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We show that the linearized phase space flow around a discrete breather solution is not capable of generating
persistent energy flow away from the breather even in the case of instabilities of extended states. This holds
both for the classical and quantized description of the flow. The main reason for that is the parametric driving
the breather provides to the flow. Corresponding scaling arguments are derived for both classical and quantum
cases. Numerical simulations of the classical flow support our findings.
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I. INTRODUCTION decouple the dynamics of the DBwhich is assumed to be

Discrete breathertDBs) have been intensively studied in given) from the evolution of the perturbation. Perturbations
the past decade. They are known to be generic solutions (y_yhlch. grow in time W|II_then |n\_/aI|date thg apovementloned
the dynamics of nonlinear spatially discrete translationallylinearization. Perturbations which decay in time do not con-
invariant Hamiltonian systems. DBs are time-periodic andiradict the linearization, but in fact the energy stored in the
spatially localized excitations and belong to one-parameteinitial perturbation cannot simply disappear if we consider
families of solutions of the underlying equations of motion. Hamiltonian dynamics. Consequently there is a subtle way

DBs have been observed in various experimental situathis energy will have to be transferred to the DBs, which
tions ranging from Josephson junction laddeecsupled non-  again is beyond the linearization frame. Marginally stable
linear optical waveguidésand driven micromechanical can- perturbations, which neither grow nor decay seemingly do
tilever array$ to layered antiferromagnétsand highT,  not violate the assumed linearization. Nevertheless it has
superconductor®, surface and bulk lattice vibrations of been shown that for extended perturbations such a case may
solids® and Bose-Einstein condensates loaded on opticabe accompanied by a nonzero energy flux emitted out of or
lattices” DBs are also predicted to exist in the dynamics ofinto the breather cor€ Again it would violate the lineariza-
dusty plasma crystafsThe characteristic spatial scales rangetion frame. Even though it may do so, such predicted radia-
from micrometers down to A. Especially in Josephson junction scenaria are confirmed in numerical simulations, under-
tion ladders DB excitations have been studied very extenpinning the use of the linearization picture.
sively, including their interaction with the modes of the lat-  Additional sources of radiation can appear when taking
tice part which is not excited by the DB.Thus the issue of into account nonlinear corrections to the phase space flow of
stability of DB states, of their interaction with lattice modes, a DB perturbation, even if the linearized case did not provide
and possible mechanisms of radiation of energy by DBs duwvith such sources. For instance a marginally stable localized
to this interaction becomes an important and timely issue. linearized perturbation will yield an energy radiation due to

The fact that DB solutions are generic for nonlinearthe appearance of new frequency combinations and reso-
Hamiltonian lattices implies that in the majority of cases thenances with the spectrum of small amplitude plane wates.
underlying Hamiltonian equations of motion are not inte- Here we will be concerned with a particular case within
grable. This puts limitations and complications on the studythe linearized phase space flow frame, which corresponds to
of perturbed DB states. If the perturbation is considered to b&he abovementioned extended perturbations yielding a non-
of small amplitude, its evolution can be described using azero energy flux out of the breather core. The question we
linearization of the phase space flow around the DB. Thevant to pose is whether this energy flux can be sustained if
resulting linear coupled ordinary differential equationsthe perturbation we choose is local in space. The perturbation
(ODESs with time-periodic coefficients can be studied within will have some overlap with the extended ones. So there will
the framework of Floquet theoty. be some radiation, but at the same time the initial localized

Taking into account higher order terms in the phase spacperturbation will simply disperse away from the breather
flow will ultimately lead to more complicated nonintegrable lowering its amplitude. The question then is whether these
equations, which can be studied only approximativélgev-  two counteracting processes balance each other or not. The
eral issues are at stake when discussing the evolution of pefuestion is of relevance also in connection with recently dis-
turbed breathers. One can consider localized or extended pedssed radiation mechanisms of strongly excited quantum
turbations on one hand. On the other hand there arbreathers®We will provide with answers for both cases.
differences in the way breathers react to such perturbations
depending on the amplitude of the latter. II. THE CASE OF CLASSICAL BREATHERS

Let us first discuss the case of a linearized phase space For the sake of simplicity we consider first a one-
flow around a DB. Formally the obtained Floquet equationgdimensional lattice with the equations of motion
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X+ V' () + W (X = X-1) =W (X471 — %) =0, (1) Let us now consider a lattice with a particular breather
) o solution such that
which corresponds to the Hamiltonian
1, wgt oy =md, gq#q’, (9
H=2 | 55+ VX) + WO = -1) | 2) _ _ .
L2 so thatAq=Aq. This twofold degeneracy is the origin of

The index| denotes the lattice site, and can run over a finiteIneIaStIC multichannel scatterifigperformed at these wave-

or infinite lattice. Extensions to higher lattice dimensions are[]huemzzrrzqmaentcrjig .reNsOc:iétnhcae} Sil;CThaeL Sg;?&%‘ CCV)J;Z?SOR?; to
2&?&? dhet];lorwarg)./ A Io\;:(%l) angg;ir\n/’(eor;e:r\g/]\% (gt)alzltg:m:%rl% breather acts as a parametric driverponentially localized
V'(0),W'(0)>0. Small amplitude excitations can be ob- in space. Thus an important question arises: can one pump

tained by | ina Ea(1) with th i energy into the system in the regime of a parametric reso-
ained by linearizing Ea(1) wi € ansatz nance, provided that parametric driving is local in space?

x(t) ~ g@qt-ah (3)  The answer is no, as long as we deal with an infinite system
size. Here, however, we note that for a finite lattice the out-
which results in the dispersion relation for plane waves  come will be close to the above statements, but not identical.
Indeed, as shown by Marin and AuBfythe degeneracy of
wﬁzv”(0)+4W’(0)sin29. (4)  the corresponding Floquet eigenvalues is lifted in a finite
2 lattice, leading to their departure from the unit circle, so that
IN| # 1. However, these departures are the smaller the larger
the lattice size is. Marin and Aubry have shown using a band
analysis thatf|]\|-1|~1/N, whereN is the total number of
lattices sites. This result is obtained first by noting that the
X0 =x(t+Ty), Xj_e—0. (5) twofold degeneracy is lifted due to the time-periodic local-
ized DB perturbation and can be accounted for by estimating
Here the breather frequenéy,=27/T, is a tunable param- the corresponding matrix element. Because both initially de-
eter which satisfies the nonresonance condition generate eigenstates are delocalized, whereas the DB is lo-
calized, the matrix element will be of the order ofN\L/Per-

For varieties of anharmonic potentialsW it is well known'
that the Eq.(1) allow for families of discrete breather solu-
tions of the type

My # g, ©® turbation theory of two degenerate states tells immediately
In addition given a breather family we can generate newthat the degeneracy will be lifted to an amount oiNlas
families by discrete translatioris— | +l,. well.
In the next step we consider small perturbatienaround It is instructive to revisit here the consequencies. Assume

a given breather solution for a given value of its frequencywe have a large but finite lattice and such an extended
w,. We insert the ansatg(t)=x,(t)+¢(t) into the equations slightly unstable eigenstate. Taking the perturbation along

of motion (1) and linearize it with respect to the perturbation this eigenstate, and integrating over one period of the
breatherT,, this perturbation will grow everywhere in the

&+ V'Dx(0]e + W (1) —X-1(D) (€ — €-1) system, though not very strongly. How can that happen, if
: - itself is locali ially? The |
— WXy () - X()](es1 — €) = 0. @) the breather itself is localized, say exponentially? The influx

of energy is provided by the breather, and is confined to a
Integration of these Floquet equations over one breather péiite part of the lattice. The only possibility is that there is a
riod T, maps the phase spagGg, ) onto itself and is equiva- nonzero energy flux in the outer regions of the lattice due to
lently described by a Floquet matrix This matrix is sym- some slightly inhomogeneous profile of the Flogquet eigen-
plectic and can be obtained, e.g., numerically. Its eigenvaluestate. Then the breather simply feeds energfomout of a
\ and eigenvectorg, describe the linear stability properties confined small part of the lattice, and this energy then travels
of the DB and the scattering of plane waves by the DB asilong the rest of the lattice. If so, the legitimate question
well. If |\|=1 the corresponding eigenstatgis marginally ~ arises whether this can be used as a possible source of radia-
stable—it neither grows nor decays in time. Eigenvectorgion of waves by a breather, if a corresponding generic local-
may be localized or extended. Since the breather is localizedzed perturbation of the breather is excited.
the eigenvalue spectrum of the localized eigenstates is dis- To answer this question let us assume that all the elements
crete, while the eigenvalue spectrum of delocalized eigenef a given (extendedl Floquet eigenvector are of the same
states is continuous for an infinite lattice. Indeed, in that caserder of magnitudej, ~A. Then taking an initial perturba-
delocalized eigenvectors far from the breather asymptoticallyion being equal to such an eigenvector the stored energy is
take the form(3). Consequently their eigenvalues are givengiven by E, ~NAZ If we choose a growing unstable eigen-
by vector, after one period, the amplitude of the perturbation
T will become(1+1/N)A. Consequently the energy after that
g =€, 8)  time increases tdl(1+1/N)?A2 Thus the energy grows dur-

Note that this is true only for an infinite lattice. In the fol- ing that time by an amount afE ~ 2A” for largeN. Assume
lowing we will remind the reader about finite size corrections"OW that we make a local perturbation of the breather given
to this picture. by some vectoB with its elements again being at most of
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orderA. Then it can be represented as a superposition of theoupling constan€=0.02[the breather is linearly stable, see

Floguet eigenvectors: Fig. 2(@)] andC=0.1[there exists a considerable number of
1 unstable extended eigenstates, see Fib)]2We excite a

B~=> i\ . (10)  local perturbation on top of the breather core in a random

N way on 10 adjacent sites with amplitude being of order one

at each site. We then monitor the time dependence of the
"Energy flux averaged over 20 lattice sifgg.{t)=="2%(t)
outside the breather core. In both cases we observe a decay
of the measured radiation with growing time, see Fig. 3. For
large times it follows the power lay~t™ [see insets in Fig.

Consequently the growth of energy in each unstable eige
state during one periodl, of the breather amounts thE,
~A?/N?. The total number of unstable eigenstates will be
always less thal, so that the total growth of energy in the

direction of all unstable eigenstates is limited AS/N. Re- 3, to smoothen the oscillations and make the picture more

calling thatA is fixed, this growth rate will scale to zero for | N inset ot the fl | d f
an infinite lattice. Consequently we predict that the above o N mse.s Wf plot the uxtva L_'e average .over- our
discussed finite lattice instabilities do not result in an energyreather periodsjsust)=1/(4Ty)[i_sr, jsund )d7], Which is
radiation of the breather when perturbed locally. In otherexplained in the Appendix. This clearly demonstrates that the
words, a local perturbation will start to disperse away fromfinite lattice instabilities are not capable of sustaining a non-
the breather, lowering its amplitude in the breather core. Agero energy radiation of the breather induced by a local per-
the same time it has some overlap with unstable eigenstatdgrbation.

which would result in a growth of the same amplitude. How-

ever the dispersion acts more efficiently, and for large times

the amplitude of the perturbation in the breather core will lll. THE QUANTUM CASE

ultimately decay down to zero. . The general problem of quantizing E() and under-
~The above argumentation was provided for a onestanding the correspondence between quantum eigenstates
dimensional system. It is straightforward to generalize it togng classical discrete breathers is an issue of current re-
higher lattice dimensiond as well. Assuming now thall  gearch. Since the underlying models are nonintegrable in
represents the_ linear size of the system, the stored energy §tneral, no analytic solutions can be obtained. Approxima-
an unstable eigenvector becomgs~N'A%. After one pe-  tigns have to be complemented by numerical studies. How-
riod Ty the energy growth will be given bAE~2N"A%.  oyer thisis, in general, very hard to achieve, since one has to
For a local perturbation the growth of energy in each uneg with the diagonalization of huge matrices. Indeed, even
stable eigenstate péf, is then given byAE, ~ 2N"9"1AZ, _when studying one single oscillator, strictly speaking one has
Since there are at mobt® unstable eigenvectors, we obtain 4 consider an infinite dimensional Hilbert space. So already
again an upper limit for the total energy growf/N, inde- 4t the level of a single oscillator justified cutoffs in its Hilbert
pendent of the dimension of the lattice. . space have to be introduced. Taking into account many
_In-order to verify this prediction, we performed high pre- coypled oscillators leads to the necessity to reduce the num-
cision Znumeglcal simulations. We consider a system Withyer of states per oscillator. Reliable results in the high-energy
V(x)=x°/2-x°/3 andW(x)=0.5Cx". First we consider a lat-  gomain of the quantum problem have been obtained so far
tice of sizeN=40. We identify a breather with frequency only for small systems of two or three coupled
0,=0.75 for which the abovementioned finite lattice insta-gscillatorsl’-2° These studies together with computations of
bilities take place in the coupling constant regi0gz0.093.  |arger systems at lower energies have confirmed that quan-
We compute the eigenvalues and eigenvectors of the corregm breather states are many phonon bound statékey
sponding Floquet matrix for two different values of the cou-correspond to some extent to classical breather excitations
pling constant:C=0.092 (breather is linearly stableandC  peing able to tunnel along the latti#&The tunneling rate is
=0.093(breather has finite size instabilitie¥Ve then perturb  expected(and confirmed for small systeint be exponen-
the breather in the direction of a statflt C=0.092 and a tjally small for large numbers of participating phonons. Then
slightly unstable (at C=0.093 extended eigenstates and it js |egitimate to assume that a localized excitation of the
monitor the energy flux at some distance from the breather|attice with an energy corresponding to a large number of
i1 = &(e-1— €21) (11) ph(_)nons Wi_II evolve for exponentially Iong times according
to its classical DB analog. During that time, however, the
as well as its integral over the observed time of simulation evolution of small amplitude perturbations around the

1(" breather can be considered in its full quantum version. In
J(7) = —f ji(Hdt. (12) order to proceed we observe that K@) corresponds to a
TJo time-dependent Hamiltonian

We nicely reproduce the expected two different scenaria: os- 1, 1

cillations of energy flux with zero average of its integral Ho=2 St EV"[XT(t)]ﬂZ

value in the case of a stable breather; and slow but still !

exponential growth of the energy flux out of the breather 1 _ 5

region in the case of an unstable breather, see Fig. 1. + EW'[Z(U -X-1(0](g - g-0)7|. (13
Next we take a large lattice withN=4000 and identify

breather states witR,=0.75 for two different values of the Herem is the canonically conjugated momentumefoNow
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we may consider the corresponding quantum Hamiltonian AH(t):(Treifgdﬂ%e)'&(-re—ifgdﬂqe) (15)
operator '

WhereAH(t) is the time-dependent Heisenberg operator cor-
|:|€: > 1%|2+ lV”[Y,(t)]%,Z rgsponding to a time—'independe'nt operafgm and T are
L2 2 time ordering and antitime ordering operators, respectively.

1 B The equation of motion for a Heisenberg operaﬁ&ﬂ(t)
WK =X (01& - &-0)% | (14)  reads

dAH(1)
at

The operators satisfy the standard commutation relation =i =[Hdr,&),A ()] (16)
[%l ’ %m]zié\l,m'

The fact that the HamiltoniafiLl4) is a quadratic form of After substitution of the Hamiltoniafil4) into Eq.(16) it
operatorsg andr is crucial: we may appeal to the Ehrenfest follows that operatorélH(t) satisfy the discussed above clas-
theorem® and conclude that the dynamics of the quantumsical equation$7), in which coordinates; are substituted by
system(14) is in full agreement with the dynamics of the the corresponding operato'. Since these equations are
corresponding classical systefh3) and therefore no addi- linear we may average them with the time-independent wave
tional quantum effects which may lead to breather radiatiorfunction ¢, corresponding to the initial state of the system,
should appear. To show this we switch to time-dependenénd get an equation for the expectation value of the coordi-
Heisenberg operator”é*(t),%l'*(t) using standard relations  nate operator
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FIG. 3. Energy fluxg,{(t) for a local initial perturbation for the
casega) C=0.02;(b) C=0.1. The system size $§=4000(breather
is centered at 2000th sjieenergy flux is monitored at sitels
€[2020,2040, perturbation is made on top of the 10 adjacent sites
in the breather core in a random way. Insets show the averaged over
four breather periods integral energy filg{t) (see the main body
text for detail$. Dashed line in inset ifa) shows the asymptote
Tad) =108/ (t/ Tp)%.

FIG. 2. Eigenvaluea of the Floquet matrix for the casega)

C=0.02),=0.75, inset shows the breather profitentral part  consider the full orthonormal basis of eigenfunctiafisof
(b) €C=0.1,0,=0.75, inset zooms the region of instabilities. The the dc part

system size in both cases is 80 sites. )
Hdc¢v = 6V¢V (19)

~ () = ~H
&1(t) = (ol & (V)] o) 17 and expand the full wave functiof? which satisfies the
which is identical to Eq(7) with expectation valug stand- time-dependent Schrddinger equation
ing instead of the classical variabde Therefore all the con- A
clusions made in the previous chapter as for time evolution iw=HHw (20)
of the classical coordinate hold for the expectation vali&  in that basis:
of the quantum operatdy, as well.
Alternatively, the question of possible radiation of ()=, C,(0)o,. (21)
phonons in the quantum case may be studied by considering v
a quantum Floquet problem. Let us split the Hamiltonian

. . This will lead to a set of coupled first order differential equa-
(14) into a time-averaged and an ac part

tions for the coefficientE,;:

ﬂ(t) = ﬁdc"' F'ac(t)- (18 ic,,: €,C,+ E hm(t)c,u (22)
m

The ac part:|acis local in space because of the locality of the
discrete breather which is the origin of the ac drive. We carwhere the matrix elements
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" locally deformed ground stat@s well as the excited stajes
h, . (D){d,Hadt 23 9 o
wD{@Had Db 23 That deformation is clearly not the cause of radiation. The
have been introduced arfd -) denotes the scalar product in only possible cause—an instability of extended Floquet

the space ofp. We also note that becaubkis Hermitian(in ~ States—has been excluded by the above reasoning.
fact real symmetric

EI‘I’(I)IZ _ EE cmP=0. (24) IV. CONCLUSIONS
dt e’ In this work we excluded a particular mechanism of ra-
pliation of perturbed breathers driven via weak finite size in-
stabilities of extended states. While the statement is rigorous
O\f\(hgn treating the whole system classically, we arrive at a
the Floquet matrix is formally speaking infinite even for a5|m|lar r'esult also.when treating the quc;tuanns quan.tum
finite lattice, since the Hilbert space dimension of a singleMechanically, leaving the breather solution to be a given
site oscillator is infinite. The extended states in B) can  c/assical one. One way to obtain nonzero radiation is to in-
be characterized by the amount of excited one-phonon enefiude higher order terms of the perturbatiowhich together
gies and classified accordingly as many-phonon excitation&th possible localized Floguet eigenvectors of the linearized
with a given number of phonons participating. This consti—phase space floyv will provide with a cons.tant radiation rate
tutes the main difference to the classical Floquet protfgm  ©f the breather into the plane wave continuum, both for a
where only pairs of one-phonon excitations appié@cause classical as V\_/ell as a quantum treatment of t_he fluctuations.
in the classical case we compute frequencies instead of eAt0ther path is to quantize the breather itself in the quantum
ergies, and time reversal symmetry provides with two pOS_c:ase. Then we can expect breather tunneling along the lat-

sible signs of the phonon frequencyor the quantum case tice, which will provide Wit.h some dil_‘fusion .Of the full
we have an infinite number of one-, two-, three-phonon eX_breather energy out of the originally excited lattice part. Con-

citations, etc. To estimate the magnitude of the departure dfiuding we may say that discrete breathers are surprisingly
quantum Floguet eigenvalues from the unit circle, we neediObUSt objects. They can radiate energy into the continuum of

again, as in the classical case, to first estimate the matri%:;;ge lattice only via higher orders of perturbations around

elements. Since the DB solution has a main frequency corf!
tribution and higher harmonics with amplitudes exponen-
tially decaying with increasing order, the main contribution APPENDIX
will originate from the main frequency component of the
DB, which couples the space of many-phonon states locally, An estimation of a wave packet dynamics, resulted from a
e.g., the ground state with the two-phonon states, the twdecal perturbation on a lattice, can be made essentially in a
phonon states with the four-phonon states, the four-phonosimilar way as it was done for continuous systeéthket us
states with the six-phonon states, etc. In other words, wstart with an instructive case of a lattice without any breather.
have to consider an infinite matrix with degenerate diagonalWe excite a local initial perturbation, sag(0)=4, . Its rep-
elements and nearest-neighbor interaction elements of the aresentation in the reciprocal lattice space with wave number
der of 1N in analogy to the classical case. The eigenvaluey is given by ag-independent constar,=const. Conse-
spectrum of such a matrix will spread around the value of thejuently the evolution of the perturbation after some time
diagonal elements to the same ordeN1Thus we conclude will be given by
that the quantum Floquet eigenvalues will depart from the .
unit circle not farther than N exactly as in the classical &(t) ~ J €€ oddg (A1)
case.

What remains then is to repeat the final argument applied ) ] ] ]
in the classical case. This can be done in full analogy to th&/ith @q given by the plane waves dispersion relati@h.
previous chapter, noting that the observable of the jlix ~ Rewriting it as

will be defined through the corresponding opereitand the ™ T

S . . . el(ql-wqt)dq= eIF(q)tdq (A2)
productj(t)=(W¥|j|¥). This product will be a quadratic form o o
of the time-dependent coefficient,(t), which completes
the above analogy. The conclusion is thus that despite theith F(q)=q(l/t)—», we can estimate the integral by noting
fact that the quantum Floquet problem involves an infinitethat for large values of only g values contribute for which
number of bands, and despite the fact that the norm is con#/dq=I/t-v, is small. Herev, is the group velocity at
served in the quantum case, a local perturbation around thgave numberg. For larget only waves with small group
breather will not lead to a persistent radiation of phononsvelocities contribute, i.e., with wave numbeglose to the
The argument that radiation must take place because thegges of the first Brilluen zon@=g=0,. It is straightfor-
ground state of the unperturbed systémithout DB) is not ~ ward to show that all extremum points=q" of the function
anymore the ground state of the system with a DB must theR(q) give contribution toe(t) of the same order in small
be misleading. In fact the computation of the exact quantunparameter 1t/ and do not cancel each other, hence it is
Floguet eigenvalue problem will show that there is always a&nough to consider only a single extremum point. Expanding

In order to answer the question of radiation, let us star
with noticing that Eq.(22) constitute a Floquet problem
similar to the classical case. The difference is that the rank
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F around its extremurg=q’, the integral can be estimatedto ~ The observed 1t# dependence for a perturbation on top of
be the breather can be now explained by noting that the breather
- represents a local violation of the translational invariance. In
f gFtgg~ gF (@)t f eio.sF”(q*)(q—q*Ftdq such a case the abovementioned reciprocal lattice represen-
0 tation €, of a local perturbation becomes dependent be-
cause plane waves are not the true eigenstates of the system
- i_ei[g(|2/t)+f4|—wq:q*t], (A3) anymore. It is easy to show that already for a single site
\t time-averaged breather contribution the amplitude of the ex-
. I tended eigenstates at the breather site is proportional tp sin
Whe'fefz (dvg/da) 1|q=ﬁ' Using the definition(11) we then This impli%s thate,~ sing. Following then%ggin the ak?c)Jve
obtain reasoning, we obtain

&(t) ~ 705, (Ad) . R
&(t) ~ sin(q")eF@ )tf 05 (@)@~ >2tdq
€:1(t) = €1(t) ~ 7O%in@+ 2é/t) ~ 715, (A5)

_ t—l.5ei[§(I2/t)+f]l—wq:q*t] , (A7)
i ~ = (AB) o,
We tested this prediction numerically and found complete IO ~t (A8)
agreement. confirming the numerical results in Fig. 3.
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