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We show that the linearized phase space flow around a discrete breather solution is not capable of generating
persistent energy flow away from the breather even in the case of instabilities of extended states. This holds
both for the classical and quantized description of the flow. The main reason for that is the parametric driving
the breather provides to the flow. Corresponding scaling arguments are derived for both classical and quantum
cases. Numerical simulations of the classical flow support our findings.
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I. INTRODUCTION

Discrete breatherssDBsd have been intensively studied in
the past decade. They are known to be generic solutions of
the dynamics of nonlinear spatially discrete translationally
invariant Hamiltonian systems. DBs are time-periodic and
spatially localized excitations and belong to one-parameter
families of solutions of the underlying equations of motion.1

DBs have been observed in various experimental situa-
tions ranging from Josephson junction ladders,2 coupled non-
linear optical waveguides3 and driven micromechanical can-
tilever arrays4 to layered antiferromagnets5 and high-Tc
superconductors,8 surface and bulk lattice vibrations of
solids,6 and Bose-Einstein condensates loaded on optical
lattices.7 DBs are also predicted to exist in the dynamics of
dusty plasma crystals.9 The characteristic spatial scales range
from micrometers down to Å. Especially in Josephson junc-
tion ladders DB excitations have been studied very exten-
sively, including their interaction with the modes of the lat-
tice part which is not excited by the DB.10 Thus the issue of
stability of DB states, of their interaction with lattice modes,
and possible mechanisms of radiation of energy by DBs due
to this interaction becomes an important and timely issue.

The fact that DB solutions are generic for nonlinear
Hamiltonian lattices implies that in the majority of cases the
underlying Hamiltonian equations of motion are not inte-
grable. This puts limitations and complications on the study
of perturbed DB states. If the perturbation is considered to be
of small amplitude, its evolution can be described using a
linearization of the phase space flow around the DB. The
resulting linear coupled ordinary differential equations
sODEsd with time-periodic coefficients can be studied within
the framework of Floquet theory.11

Taking into account higher order terms in the phase space
flow will ultimately lead to more complicated nonintegrable
equations, which can be studied only approximatively.12 Sev-
eral issues are at stake when discussing the evolution of per-
turbed breathers. One can consider localized or extended per-
turbations on one hand. On the other hand there are
differences in the way breathers react to such perturbations
depending on the amplitude of the latter.

Let us first discuss the case of a linearized phase space
flow around a DB. Formally the obtained Floquet equations

decouple the dynamics of the DBsswhich is assumed to be
givend from the evolution of the perturbation. Perturbations
which grow in time will then invalidate the abovementioned
linearization. Perturbations which decay in time do not con-
tradict the linearization, but in fact the energy stored in the
initial perturbation cannot simply disappear if we consider
Hamiltonian dynamics. Consequently there is a subtle way
this energy will have to be transferred to the DBs, which
again is beyond the linearization frame. Marginally stable
perturbations, which neither grow nor decay seemingly do
not violate the assumed linearization. Nevertheless it has
been shown that for extended perturbations such a case may
be accompanied by a nonzero energy flux emitted out of or
into the breather core.13 Again it would violate the lineariza-
tion frame. Even though it may do so, such predicted radia-
tion scenaria are confirmed in numerical simulations, under-
pinning the use of the linearization picture.

Additional sources of radiation can appear when taking
into account nonlinear corrections to the phase space flow of
a DB perturbation, even if the linearized case did not provide
with such sources. For instance a marginally stable localized
linearized perturbation will yield an energy radiation due to
the appearance of new frequency combinations and reso-
nances with the spectrum of small amplitude plane waves.14

Here we will be concerned with a particular case within
the linearized phase space flow frame, which corresponds to
the abovementioned extended perturbations yielding a non-
zero energy flux out of the breather core. The question we
want to pose is whether this energy flux can be sustained if
the perturbation we choose is local in space. The perturbation
will have some overlap with the extended ones. So there will
be some radiation, but at the same time the initial localized
perturbation will simply disperse away from the breather
lowering its amplitude. The question then is whether these
two counteracting processes balance each other or not. The
question is of relevance also in connection with recently dis-
cussed radiation mechanisms of strongly excited quantum
breathers.15 We will provide with answers for both cases.

II. THE CASE OF CLASSICAL BREATHERS

For the sake of simplicity we consider first a one-
dimensional lattice with the equations of motion
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ẍl + V8sxld + W8sxl − xl−1d − W8sxl+1 − xld = 0, s1d

which corresponds to the Hamiltonian

H = o
l
F1

2
ẋl

2 + VsXld + Wsxl − xl−1dG . s2d

The indexl denotes the lattice site, and can run over a finite
or infinite lattice. Extensions to higher lattice dimensions are
straightforward. A local minimum energy statexl = ẋl =0 is
provided by Vs0d=Ws0d=V8s0d=W8s0d=0 and
V9s0d ,W9s0d.0. Small amplitude excitations can be ob-
tained by linearizing Eq.s1d with the ansatz

xlstd , eisvqt−qld s3d

which results in the dispersion relation for plane waves

vq
2 = V9s0d + 4W9s0dsin2q

2
. s4d

For varieties of anharmonic potentialsV,W it is well known1

that the Eq.s1d allow for families of discrete breather solu-
tions of the type

x̄lstd = x̄lst + Tbd, xul u→` → 0. s5d

Here the breather frequencyVb=2p /Tb is a tunable param-
eter which satisfies the nonresonance condition

mVb Þ vq. s6d

In addition given a breather family we can generate new
families by discrete translationsl → l + l0.

In the next step we consider small perturbationsel around
a given breather solution for a given value of its frequency
vb. We insert the ansatzxlstd= x̄lstd+elstd into the equations
of motion s1d and linearize it with respect to the perturbation

ël + V9fx̄lstdgel + W9fx̄lstd − x̄l−1stdgsel − el−1d

− W9fx̄l+1std − x̄lstdgsel+1 − eld = 0. s7d

Integration of these Floquet equations over one breather pe-
riod Tb maps the phase spacesel , ėld onto itself and is equiva-
lently described by a Floquet matrixF. This matrix is sym-
plectic and can be obtained, e.g., numerically. Its eigenvalues
l and eigenvectorsyWl describe the linear stability properties
of the DB and the scattering of plane waves by the DB as
well. If ulu=1 the corresponding eigenstateyl is marginally
stable—it neither grows nor decays in time. Eigenvectors
may be localized or extended. Since the breather is localized,
the eigenvalue spectrum of the localized eigenstates is dis-
crete, while the eigenvalue spectrum of delocalized eigen-
states is continuous for an infinite lattice. Indeed, in that case
delocalized eigenvectors far from the breather asymptotically
take the forms3d. Consequently their eigenvalues are given
by

lq = eivqTb. s8d

Note that this is true only for an infinite lattice. In the fol-
lowing we will remind the reader about finite size corrections
to this picture.

Let us now consider a lattice with a particular breather
solution such that

vq ± vq8 = mVb, q Þ q8, s9d

so that lq=lq8. This twofold degeneracy is the origin of
inelastic multichannel scattering13 performed at these wave-
numbersq andq8. Note, that such a situation corresponds to
the parametric resonance in the systems7d, where the
breather acts as a parametric driversexponentially localized
in spaced. Thus an important question arises: can one pump
energy into the system in the regime of a parametric reso-
nance, provided that parametric driving is local in space?
The answer is no, as long as we deal with an infinite system
size. Here, however, we note that for a finite lattice the out-
come will be close to the above statements, but not identical.
Indeed, as shown by Marín and Aubry,16 the degeneracy of
the corresponding Floquet eigenvalues is lifted in a finite
lattice, leading to their departure from the unit circle, so that
uluÞ1. However, these departures are the smaller the larger
the lattice size is. Marín and Aubry have shown using a band
analysis thatuulu−1u,1/N, whereN is the total number of
lattices sites. This result is obtained first by noting that the
twofold degeneracy is lifted due to the time-periodic local-
ized DB perturbation and can be accounted for by estimating
the corresponding matrix element. Because both initially de-
generate eigenstates are delocalized, whereas the DB is lo-
calized, the matrix element will be of the order of 1/N. Per-
turbation theory of two degenerate states tells immediately
that the degeneracy will be lifted to an amount of 1/N as
well.

It is instructive to revisit here the consequencies. Assume
we have a large but finite lattice and such an extended
slightly unstable eigenstate. Taking the perturbation along
this eigenstate, and integrating over one period of the
breatherTb, this perturbation will grow everywhere in the
system, though not very strongly. How can that happen, if
the breather itself is localized, say exponentially? The influx
of energy is provided by the breather, and is confined to a
finite part of the lattice. The only possibility is that there is a
nonzero energy flux in the outer regions of the lattice due to
some slightly inhomogeneous profile of the Floquet eigen-
state. Then the breather simply feeds energy insor outd of a
confined small part of the lattice, and this energy then travels
along the rest of the lattice. If so, the legitimate question
arises whether this can be used as a possible source of radia-
tion of waves by a breather, if a corresponding generic local-
ized perturbation of the breather is excited.

To answer this question let us assume that all the elements
of a given sextendedd Floquet eigenvector are of the same
order of magnitudeyWl,A. Then taking an initial perturba-
tion being equal to such an eigenvector the stored energy is
given byEl,NA2. If we choose a growing unstable eigen-
vector, after one periodTb the amplitude of the perturbation
will becomes1+1/NdA. Consequently the energy after that
time increases toNs1+1/Nd2A2. Thus the energy grows dur-
ing that time by an amount ofDE,2A2 for largeN. Assume
now that we make a local perturbation of the breather given

by some vectorBW with its elements again being at most of
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orderA. Then it can be represented as a superposition of the
Floquet eigenvectors:

BW ,
1

N
o
l

yWl. s10d

Consequently the growth of energy in each unstable eigen-
state during one periodTb of the breather amounts toDEl

,A2/N2. The total number of unstable eigenstates will be
always less thanN, so that the total growth of energy in the
direction of all unstable eigenstates is limited byA2/N. Re-
calling thatA is fixed, this growth rate will scale to zero for
an infinite lattice. Consequently we predict that the above
discussed finite lattice instabilities do not result in an energy
radiation of the breather when perturbed locally. In other
words, a local perturbation will start to disperse away from
the breather, lowering its amplitude in the breather core. At
the same time it has some overlap with unstable eigenstates
which would result in a growth of the same amplitude. How-
ever the dispersion acts more efficiently, and for large times
the amplitude of the perturbation in the breather core will
ultimately decay down to zero.

The above argumentation was provided for a one-
dimensional system. It is straightforward to generalize it to
higher lattice dimensionsd as well. Assuming now thatN
represents the linear size of the system, the stored energy in
an unstable eigenvector becomesEl,NdA2. After one pe-
riod Tb the energy growth will be given byDE,2Nd−1A2.
For a local perturbation the growth of energy in each un-
stable eigenstate perTb is then given byDEl,2N−d−1A2.
Since there are at mostNd unstable eigenvectors, we obtain
again an upper limit for the total energy growthA2/N, inde-
pendent of the dimension of the lattice.

In order to verify this prediction, we performed high pre-
cision numerical simulations. We consider a system with
Vsxd=x2/2−x3/3 andWsxd=0.5Cx2. First we consider a lat-
tice of sizeN=40. We identify a breather with frequency
Vb=0.75 for which the abovementioned finite lattice insta-
bilities take place in the coupling constant regionC'0.093.
We compute the eigenvalues and eigenvectors of the corre-
sponding Floquet matrix for two different values of the cou-
pling constant:C=0.092 sbreather is linearly stabled and C
=0.093sbreather has finite size instabilitiesd. We then perturb
the breather in the direction of a stablesat C=0.092d and a
slightly unstable sat C=0.093d extended eigenstates and
monitor the energy flux at some distance from the breather

j lstd = ėlsel−1 − el+1d s11d

as well as its integral over the observed time of simulationt

Jlstd =
1

t
E

0

t

j lstddt. s12d

We nicely reproduce the expected two different scenaria: os-
cillations of energy flux with zero average of its integral
value in the case of a stable breather; and slow but still
exponential growth of the energy flux out of the breather
region in the case of an unstable breather, see Fig. 1.

Next we take a large lattice withN=4000 and identify
breather states withVb=0.75 for two different values of the

coupling constantC=0.02fthe breather is linearly stable, see
Fig. 2sadg andC=0.1 fthere exists a considerable number of
unstable extended eigenstates, see Fig. 2sbdg. We excite a
local perturbation on top of the breather core in a random
way on 10 adjacent sites with amplitude being of order one
at each site. We then monitor the time dependence of the
energy flux averaged over 20 lattice sitesjsumstd=on

n+20j lstd
outside the breather core. In both cases we observe a decay
of the measured radiation with growing time, see Fig. 3. For
large times it follows the power lawj , t−4 fsee insets in Fig.
3, to smoothen the oscillations and make the picture more
clear in insets we plot the flux value averaged over four
breather periods:ĵsumstd=1/s4Tbdet−4Tb

t jsumstddtg, which is
explained in the Appendix. This clearly demonstrates that the
finite lattice instabilities are not capable of sustaining a non-
zero energy radiation of the breather induced by a local per-
turbation.

III. THE QUANTUM CASE

The general problem of quantizing Eq.s2d and under-
standing the correspondence between quantum eigenstates
and classical discrete breathers is an issue of current re-
search. Since the underlying models are nonintegrable in
general, no analytic solutions can be obtained. Approxima-
tions have to be complemented by numerical studies. How-
ever, this is, in general, very hard to achieve, since one has to
deal with the diagonalization of huge matrices. Indeed, even
when studying one single oscillator, strictly speaking one has
to consider an infinite dimensional Hilbert space. So already
at the level of a single oscillator justified cutoffs in its Hilbert
space have to be introduced. Taking into account many
coupled oscillators leads to the necessity to reduce the num-
ber of states per oscillator. Reliable results in the high-energy
domain of the quantum problem have been obtained so far
only for small systems of two or three coupled
oscillators.17–20 These studies together with computations of
larger systems at lower energies have confirmed that quan-
tum breather states are many phonon bound states.21 They
correspond to some extent to classical breather excitations
being able to tunnel along the lattice.22 The tunneling rate is
expectedsand confirmed for small systemsd to be exponen-
tially small for large numbers of participating phonons. Then
it is legitimate to assume that a localized excitation of the
lattice with an energy corresponding to a large number of
phonons will evolve for exponentially long times according
to its classical DB analog. During that time, however, the
evolution of small amplitude perturbations around the
breather can be considered in its full quantum version. In
order to proceed we observe that Eq.s7d corresponds to a
time-dependent Hamiltonian

He = o
l
F1

2
pl

2 +
1

2
V9fx̄lstdgel

2

+
1

2
W9fx̄lstd − x̄l−1stdgsel − el−1d2G . s13d

Herepl is the canonically conjugated momentum toel. Now
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we may consider the corresponding quantum Hamiltonian
operator

Ĥe = o
l
F1

2
p̂l

2 +
1

2
V9fx̄lstdgêl

2

+
1

2
W9fx̄lstd − x̄l−1stdgsêl − êl−1d2G . s14d

The operators satisfy the standard commutation relation
fêl ,p̂mg= idl,m.

The fact that the Hamiltonians14d is a quadratic form of
operatorsêl andp̂l is crucial: we may appeal to the Ehrenfest
theorem23 and conclude that the dynamics of the quantum
systems14d is in full agreement with the dynamics of the
corresponding classical systems13d and therefore no addi-
tional quantum effects which may lead to breather radiation
should appear. To show this we switch to time-dependent
Heisenberg operatorsêl

Hstd ,p̂l
Hstd using standard relations

ÂHstd = sT̃eie0
t dtĤedÂsTe−ie0

t dtĤed, s15d

whereÂHstd is the time-dependent Heisenberg operator cor-

responding to a time-independent operatorÂ,T and T̃ are
time ordering and antitime ordering operators, respectively.

The equation of motion for a Heisenberg operatorÂHstd
reads

− i
]ÂHstd

]t
= fĤesp̂,ê,td,ÂHstdg. s16d

After substitution of the Hamiltonians14d into Eq. s16d it
follows that operatorsêl

Hstd satisfy the discussed above clas-
sical equationss7d, in which coordinatesel are substituted by
the corresponding operatorsêl

H. Since these equations are
linear we may average them with the time-independent wave
function c0, corresponding to the initial state of the system,
and get an equation for the expectation value of the coordi-
nate operator

FIG. 1. Energy fluxj lstd ssolid gray linesd and
integral energy fluxJlstd ssolid black lines, see
also insetsd in breather dynamics with small per-
turbation for the casessad C=0.092, perturbation
along stable eigenstate,sbd C=0.093, perturba-
tion along unstable eigenstate. The system size is
N=40 sbreather is centered at 20th sited, energy
flux is monitored at the sitel =25.
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«̃lstd = kc0uêl
Hstduc0l s17d

which is identical to Eq.s7d with expectation value«̃ stand-
ing instead of the classical variablee. Therefore all the con-
clusions made in the previous chapter as for time evolution
of the classical coordinateel hold for the expectation value«̃l
of the quantum operator«̂l as well.

Alternatively, the question of possible radiation of
phonons in the quantum case may be studied by considering
a quantum Floquet problem. Let us split the Hamiltonian
s14d into a time-averaged and an ac part

Ĥstd = Ĥdc + Ĥacstd. s18d

The ac partĤac is local in space because of the locality of the
discrete breather which is the origin of the ac drive. We can

consider the full orthonormal basis of eigenfunctionsfn of
the dc part

Ĥdcfn = enfn s19d

and expand the full wave functionC which satisfies the
time-dependent Schrödinger equation

iĊ = ĤstdC s20d

in that basis:

Cstd = o
n

Cnstdfn. s21d

This will lead to a set of coupled first order differential equa-
tions for the coefficientsCn:

iĊn = enCn + o
m

hnmstdCm, s22d

where the matrix elements

FIG. 2. Eigenvalueslq of the Floquet matrixF for the casessad
C=0.02,Vb=0.75, inset shows the breather profilescentral partd;
sbd C=0.1,Vb=0.75, inset zooms the region of instabilities. The
system size in both cases is 80 sites.

FIG. 3. Energy fluxjsumstd for a local initial perturbation for the
casessad C=0.02;sbd C=0.1. The system size isN=4000sbreather
is centered at 2000th sited, energy flux is monitored at sitesl
P f2020,2040g, perturbation is made on top of the 10 adjacent sites
in the breather core in a random way. Insets show the averaged over
four breather periods integral energy fluxĵsumstd ssee the main body
text for detailsd. Dashed line in inset insad shows the asymptote
ĵasstd=108/ st /Tbd4.
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hnmstdkfnĤacstdfml s23d

have been introduced andk¯l denotes the scalar product in

the space off. We also note that becauseĤ is Hermitiansin
fact real symmetricd

d

dt
uCstdu2 =

d

dt
o

n

uCnstdu2 = 0. s24d

In order to answer the question of radiation, let us start
with noticing that Eq.s22d constitute a Floquet problem
similar to the classical case. The difference is that the rank of
the Floquet matrix is formally speaking infinite even for a
finite lattice, since the Hilbert space dimension of a single
site oscillator is infinite. The extended states in Eq.s19d can
be characterized by the amount of excited one-phonon ener-
gies and classified accordingly as many-phonon excitations
with a given number of phonons participating. This consti-
tutes the main difference to the classical Floquet problems7d,
where only pairs of one-phonon excitations appearsbecause
in the classical case we compute frequencies instead of en-
ergies, and time reversal symmetry provides with two pos-
sible signs of the phonon frequencyd. For the quantum case
we have an infinite number of one-, two-, three-phonon ex-
citations, etc. To estimate the magnitude of the departure of
quantum Floquet eigenvalues from the unit circle, we need
again, as in the classical case, to first estimate the matrix
elements. Since the DB solution has a main frequency con-
tribution and higher harmonics with amplitudes exponen-
tially decaying with increasing order, the main contribution
will originate from the main frequency component of the
DB, which couples the space of many-phonon states locally,
e.g., the ground state with the two-phonon states, the two-
phonon states with the four-phonon states, the four-phonon
states with the six-phonon states, etc. In other words, we
have to consider an infinite matrix with degenerate diagonal
elements and nearest-neighbor interaction elements of the or-
der of 1/N in analogy to the classical case. The eigenvalue
spectrum of such a matrix will spread around the value of the
diagonal elements to the same order 1/N. Thus we conclude
that the quantum Floquet eigenvalues will depart from the
unit circle not farther than 1/N exactly as in the classical
case.

What remains then is to repeat the final argument applied
in the classical case. This can be done in full analogy to the
previous chapter, noting that the observable of the fluxj lstd
will be defined through the corresponding operatorĵ and the
product jstd=kCu ĵ uCl. This product will be a quadratic form
of the time-dependent coefficientsCnstd, which completes
the above analogy. The conclusion is thus that despite the
fact that the quantum Floquet problem involves an infinite
number of bands, and despite the fact that the norm is con-
served in the quantum case, a local perturbation around the
breather will not lead to a persistent radiation of phonons.
The argument that radiation must take place because the
ground state of the unperturbed systemswithout DBd is not
anymore the ground state of the system with a DB must then
be misleading. In fact the computation of the exact quantum
Floquet eigenvalue problem will show that there is always a

locally deformed ground statesas well as the excited statesd.
That deformation is clearly not the cause of radiation. The
only possible cause—an instability of extended Floquet
states—has been excluded by the above reasoning.

IV. CONCLUSIONS

In this work we excluded a particular mechanism of ra-
diation of perturbed breathers driven via weak finite size in-
stabilities of extended states. While the statement is rigorous
when treating the whole system classically, we arrive at a
similar result also when treating the fluctuations quantum
mechanically, leaving the breather solution to be a given
classical one. One way to obtain nonzero radiation is to in-
clude higher order terms of the perturbatione which together
with possible localized Floquet eigenvectors of the linearized
phase space flow will provide with a constant radiation rate
of the breather into the plane wave continuum, both for a
classical as well as a quantum treatment of the fluctuations.
Another path is to quantize the breather itself in the quantum
case. Then we can expect breather tunneling along the lat-
tice, which will provide with some diffusion of the full
breather energy out of the originally excited lattice part. Con-
cluding we may say that discrete breathers are surprisingly
robust objects. They can radiate energy into the continuum of
a large lattice only via higher orders of perturbations around
them.

APPENDIX

An estimation of a wave packet dynamics, resulted from a
local perturbation on a lattice, can be made essentially in a
similar way as it was done for continuous systems.24 Let us
start with an instructive case of a lattice without any breather.
We excite a local initial perturbation, say,els0d=dl,0. Its rep-
resentation in the reciprocal lattice space with wave number
q is given by aq-independent constanteq=const. Conse-
quently the evolution of the perturbation after some timet
will be given by

elstd , E
0

p

eqe
isql−vqtddq sA1d

with vq given by the plane waves dispersion relations4d.
Rewriting it as

E
0

p

eisql−vqtddq=E
0

p

eiFsqdtdq sA2d

with Fsqd=qsl / td−vq we can estimate the integral by noting
that for large values oft only q values contribute for which
]F /]q= l / t−vq is small. Herevq is the group velocity at
wave numberq. For larget only waves with small group
velocities contribute, i.e., with wave numbersq close to the
edges of the first Brilluen zoneq= q̂=0,p. It is straightfor-
ward to show that all extremum pointsq=q* of the function
Fsqd give contribution toelstd of the same order in small
parameter 1/t and do not cancel each other, hence it is
enough to consider only a single extremum point. Expanding
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F around its extremumq=q* , the integral can be estimated to
be

E
0

p

eiFsqdtdq, eiFsq* dtE ei0.5F9sq* dsq − q* d2tdq

,
1
Ît

eifjsl2/td+q̂l−vq=q* tg, sA3d

wherej= usdvq/dqd−1uq=q̂. Using the definitions11d we then
obtain

ėlstd , t−0.5, sA4d

el+1std − el−1std , t−0.5sinsq̂ + 2jl/td , t−1.5, sA5d

j lstd , t−2. sA6d

We tested this prediction numerically and found complete
agreement.

The observed 1/t4 dependence for a perturbation on top of
the breather can be now explained by noting that the breather
represents a local violation of the translational invariance. In
such a case the abovementioned reciprocal lattice represen-
tation eq of a local perturbation becomesq dependent be-
cause plane waves are not the true eigenstates of the system
anymore. It is easy to show that already for a single site
time-averaged breather contribution the amplitude of the ex-
tended eigenstates at the breather site is proportional to sinq.
This implies thateq,sinq. Following then again the above
reasoning, we obtain

elstd , sinsq*deiFsq* dtE ei0.5F9sq* dsq − q* d2tdq

, t−1.5eifjsl2/td+q̂l−vq=q* tg, sA7d

j lstd , t−4 sA8d

confirming the numerical results in Fig. 3.
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