider the generation of
DBs at various time scales in transient processes of per-
turbed plane waves. Third we will study the formation
of DBs in thermalized lattices which are exposed to ex-
ternal highly local perturbations (think e.g. of a beam
of neutrons passing through a crystal). And finally we
will study the relaxation of lattices being cooled at their
boundaries, which models a heating of a lattice part by
e.g. some laser spot and the decay of the excitation
after the subsequent switching off the energy source.
All the simulation results presented in this paper were
obtained using the fourth-order Runge-Kutta method.

The paper is organized as follows. In Section 2 we
present numerical simulations of 1D and 2D lattices at
non-zero temperatures, and study the existence of DBs
in such systems and their properties. In Section 3 we
demonstrate how modulational instability of a plane
wave can give rise to energy localization in 2D lattices
and study the long-time evolution of DBs in one and
two dimensions. In Section 4 we investigate the dy-
namics of thermalized lattices under the action of ran-
dom in space and time localized short energy impulses,
and outline the effects of dimension of the lattice. In
Section 5 we discuss the influence of DB excitation on
the relaxation of an initially strongly heated lattice part
and investigate the dependence of the transient behav-
ior and its outcome upon the initial temperature of the

hot region. In Section 6 we summarize the obtained
results.

2. DBs in thermal equilibrium

The notion of a DB implies originally an exact time-
periodic spatially localized solution. Being generic
with respect to the parameters of the model, DBs de-
mand specific initial conditions. It may become quite
problematic to provide with these initial conditions in
certain physical realizations. This fact stimulates the
strong interest for studies of DB solutions in lattices
at finite temperatures. The breathers that may be ob-
served in this case can not be exact breather solutions
of the model, and thus must have finite lifetimes. The
presence of DBs should then be characterized by the
existence of long-living localized energy excitations.
One should observe then DBs, which appear, grow or
decay from time to time at all sites of the lattice.

In the present paper we consider the 1D lattice de-
scribed by the Hamiltonian

H =
∑

n

(

p2
n

2
+ V (un) +

1

2
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)
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and the 2D lattice which Hamiltonian reads as
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∑
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The on-site potential is given by

V (u) = 1
2u

2 + 1
3αu

3 + 1
4βu

4. (3)

Here u stands for the displacement of a particle, p de-
notes its momentum, β = 0.25, k = 0.1, α = 0 for
a symmetric potential and α = −1 for an asymmetric
potential which will be specified in the text. If we lin-
earize the equations of motion (for, say, a 1D lattice)
around the classical ground state, we obtain a set of lin-
ear coupled differential equations with solutions being
small amplitude plane waves:

un(t) ∼ ei(ωqt−qn), ω2
q = 1 + 0.4 sin2

(q

2

)

. (4)
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The dispersion relation ωq(q) defines an optical
phonon band (the lower squared frequency ω2

l = 1,
the upper squared frequency ω2

u = 1.4) character-
ized by a nonzero frequency gap below the spec-
trum. Note that the dispersion relation (4) is periodic
in the wave number q and possesses a finite upper
bound.

To study the energy distribution in space we define
the energy density at each site of the lattice:

ε�l =
p2

�l

2
+

1

4
k
∑

M

(uM − u�l
)2 + V (u�l

) (5)

where�l = n for a 1D lattice,�l = (n,m) for a 2D lattice
and M denotes neighbors of the site �l.

The microcanonical numerical simulation of the lat-
tice at finite temperatures can be realized (in the most

Fig. 1. Energy density evolution in a one-dimensional lattice after giving the system time to equilibrate: (a) c = 2, ε̄ = 0.395, β = 0.25; (b)
c = 2, ε̄ = 0.374, β = 0 (harmonic lattice); (c and d) c = 4, ε̄ = 1.72, β = 0.25. Here α = 0 and k = 0.1. Note that the grey scale coding of
the energy density varies for different plots.

simple way) by setting random initial conditions at all
sites:
{

un(0) = cξ2n−1,

pn(0) = cξ2n
(6)

where ξk, k = 1, 2N are random values uniformly dis-
tributed in the interval [−0.5, 0.5], c is the parameter
that allows to vary the energy (and hence the tempera-
ture) of the lattice. Below ε̄ denotes the average energy
per site.

Numerical simulations of the 1D lattice with the
symmetric on-site potential reveal the following re-
sults. DBs have finite lifetime and can appear every-
where in the lattice (see Fig. 1(a), compare to the case
of harmonic lattice, see Fig. 1(b)). At higher tempera-
tures DBs with longer lifetimes are seen (Fig. 1(c)). For
the same case on shorter time scales DBs with shorter
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Fig. 2. Frequency vs. energy for the model of the one-site DB. The
upper and the lower boundaries of the phonon spectrum are also
shown. Here k = 0.1 and β = 0.25.

lifetime are observed (see Fig. 1(d)), which means co-
existence of DBs on essentially different time scales.

To get deeper insight into the problem of existence of
DBs in one dimension we consider the simplest model
of an one-site DB. Let a particle oscillate, while the mo-
tion of its neighbors is neglected (this is a rather good
approximation when the DB is sufficiently strongly lo-
calized [26,27]):
{

ün = −V ′(un) + k(un−1 − 2un + un+1),

un−1 = un+1 = u̇n−1 = u̇n+1 = 0
(7)

and calculate the dependence of the oscillation fre-
quency upon the energy of the particle for the sym-
metric (α = 0) and the asymmetric (α = −1) on-site
potentials (3) (see Fig. 2).

One usually distinguishes cases �(E) > ωu and
�(E) < ωl, calling a DB “hard” in the former case and
“soft” in the latter one. The symmetric potential allows
only for hard DBs, while the asymmetric one allows
for both types of DBs separated by a gap on the energy
axis.

This estimation for a one-site DB can be used to
predict what types of breathers, if any, will exist at a
given value of the average local energy ε̄. Assuming
that the whole lattice is populated with DBs with each
DB consisting of (1 + 2d) sites, we get a rough estima-
tion of the energy of one DB as (1 + 2d)ε̄, where d is
the lattice dimension. Alternatively we can argue that
the energy concentration on a given site accumulates

Fig. 3. The energy density evolution in a 1D lattice with a cutoff at
small energy densities (c = 4, ε̄ = 1.76, α = −1). The local energy
density in plotted points exceeds 3ε̄.

the energy of its nearest neighbours, yielding again the
same order for the breather energy.

We carried out the following method for detecting
one-site DBs in numerical simulations for d = 1. When
the local energy of a certain site exceeds the threshold
of 3ε̄ while the energies of the neighboring sites stay
below the threshold, we register energy localization.
To illustrate the result of this procedure we show a
cutoff plot (i.e. only those points at which εn > 3ε̄ are
plotted) in Fig. 3. If the lifetime of this localization is
long enough, we consider it to be a DB. In the series
of experiments with various values of ε̄ we recorded
the longest observed lifetimes of breathers. The total
observation time in each simulation was 106 time units.
The dependencies of the longest breather lifetimes on
the mean energy density obtained for different types of
on-site potential (α = 0 and α = −1) are presented in
Fig. 4. By comparing these data with the simulation of
the harmonic chain (α = β = 0) we found that we can
reliably detect those DBs whose lifetime exceeds 100
time units (the characteristic phonon time scale is of
the order of 10).

The curve for α = 0 in Fig. 4 shows a monotonic
increase of the longest DB lifetime with increase of ε̄

(observed deviations are due to the fluctuational nature
of detected DBs), while the curve for α = −1 exhibits
a maximum at quite a low value of ε̄ and a monotonic
increase at essentially higher ε̄.
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Fig. 4. Maximal detected lifetime of a DB vs. the average energy
density for the symmetric and asymmetric on-site potentials in a 1D
system. The observation time was 106 time units.

The comparison of the obtained curves with the dis-
cussed frequency-energy dependencies for the model
of the one-site DB (Fig. 2) allows to identify the max-
imum on the curve for α = −1 with soft breathers and
the monotonous increase at longer lifetimes on both
curves with hard breathers.

Next we discuss numerical simulations of 2D lat-
tices. The results are quite similar. To give an example
we present DBs on various time scales (see Fig. 5). To
visualize the DBs we plotted only those sites, in which
the local energy exceeded 5ε̄.

We also studied the longest living breathers and their
lifetime dependence upon the average energy density ε̄

for the 2D case. A one-site breather model should im-

Fig. 5. Energy density evolution in a 2D lattice with a cutoff at small energy densities for various time windows. For both cases c = 5 was
chosen (ε̄ = 2.89). Here α = 0. The local energy density in plotted points exceeds 5ε̄.

Fig. 6. Maximal detected lifetimes of DBs vs. average local energy
density for the symmetric and asymmetric on-site potentials in 2D
lattices are presented. The observation time was 2 × 105 time units.

ply then an excited site coupled to four pinned neigh-
bors. The corresponding energy threshold for detect-
ing DBs in numerical experiment equals 5ε̄. Results
of simulations of 2D lattices are shown in Fig. 6. In
contrast to the 1D case (for α = −1) no soft breathers
were detected. This can be explained by using the
frequency-energy dependence for the model one-site
breather shown in Fig. 7. In case α = −1 the soft
DBs must be confined to a narrow energy window.
This factor makes the soft DBs much more sensitive
to thermal fluctuations than the hard ones. In gen-
eral, choosing another set of the parameters of the
model one may observe soft breathers in thermal equili-
brium.
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Fig. 7. Frequency vs. energy for the model of a one-site DB in the 2D
lattice. The upper and the lower boundaries of the phonon spectrum
are also shown.

Another important property of the considered 2D
lattice is that DBs have a nonzero lower energy thresh-
old εmin [28]. We performed high accuracy computa-
tions of DB solutions using a Newton scheme and ob-
tained the following values for the energy thresholds:
for α = 0 εmin ≈ 2.76; for α = −1 soft DBs have a
threshold value of εmin ≈ 0.84 and hard DBs have a
threshold value of εmin ≈ 8.06.

In Fig. 6 we find that for ε̄ < 0.25 the largest life-
times of DBs are less than 100, and below this energy
lifetimes do not increase with energy. As explained
above these data can not be safely interpreted as DB
lifetimes when compared to simulations of harmonic
lattices. This is in sharp contrast to the 1D results in
Fig. 4. There the maximum DB lifetime starts also with
a value of 100, but increases with energy even for small
energy values. Thus, we conjecture that the observed
energy gap in Fig. 6 is due to the presence of a lower
energy threshold for DBs in the considered 2D lattice.
Note also that energy thresholds for DBs have been ob-
served in 1D systems with higher order nonlinearities
in thermal equilibrium [29].

3. Modulational instability

DBs in thermal equilibrium will be generated only
if the averaged energy density (or temperature) is large
enough for nonlinear terms in the equations of motion

to be relevant. In the opposite case of rather small
energy densities no breathers are expected to persist.
However if the initial conditions are chosen to be
nongeneric, the evolution to thermal equilibrium may
proceed through transient processes. The duration of
these processes can be substantially modified if DBs
are generated on the way to equilibrium. A well known
transient process in which DBs play a significant role
is the decay of a plane wave due to modulational
instability [15–19].

This type of instability for discrete 1D lattices of the
type (1) was investigated analytically and numerically
by Peyrard et al. [16,17]. There numerical simulations
were carried out for α = 0 and β < 0 in the on-site po-
tential (3) and on time scales of about 1.5 × 104 periods
of the lowest frequency phonon. The results of those
simulations indicated, that modulational instability can
act as an effective pathway to the formation of breathers
when initial conditions are set in the form of a weakly
noised plane wave. During the first part of its evolution,
the initial wave gets decomposed into wave packets
due to modulational instability. During the subsequent
second evolution part, which is essentially nonlinear
and can not be described by linear stability analysis,
multiple collisions of some wave packets tend to in-
crease their energy at the expense of other ones, and
finally they get pinned down to the lattice giving rise
to breathers.

We carried out numerical experiments in order to
check whether this scenario is valid for 1D and 2D sys-
tems described by the equations (1) and (2) respectively
for β > 0 in the on-site potential. Further, we extended
the observation time in order to continue the scenario
suggested in [17], and in order to find out the effect
of the initial energy density value upon the process of
formation of breathers.

In the numerical simulations we took α = 0, β =

0.25, κ = 0.1. The initial conditions for the 1D lattice
were taken in the form of a harmonic wave with a small
noise added to the amplitude:

ui(0) = A(1 + ξi) cos(qi)

u̇i(0) = ωA(1 + ξi) sin(qi)
(8)

where ω2 = 1 + 4κ sin2(q/2) + 3βA2. The random
values ξi were distributed uniformly in the interval
(0, 0.001). The last term in the expression for ω rep-
resents the first-order approximation for the nonlinear
frequency shift [17].
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The initial conditions in 2D simulations were chosen
in a similar way:

uij(0) = A(1 + ξij) cos(q1i + q2j)

u̇ij(0) = ωA(1 + ξij) sin(q1i + q2j)
(9)

where ω2=1+4κ(sin2(q1/2) + sin2(q2/2)) + 3βA2.
The noise was specified in the same way as in the 1D
case.

The wave numbers of the initial waves were chosen
asq1 = q2 = q = 3π/4. The reason for this choice is an
analytical result given in [16] from which it follows that
a plane wave with a wave number q satisfying π/2 <

q < π in one-dimensional systems of the type (1)
with α = 0 and β > 0 is unstable due to modulational
instability.

The size of the lattice was 400 sites for the 1D case
and 80 × 80 sites for the 2D case.

Fig. 8. Energy density evolution in 1D and 2D lattices is plotted in the grey scale. Transient DBs in 1D lattices that result from modulational
instability (a) and their long-term evolution (b) are shown (ε̄ = 0.18). Character of breather formation in 1D (c) and 2D (d, see comments in the
text) at low initial energy density is depicted (ε̄ = 0.016). Here α = 0.

The results of our simulations of the 1D chain for
A = 0.5 (ε̄ = 0.18) at time scales of about 104 time
units (or 103 periods of the lowest frequency phonon),
see Fig. 8(a), are in good agreement with the scenario
described by Peyrard et al.

Long-term simulations (up to 5 × 105 time units,
see Fig. 8(b)) demonstrated the decay of most of the
breathers formed at the initial stage. Note, that the up-
per limit of the grey scale code in Fig. 8(b) is about
two times higher than the one in Fig. 8(a). It implies an
increase of energy of surviving breathers. Furthermore,
among the series of 40 simulations each being 5 × 105

time units long, 29 ones demonstrated the emergence
of new DBs at large time scales. In 11 of 29 cases DBs
with lifetimes longer than 5 × 104 time units were ob-
served (Fig. 8(b) presents a few instances of such DBs).
Modulational instability can not describe the nature of
this phenomenon, because these “late” breathers do not
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Fig. 9. Energy density evolution in a 2D lattice (ε̄ = 0.22). Snapshots taken at t = 400, 500, 550, 5000 are shown in (a–d) respectively. Transient
DBs that result from modulational instability and their long-term evolution are shown. Here α = 0.

originate from a plane wave. Nevertheless, their ap-
pearance must be closely connected with the inherent
energy concentrating property of the system induced
by modulational instability.

The overall scenario of emergence and evolution of
breathers observed in 2D lattices is qualitatively the
same as in the 1D case. The decay of the initially
homogeneous energy distribution into energy lumps
is accompanied by a drift of the energy pattern as a
whole in the direction of the initial wave vector. Snap-
shots of the energy distribution during the simulation
with the initial wave amplitude A = 0.5 (ε̄ = 0.22) at
t = 400, t = 500, t = 550 and t = 5000 are shown in
Fig. 9(a–d). Note again, that the grey scale coding is
different for plots at different times. Long-term sim-
ulations (up to 106 time units) showed the process of
breathers collapsing, but formation of new breathers
was also observed.

In none of the simulations carried out did we ob-
serve the decay of all the DBs initially formed. This

indicates, that formation of breathers can stretch tran-
sient processes dramatically, thus preventing us from
observing the ultimate relaxation to the true thermal
equilibrium in our simulations.

A challenging problem is to determine what will
happen to the described transient process if the energy
density of the initial wave ε0 is decreased, in partic-
ular, whether any kind of energy threshold exists or
not. First, as it was proven in [16] for 1D systems, un-
der a proper choice of the wave number (see above),
a harmonic wave solution of any amplitude is subject
to modulational instability. Therefore, the question is
whether this instability can lead to the formation of
breathers at arbitrary small values of ε0. The answer
to this question is most likely to be positive for both
1D and 2D systems as suggested by the character of
transient processes observed in our simulations.

Indeed, lowering the energy density by one order
of magnitude in the 1D case, modulational instability
still leads to the formation of wave packets being a few
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sites in size, which are moving afterwards monotoni-
cally along the chain, from time to time interacting with
each other due to some randomness in initial conditions
(Fig. 8(c)). At some times, this interaction leads to an
energy increase and motion slowdown of certain wave
packets. Then other packets moving at their usual speed
start to collide with the slow ones, feeding them with
energy as described in [16,17]. This leads to a further
slowdown of the slow packets, thus the process be-
comes avalanche-like. The slow packets can even once
or several times change the direction of their motion
due to collisions with the faster ones. After the energy
density in a slow packet exceeds a certain threshold
(being about 1.0–1.5, which is in good agreement with
the results obtained for the one-site breather model,
see Fig. 2), the packet turns into an immobile breather,
keeping on collecting energy of the moving low energy
packets. The characteristic time required for slow pack-
ets and then breathers to appear is increasing rapidly
with the decrease in ε0; nevertheless there seems to be
no reason for the described scenario to fail for some
small but finite values ofε0.

In 2D lattices, modulational instability results in the
concentration of energy into small (again, a few sites in
size) energy lumps. The simulations show that the time
needed for these lumps to emerge is about 1.5 times as
long and the energy density in a lump about 10 times as
high as in the 1D case, the value of ε0 being equal. The
major peculiarity of the 2D case as compared to the
1D one is that the lumps, unless their energy is above
a threshold being about 2.0–2.5 (which again perfectly
agrees with the one-site breather model, see Fig. 7),
collapse again very fast, while 1D lumps keep on mov-
ing, preserving their shape and staying quite localized
in space. Nevertheless, simulations reveal, that the en-
ergy in the 2D lattice after the collapse of the men-
tioned lumps tends to organize into a larger number
of lumps with smaller energy which collide with each
other chaotically. Moreover, this late concentration of
energy appears to be able to give rise to breathers. De-
spite the fact that the avalanche process characteristic
to 1D systems is no longer observed in the 2D case, the
typical time needed for breathers to appear is found to
be 1.5–2 times shorter than in the 1D case at the same
ε0. In Fig. 8(d) the maximal energy density value in a
column of the lattice is plotted in the grey scale against
the number of the column and time (the horizontal and
the vertical axes, respectively). Thus, the figure repre-

sents the evolution of a sort of a one-dimensional pro-
jection of the energy density pattern in the lattice. The
dark tilted strokes in this figure denote moving pack-
ets. Some of these strokes, especially those appearing
at t 
 (0.8/0.9) × 104, end up with dark spots, which
indicate the formation and immediate collapsing of en-
ergy lumps, while three of them give rise to breathers,
appearing as dark vertical lines.

4. External perturbations–energy kicks

In this section we study the emergence of breathers
due to external perturbations. We will consider a part of
the infinite lattice being exposed to an incoming energy
flux in the form of random kicks (think e.g. about a
crystal lattice being exposed to a neutron beam).

A kick implies an instantaneous increase of the ki-
netic energy of a randomly chosen element at a ran-
dom time (the interval between two kicks is a random
value uniformly distributed in the interval (0, 2τ)). In
our simulations each kick increases the absolute value
of velocity, thus providing a fixed increment!ε of the
local energy of some chosen element. The value of the
velocity of an element after a kick is given by

˜̇un = sign (u̇n)
√

u̇2
n + 2!ε. (10)

Thus, the incoming energy flux is characterized by
two parameters !ε and τ.

Since the kicks increase the energy of the system,
we allow for some radiation of this energy into outer
undisturbed parts of the system. We introduce dissipa-
tion in a number of oscillators at the boundaries of the
finite lattice considered in numerical experiments:

ün + λnu̇n + V ′(un) = k(un+1 − 2un + un−1) (11)

where the dissipation parameters λn are zero in the ac-
tive region and are linearly increasing from the bound-
ary of the active region towards the edges of the lattice.

The initial conditions correspond to zero tempera-
ture:

un(0) = u̇n(0) = 0. (12)

Depending on the value of !ε, a kick can either
immediately generate a breather or not. In the latter
case the energy of the kick is radiated into the lattice.
We restrict ourselves to kick energies!ε < 0.3 forα =
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Fig. 10. Energy density evolution in a 1D lattice for (a) α = −1, τ = 200,!ε = 0.2 and (b) α = 0, τ = 200,!ε = 0.4.

−1 and !ε < 1.7 for α = 0, which implies the second
case, as computations show.

Numerical simulations of one- and two-dimensional
lattices show that even though the kick energy is not
enough to generate a DB from scratch, DBs are gener-

Fig. 11. Energy density evolution in a 2D kicked lattice (τ = 200,!ε = 0.9). Snapshots taken at t = 2400, 9800, 19800, 59800 are shown in
(a–d) respectively. Here α = −1.

ated in the system (see Figs. 10 and 11). Let us explain
the reason for that. The first kicks heat the cold lat-
tice, and, failing to create DBs, generate wave packets
travelling towards the dissipative boundaries. Reaching
the boundary takes the wave packet some time which is
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long enough for subsequent kicks to take place. Thus,
we observe a gradual heating of the lattice, numerous
wave packets colliding with each other and thus (see
previous section) leading to the formation of DBs.

Although the emergence of DBs looks similar in
one- and two-dimensional lattices, their future behavior
is completely different.

In a chain generated DBs act as strong scattering
centers for travelling wave packets [30–32]. Two or
more breathers can block the travelling packets and
store the energy between them (Fig. 10). In the case
of the asymmetric potential the following scenario is
observed. As the local energy gradually increases (see
Figs. 10(a) and 12) breathers become subject to in-
creasingly stronger perturbations and eventually get de-
stroyed. This is due to the above discussed energy gap
between soft and hard breathers. As a result the chain
gets thermalized. However due to following kicks the
thermalized hot region again generates soft DBs and so
on. Another remarkable effect is that these breathers at-
tract each other. Indeed, breathers in a one-dimensional
system effectively backscatter plane waves (see [30–
32]). This leads to a trapping of the radiation between
them and also to some enhanced retarded interaction
between the breathers mediated by the radiation, prob-
ably being the cause for the observed attraction. A quite
different type of interaction between DBs and wave
packets is observed for α = 0 (Fig. 10(b)). Here we
observe opaque stable DBs, guarding the hot region,
which reflect and partially consume energy and stay
almost immobile.

We think that the destruction of the soft DBs (α =

−1) is caused by the existence of the relatively low up-
per bound of the energy they can possess (see Fig. 2). If
the amount of the energy, contributed by wave packets,
exceeds this limit, the DB’s frequency gets in resonance
with the phonon band. Together with the growing ther-
mal fluctuations inside the hot region this process will
inevitably destroy the breather. On the other hand, hard
DBs may accumulate an arbitrary large amount of en-
ergy. The growth in energy of the hard breathers that
we observe in Fig. 10(b) helps them preserve their sta-
bility in the presence of increasing perturbations and
fluctuations.

In a 2D lattice breathers cannot block travelling
wave packets as efficiently as in 1D systems. Thus,
the radiation can easily reach the dissipative bound-
aries and disappear. The local energy stays low and

Fig. 12. Evolution of the total energy of the kicked lattice over a
long time interval: 1D (τ = 200, !ε = 0.2 for α = −1, !ε = 0.4
for α = 0) and 2D lattices (α = −1, τ = 200,!ε = 1.0).

existing breathers are subject to small perturbations.
Long-time simulations show that the lattice becomes
saturated with breathers (Fig. 11). The energy is almost
completely stored in breathers and also shows satura-
tion (see Fig. 12). From time to time two neighboring
breathers can merge or collide and disappear. The ap-
pearing free space will be occupied by a new breather
soon, as the number of breathers does not seem to de-
crease substantially with time.

5. Hot spot decay

Yet another way of generating breathers is to heat
a certain part of the lattice, and after a subsequent
switching off the heating source (e.g. a focused laser
beam) to cool the hot spot down by radiation of energy
into the neighbouring cold parts of the lattice. The
idea is that if breathers are generated in the hot spot,
they will simply stay there, and only plane waves will
disappear [22–24].

We carried out numerical simulations of the 1D and
2D lattices using both forms of the on-site potential
(α = 0 and α = −1) and observed this effect in our
model too. The infinite cold part of the lattice was imi-
tated by a dissipative layer on the boundaries of the hot
lattice (see Section 4). We show experiments for a 1D
lattice of 400 sites and a 2D lattice of 50 × 50 sites plus
friction boundaries, with model parameters as above.

In Fig. 13(a) we plot the energy density distribution
versus time for the case α = 0 and initial average en-
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Fig. 13. Energy density evolution in the hot spot of a one-dimensional lattice during cooling. For relatively big energy densities DBs appear
after a transient process (a) ε̄0 = 0.389, α = 0; for smaller energy densities they are not observed after cooling down (b) ε̄0 = 0.09, α = 0; for
high energy densities, the evolution of systems with α = 0, ε̄0 = 0.96 (c) and α = −1, ε̄0 = 0.97 (d) differs essentially.

ergy per site ε̄0 = 0.389. We observe the emergence of
breathers, which survive on large time scales. Note, that
some amount of delocalized energy becomes trapped
between the DBs. Although there are no energy thresh-
olds for exact DB solutions in this 1D system, we find
that lowering the value of ε̄0 to 0.09 (Fig. 13(b)) no
DBs are detected. The reason is that even if DBs are
excited, there energy will be small, they will be weakly
localized, close to continuum soliton solutions and can
easily move. Moreover in this limit their scattering po-
tential of plane waves is weak also. So simply all the
excited energy – plane waves and weakly localized DBs
– can quickly leave the hot spot region. Increasing the
initial energy density to ε̄ = 0.96 we find that forα = 0
the size of the hot spot part preserved for long times by
large amplitude DBs increases (Fig. 13(c)). At the same
time the case α = −1 shows the surprising result that

almost all the energy leaves the system, with just a few
DBs in the center of the hot spot region (Fig. 13(d)).

In Fig. 14 the energy density distribution in the
2D lattice (here α = −1) is shown at four times t =

0, 4900, 11900, 19900 and c = 3. We observe a fast
leakage of plane waves out of the hot spot region, with
a number of long-living DBs remaining inside.

To provide better understanding of the dependence
of breather excitation upon the initial energy density
in the hot spot, we performed simulations of the 1D
and 2D lattices at various ε̄0. After a transient process
that takes t = 106 in the 1D lattice and t = 2 × 104 in
the 2D lattice we measured the stored energy per site
ε̄. The results shown in Fig. 15(a) and (b) show the
existence of an average energy density threshold for
the appearance of DBs in hot spots especially for the
2D case.
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Fig. 14. Energy density evolution in the hot spot of a 2D lattice during cooling. Snapshots taken at t = 0, 4900, 11900, 19900 are shown in
(a–d) respectively. Here c = 3 (ε̄0 = 0.97), α = −1.

Let us discuss the results for the 1D lattice. A com-
parison with the results of simulations of lattices in
thermal equilibrium (Fig. 4) implies that the appear-
ance of DBs in the hot spot with subsequent cooling
is closely related to the existence of pronounced DBs

Fig. 15. Average energy per site after a transient process versus initial average energy for (a) 1D (at t = 106) and (b) 2D (at t = 2 × 104 ) lattices.

in thermal equilibrium. Especially, if the initial energy
density was too low to generate DBs, no DBs are ex-
pected to appear during the subsequent cooling. DBs
appear in the caseα = −1 as soon as the energy density
is large enough for the soft DBs to form. For α = 0 one
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Fig. 16. Spatial distribution of the energy density after a transient process (at t = 106) is shown. Initial energy density ε̄0 is changed along the
vertical axis. Here (a) α = −1, (b) α = 0.

needs larger values of ε̄0 to observe hard breathers, in
analogy to the case of thermal equilibrium.

The dynamics of the lattice becomes far more puz-
zling as ε̄0 is increased further (see Fig. 13(c) and (d)
for ε̄0 = 0.96 with α = 0 and ε̄0 = 0.97 with α = −1,
respectively). To obtain further insight we plot in Fig.
16 the spatial energy distribution as a function of the
initial energy density ε̄0 after a cooling time of 106.
For the asymmetric on-site potential (Fig. 16(a)) sev-
eral soft breathers are pinned down in close neighbor-
hood of each other, in the center of the hot spot region,
which is also reflected by a constant value of the total
energy left in the system. If ε̄0 is low enough, then soft
DBs may be observed at the edges of the hot spot re-
gion (moving towards each other during the cooling).
These DBs are weakly localized and do not act as effi-
cient backscatterers of waves which leak into the cold
region. For the case of the symmetric on-site potential
hard breathers successfully appear, grow in energy (as
ε̄0 is increased) and efficiently backscatter wave pack-
ages, storing some amount of energy between them (see
Fig. 16(b)).

A possible reason for the fact, that soft DBs do not
appear on the edges of the hot region at high energies
and (when they do at lower ε̄0) do not prevent it from
getting cooled, is that soft DBs appear only on inter-
mediate energy scales (see Figs. 2 and 4). Even if they
appear on the edges of the hot spot, the plane waves
inside this region will heat them up and lead to their
disappearance. Only if the soft DBs are generated in the
center of the hot spot, they can survive, simply because
there is no further significant interaction with radiation.

This also explains why the final energy left in the region
after cooling is quite constant (Fig. 15(a)). In the case
of hard DBs nothing prevents them from raising their
energy on the expense of radiation and still remaining
(even more) robust and localized.

Finally, let us discuss in more detail the result for the
2D case in Fig. 15(b). For α = 0 we find the presence
of an energy threshold for DBs. Essentially no DBs are
observed for ε̄0 < 0.3. This corresponds to DB ener-
gies larger than 5 × 0.3 = 1.5, and is of the order of
the minimum hard DB energy 2.76. The monotonous
increase of ε for ε̄0 > 0.4 is due to the increasing
number and energies of DBs excited. Thus, we con-
firm thermal equilibrium studies from Section 2 and
again observe DB energy thresholds affecting the statis-
tics of the system, this time concering relaxations. For
α = −1 no DBs are observed for ε̄0 < 0.1, which is
three times less the threshold value for α = 0. Note
that soft DBs have here an energy threshold of 0.84,
roughly three times smaller the hard DB threshold for
α = 0. This is a strong indication that for α = −1 we
observe the soft DB energy thresholds. The plateau
behaviour of ε for ε̄0 > 0.2 can be explained by the
fact that soft DBs are excited only from a narrow en-
ergy interval. Further increase of the input energy den-
sity simply leads to an excess of plane waves which
are radiated away. The hard DB energy threshold of
8.06 implies that possible changes due to the addi-
tional excitation of hard DBs are expected for input
energy densities ε̄0 > 1. The detailed investigation of
these intricate issues is beyond the scope of the present
work.
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6. Conclusions

The results presented in this paper demonstrate the
complex and intricate way of DB excitation in non-
linear lattices. They include the novel modulational
instability scenario in 2D lattices, the observation of
DB energy thresholds in 2D lattices both in thermal
equilibrium and in hot spots during cooling, and the
generation of DBs in lattices with external energy
kicks. Our studies show that while results for exact
DB solutions and their small perturbations help in in-
terpreting some of the data, some cases are less clear.
Especially the fact that thermal equilibrium studies
suggest that for small enough temperatures DBs do
not exist, but reappear during a subsequent cooling
of a corresponding hot spot region, remain puzzling.
While there exist several publications with related re-
sults, only the coherent choice of potentials allows to
reveal the complexity of the processes under consi-
deration.

Our results show how different DBs behave in 1D
and 2D lattices. Since DBs act as strong scattering cen-
ters in 1D systems, they trap radiation. But precisely
this radiation starts to interact with the DBs, perturb-
ing them in various ways (cf. [33,34]). This interaction
often leads to a DB destruction. Contrary DBs in 2D
systems interact only weakly with radiation. This im-
plies that DBs in 2D systems are much more robust
in the presence of various fluctuations. We can safely
conjecture here that this will be even more true for 3D
systems.

We have indirectly observed the presence of energy
thresholds for DBs in 2D systems. For special models
such thresholds can be also obtained in 1D systems. Re-
cent efforts to observe these thresholds in 1D systems
in thermal equilibrium were less conclusive (cf. [29]).
We think that a possible reason for that is the above
mentioned effect that 1D breathers trap radiation and
thus are easier destroyed.

One of the outcomes of the present work is that
time-resolved pump-probe spectroscopy is a possible
method to observe DBs e.g. within the scenario of hot
spot cooling in thin film insulators, if DBs survive for
4–6 orders of the phonon time scales as obtained in our
numerical studies. Possible links exist also with the
long discussed issue of hole burning, where radiation
causes long time changes in the spectral properties of
absorption of crystals.

To conclude we think that despite of a growing num-
ber of results on DB properties in lattices in and out of
equilibrium, we are just at the beginning of understand-
ing the complex ways dynamical localization may take
to influence statistical properties of nonlinear lattices.
The best is yet to be done.
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