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We study the resonant scattering of plasmons slinear wavesd by discrete breather excitations in Josephson
junction ladders. We predict the existence of Fano resonances, and find them by computing the resonant
vanishing of the transmission coefficient. We propose an experimental setup of detecting these resonances, and
conduct numerical simulations which demonstrate the possibility to observe Fano resonances in the plasmon
scattering by discrete breathers in Josephson junction ladders.
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I. INTRODUCTION

Discrete nonlinear Hamiltonian systems generically allow
for spatially localized and time-periodic states, discrete
breathers sDBsd, which exist thanks to the interplay between
nonlinearity and discreteness.1 DBs have been detected and
studied experimentally in interacting Josephson junction
systems,2 coupled nonlinear optical waveguides,3 lattice vi-
brations in crystals,4 antiferromagnetic structures,5 microme-
chanical cantilever arrays,6 Bose-Einstein condensates
loaded on optical lattices,7 and layered high-Tc
superconductors.8 DBs are predicted also to exist in the dy-
namics of dusty plasma crystals.9

In the transmission problem of small amplitude waves at
frequency vq through a DB in the particular case of a one-
dimensional lattice, the DB acts as a time-periodic scattering
potential with frequency V. Generally, there is an infinite
number of scattering paths in such a case, which may lead to
a variety of interference phenomena ssee Fig. 1d. Indeed,
perfect reflection was observed for particular wave
numbers.10–13 A detailed analysis of this phenomenon
shows14 that it is a Fano resonance15 which is based on the
phenomenon of destructive interference.

Systems of coupled Josephson junctions with a ladder ge-
ometry allow for the experimental excitation and detection of
DBs.2 A variety of experimental methods allows for a sys-
tematic study of DB properties, which have been success-
fully combined with theoretical calculations and
predictions.16–21 JJLs are quasi-one-dimensional, and allow
for the excitation of traveling linear oscillatory waves susu-
ally referred to as plasma waves or plasmonsd, which can be
scattered by DBs. That makes JJLs suitable for the observa-
tion of Fano resonances. In addition, Josephson junction sys-
tems are dissipative systems including both damping and the
presence of an external homogeneous dc bias.

The aim of this paper is to investigate the possibility for
the observation of Fano resonances in plasma wave scatter-
ing by DBs in Josephson junction ladders sJJLsd. We will
also discuss the experimental setup for the possible observa-
tion of these resonances. We make use of the underdamped

regime of dissipation and exploit previous results on Fano
resonances which have been obtained for nondissipative sys-
tems.

II. MODEL

JJLs are formed by an array of small Josephson junctions
that are arranged along the spars and rungs of a ladder, as
shown in Fig. 2. Junctions are denoted by crosses. Each junc-
tion consists of two small weakly coupled superconducting
islands. The dynamical state of a junction is described by the
phase difference f sJosephson phased of the superconducting
order parameters of the two islands. When the phase differ-
ence does not vary in time f=const, the junction is in the
superconducting state. Otherwise, the junction is in a resis-
tive state with a nonzero voltage drop V~ḟ sthe dot repre-
sents differentiation with respect to timed.

By using the resistively shunted junction sRSJd model and
Kirchhoff’s laws, we obtain a set of equations for Josephson

FIG. 1. Schematic of dynamically generated paths in the fre-
quency domain by a time-periodic scattering potential with a period
2p /V. In general, there is an infinite number of paths which may
lead to different interference phenomena.
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junction ladders sJJLsd in the following form:16–18
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where the notations Dfn; fn−1−2fn+ fn+1 and ¹fn; fn+1− fn
are used. The Josephson phases of vertical, upper and lower
horizontal junctions in the nth cell are denoted by fn

v, f̃n
h,

and fn
h respectively, a is an effective damping, g is the ex-

ternal dc bias across vertical junctions. The discreteness pa-
rameter bL=2pIc

VL /F0 characterizes the ratio of geometrical
cell inductance L and the Josephson inductance of vertical
junctions, and h= Ic

H / Ic
V is the anisotropy parameter of the

ladder. Here, Ic
V sIc

Hd is the vertical shorizontald junction criti-
cal current ssee Ref. 21 for detailsd.

III. SMALL AMPLITUDE EXCITATIONS
OF THE SUPERCONDUCTING GROUND STATE

First we discuss the spectrum of small amplitude excita-
tions splasmonsd around the superconducting ground state
fn

*v=arcsin g and fn
*h= f̃n

*h=0 by linearizing the system s1d

fn
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*v + wn
v, fn
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h, s2d

where wn
v, wn

h, and w̃n
h describe the small amplitude excita-

tions. The presence of dissipation leads to the decay of exci-
tations in time. In experiments, the dissipation a can be
rather weak sof the order of 0.01 or even lessd and usually it
is ignored when discussing the small amplitude excitation
spectrum.16 Here we provide the correct solution in the pres-
ence of damping. We can exclude the dissipative term by the
following time-dependent transformation

w = e−sa/2dtc . s3d

According to Eq. s3d the obtained plane waves are character-
ized by an exponential decay in time with a characteristic
decay time t=2/a. By solving the equations for cn
,eisqn−vqtd we obtain three plasmon bands v1sqd, v2sqd,
v3sqd ssee Appendix Ad. One of them v1

2sqd=1−a2 /4 is dis-

persionless si.e., the frequency does not depend on qd. It is
characterized by all vertical junctions being at rest and in-
phase excitations of horizontal junctions in each cell. The
two other plasmon bands are characterized by v2

2sqd
,v1

2sqd and v3
2sqd.v1

2sqd. Note here, that the band v2
2sqd

possesses a rather weak dispersion and becomes dispersion-
less for g=0. In that limit it also coincides with the first band
v2sqd=v1sqd for g=0. Therefore, in the Hamiltonian limit
a=0 and g=0 there is only one plasmon band v3

2sqd with
nonzero dispersion.

IV. DISCRETE BREATHERS

JJLs support dynamic localized states—discrete breathers.
A breather is characterized by a few junctions being in the
resistive state kḟlÞ0 while the others reside in the supercon-

ducting state kḟl=0. The frequency of a DB is proportional
to the average voltage drop across the resistive junctions
Vb~ kḟl and generally depends on the parameters of the sys-
tem. Different types of DBs have been observed experimen-
tally and numerically.16 In the following we focus on DB
solutions, which are schematically represented in Fig. 3.

By tuning the external dc bias g, a DB state generally
follows adiabatically and change its characteristics including
voltage drop sfrequencyd, spatial extent, etc. We coin such a
state a nonresonant DB. This is correct unless the DB solu-
tion starts to resonate with the plasmon modes of the unex-
cited part of the ladder. Such resonances may either lead to a
loss of the DB solution, or to the appearance of resonant
DBs.17,18,21 These states are characterized by a strong cou-
pling of the DB and the extended plasmon modes of the
ladder, and a corresponding voltage locking. Consequently
resonant DBs are characterized by their voltage drop sfre-
quencyd being nearly independent of the applied external dc
bias. Note that resonant DB states do not persist in the dis-
sipationless Hamiltonian limit easily, since the absence of
dissipation causes a radiation of the DB energy into the rest
of the ladder due to the assumed resonance with the extended
ladder modes. In the dissipative case, extended modes are
damped, and energy is fed into the system through the

FIG. 2. Schematic of the Josephson junction ladder. Each cross
represents a junction. Arrows denote the dc bias flow.

FIG. 3. Schematic of A- and B-type breather resistive cores in
JJLs with one vertical resistive junction. Black spots mark the junc-
tions being in the resistive state while all others are in the super-
conducting one.
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breather core, providing with an intricate balance. However,
DBs with nondecaying tails in Hamiltonian systems might
well correspond to resonant DBs in dissipative systems.

V. DISSIPATIONLESS LIMIT AND CORRESPONDENCE
IDEA

Let us study the Hamiltonian limit, by neglecting both the
dissipation a and the dc bias g. In that case we can later
apply a well-developed numerical scheme for wave scatter-
ing. While the wave scattering can be also analyzed for the
dissipative case, we use the advantages of DB properties in
Hamiltonian systems. In this limit nonresonant DBs become
one-parameter families of periodic orbits in phase space.
Their general form is

fW nstd = kWnVbt + gWnstd , s4d

where the notation fWn= hfn
v , fn

h , f̃n
hj for the function of cell n is

used. The jth component of kWn is an integer winding number.
It is nonzero for a few junctions in the DB’s core and zero
for all others. For example, for the breathers from Fig. 3 we
have k=1 for all resistive junctions of the A breather and
zero otherwise, while for the B breather k=1 for the resistive
horizontal junctions and k=2 for the vertical resistive junc-
tion. gWnstd are periodic functions of time gWnst+2p /Vbd
=gWnstd with exponential decay of amplitudes along the ladder
maxtugunu→`

j stdu→0. The frequency Vb is a parameter which
changes along the family of solutions.

In the presence of weak dissipation a and dc bias g a
given solution from a nonresonant DB family is selected to
become an attractor and only slightly changed in its temporal
evolution. These changes are small if a!1 which we as-
sume. By tuning the external dc bias g we simply scan dis-
sipative nonresonant DBs which are close to their nonreso-
nant DBs of the Hamiltonian limit. For this purpose one can
use the relation between Vb, a, and g, which is given in Ref.
18. This correspondence idea will be exploited in what fol-
lows below.

VI. SCATTERING OF WAVES BY DISCRETE BREATHERS:
DISSIPATIONLESS CASE

DBs are dynamic localized excitations. For propagating
waves DBs act as time-periodic scattering potentials. Based
on results for Hamiltonian lattices,10–13 we expect that such
interesting phenomena as resonant transmission and resonant
reflection could be observed in JJLs too. Here we focus on
the resonant reflection, or Fano resonance. We start with the
Hamiltonian limit, where we can rely on recent results on
Fano resonances induced by time periodic scattering
potentials.14 We predict the position of the resonance and
then confirm the prediction using numerical simulations. The
extrapolation of the obtained resonances to the non-
Hamiltonian case in the presence of nonzero damping and
bias will be shown to be successful.

In order to study the scattering problem in the Hamil-
tonian limit a=0 and g=0, we linearize the set of equations

s1d around a DB s4d by substituting fW n=fŴ n+wW n with small
amplitude excitations wW n
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This is a set of linear equations with time-periodic coeffi-
cients with the period Tb=2p /Vb.

The set of equations s5d describes scattering of waves by
a time- periodic scattering potential. We may estimate the
time-averaged scattering potential by replacing cossf̂d=0 for

a resistive junction and cossf̂d=1 for a superconducting
junction. The interaction part fright-hand side of Eq. s5dg is
not changed. Due to the finite maximum strength of the scat-
tering potential, the expected nonresonant scattering impact
can be expected to be weak in general, especially if the plas-
mon bandwidth sand thus the corresponding group velocity
of wavesd is large enough. That promises ideal grounds for
observing resonant reflection on the background of nearly
perfect transmission.

The wave scattering by DBs is studied by using proper
boundary conditions, which implies a scattering setup—on
the left-hand side there are incoming and reflected waves and
on the right-hand side there are only transmitted ones

wW nstd =HIWe−ifv3sqdt−qng + RW e−ifv3sqdt+qng, n ! 0,

TWe−ifv3sqdt−qng, n @ 0.
J s6d

with the frequency v3sqd sA6d and relation sA7d between the

components of the vectors IW, RW , and TW .
The general solution of Eq. s5d can be written as

wW nstd = o
k=−`

`

BW kne−ifv3sqd+kVbgt. s7d

Each term in this sum represents a channel—the path way
for the waves. There is an infinite number of channels. The
kth channel is characterized by its frequency vksqd=v3sqd
+kVb. When the frequency vksqd belongs to the spectrum
sA6d the kth channel becomes open, otherwise it is closed. It

leads to the following property for the amplitudes BW kn

BW k,unu→`H=0, for closed channels,

Þ0, for open channels.
J s8d

In other words, plane waves can freely propagate only inside
the open channels.

The zeroth channel k=0 is always open. In principle there
is a possibility to have an additional open channel with non-
zero integer kÞ0 for particular values of the wave number
q8. It happens when there is a wave number q9 such that the
condition vksq8d=−v3sq9d is fulfilled. This situation corre-
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sponds to the case of parametric resonance, which may lead
to the instability of a DB. Moreover, it was shown that mul-
tichannel scattering is an inelastic process.10 In the following
we restrict our attention only to the case of one-channel scat-
tering. We can avoid the multichannel scattering by a proper
choose of the frequencies of DBs.

In the case of one-channel scattering only the zeroth chan-
nel k=0 is open and all other channels kÞ0 are closed. From
this point of view the scattering potential which is generated
by the DB, can be separated onto two parts: a time-averaged
dc part sthe open channeld and an ac part sthe closed chan-
nelsd. The scattering by the dc part only is well understood.
We are interested in the role of the set of closed channels
which become active inside the breather core and may pro-
vide with interference phenomena.

Inserting Eq. s7d into Eq. s5d and eliminating time leads to

a set of equations for the amplitudes BW kn. These equations
yield a characteristic amplitude of the interaction between

the open channel BW 0n and the closed ones BW kÞ0,n inside the
DB core, which will be denoted by Vac-dc. In the most situa-
tions it can be characterized by the amplitude of the first
Fourier harmonic of the time-periodic scattering potential.14

If we approximate BW kÞ0,n=0, coefficients in the remaining

equations for BW 0n describe the time-averaged or dc part of the
scattering potential.

VII. DETERMINING THE LOCATION OF RESONANCES

As was shown above, a breather acts as a time-periodic
scattering potential for propagating waves. The system s5d
with time periodic coefficients with period Tb can be consid-
ered as a Floquet problem. This system possesses stable so-
lutions, which satisfy the following condition:

wW nst + Tbd = e−iuwW nstd . s9d

These are so-called Floquet or Bloch eigenstates. Here u is a
Floquet multiplier, which can be represented as u=vTb with
some frequency v. Note that, strictly speaking, such frequen-
cies are defined only modulo Vb. Most of all Floquet states
are extended ones with frequencies v belonging to the spec-
trum v1,2,3sqd. But due to the spatial localization of a DB,
some Floquet states could be also localized around a DB
with frequencies v corresponding to some localized modes
vL.

In order to predict the location of a Fano resonance we
use the results of sRefs. 13, 14, and 19d The resonance posi-
tion is determined by the bound states of the dc part of the
scattering potential if the width of the resonance is small
compared to the continuum bandwidth. That condition is
equivalent to requesting that the width 1/bL of the plasmon
spectrum v3sqd is larger than the coupling Vac-dc between dc
and ac parts of the scattering potential. By introducing the
parameter

lF = bL
2Vac-dc

2 s10d

it follows lF!1. In this case the bound states of the dc part
of the scattering potential vL

dc can be considered as additional

discrete levels, which are weakly but resonantly coupled to
the open channel via the frequency of the DB Vb. In other
words, the Fano resonance takes place when

vL
dc + mVb = vqF

s11d

is satisfied for some qF. In order to predict the location of the
resonance we have to know the frequencies of the bound
states of the dc part of the scattering potential. We obtain
these values numerically by diagonalizing the corresponding
matrix.

Let us estimate Vac-dc for our case. In the breather core the
cossVbtd=0.5seiVbt+e−iVbtd terms in Eq. s5d yield a coupling
between channels k and k±1 of the order 0.5. Thus Vac-dc
<0.5. Consequently we obtain lF=0.5bL

2. Thus for bL,1
we can predict the position of the Fano resonance as de-
scribed above. Our strategy of searching for Fano resonances
is to compute the frequencies of localized modes of the dc
part of the scattering potential and to satisfy Eq. s11d.

VIII. COMPUTATIONAL RESULTS

For our computations of the transmission coefficient we
studied two types of breathers with left-right sA typed and
up-down sB typed symmetries with one vertical resistive
junction ssee Fig. 3d.

A. The Floquet approach

We use the formalism described above, and calculate the
transmission coefficient in the Hamiltonian limit was by
implementing the numerical scheme described in Ref. 13.
According to that scheme, we use proper boundary condi-
tions in the form of a time-periodic drive with a given fre-
quency from the spectrum sA6d. We simulate a system with
N=20 cells. On the right-hand side of the system we use an
additional restriction which implies that there is exactly one
transmitted plane wave, propagating to the right. On the left-
hand side we do not apply any additional restrictions. The
local time-periodic drive generates a mixture of waves with
different amplitudes propagating to the left and to the right.
In general, we excite a superposition of all possible polariza-
tion vectors. However, we drive our system with a frequency
from one dispersion curve. It means, that all waves which
correspond to other dispersion curves decay in space and the
desired scattering setup is realized at some distance from the
left boundary. In our case the two additional branches v1,2sqd
are dispersionless and their waves do not propagate through
the system. Therefore, we can already choose the first cell
away from the boundary in order to successfully apply the
numerical scheme from Ref. 13. If we take into account a
nonzero damping, then the second band v2sqd becomes
weakly dispersive as well, and evanescent modes at these
frequencies penetrate slightly into the ladder. We then simply
move our reference sites for the scattering setup further away
from the edges of the ladder, where again a single frequency
excitation is found.

For bL=0.5 and h=0.35 the spectrum sA6d is located be-
tween v3s0d=3.53 to v3spd=4.52. We have found by nu-
merical diagonalization that for Vb=3.1 all local modes of
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the dc part of the scattering potential of A- and B-type
breathers with one vertical resistive junction are located be-
low the plasma frequency v1 and there are only two of them,
which satisfy the condition s11d: vL1,A

dc =0.62, vL2,A
dc =0.73,

vL1,B
dc =0.93, and vL2,B

dc =0.95.
Thus we expect to observe two Fano resonances for the A-

breather at frequencies vqF
=3.72 and vqF

=3.83 according to
Eq. s11d and two for the B-type breather at frequencies vqF
=4.03 and vqF

=4.05. Indeed, the computation of the trans-
mission coefficient shows that there are two Fano resonances
for the A-type and B-type breathers sFig. 4d. The frequencies
of the numerically observed resonances are vqF

=3.68 and
vqF

=3.81 for the A-type breather and vqF
=3.93 and vqF

=4.07 for the B-type breather ssee Fig. 4d.
The number of localized modes of the dc part of the scat-

tering potential does not change when the damping and bias
become nonzero. But in this case there are two dispersion
curves with nonzero dispersion v2,3sqd. One of them is lo-
cated above the plasma frequency uv1sqdu, uv3sqdu sas be-
fored and the second one below it uv2sqdu, uv1sqdu. Since the
latter one possesses a rather weak dispersion, for small
damping a<0.01 there are still localized modes, which sat-
isfy the condition s11d.

We also incorporated the finite damping into the calcula-
tion of the transmission coefficient by using the transforma-
tion s3d. The resulting scattering problem can be again ana-
lyzed along the lines of the Floquet approach from above.
Note that this modified scheme implies the excitation of a
scattering wave setup which decays in time in a spatial ho-
mogeneous way. The numerical results of this scheme for
a=0.01 coincide with the transmission shown in Fig. 4. The
Fano resonance positions are practically the same, because
the frequencies of localized modes almost did not change.

B. Direct numerical simulations

In order to test whether the Fano resonances computed
along the lines of the Floquet approach ssee Fig. 4d also
persist in an experimental situation, we performed direct nu-
merical simulations of the scattering of linear waves by a DB
in Josephson ladders which emulate a real experimental situ-

ation. The equations of motion were numerically integrated
using a standard fifth-order Runge Kutta scheme22 with pre-
cision monitoring. To study the scattering of linear waves by
a DB in a situation comparable to an experiment, a special
scattering experiment scheme was set up. Linear waves are
generated in a JJL with open ends by locally applying a
time-periodic current g1std at the vertical junction 1: g1std
=gac cossvtd. The local current acts as a local parametric
drive. It excites a tail of junctions that oscillate with fre-
quency v. This tail extends into the ladder and decays expo-
nentially in space. The situation is comparable to a DB with
frequency v located at the system boundary. In Refs. 18 and
20, the spatial extent of oscillatory tails of DBs was com-
puted analytically. If the frequency v lies inside the disper-
sive v3 band, the tail decays as wn~exps−and. Outside the
band, the oscillations practically do not penetrate into the
system. To monitor the linear wave propagation in the sys-
tem, we compute the time-averaged oscillation power of ver-
tical junction n, Pac,n= kẇn

2l.
As a scatterer, a DB of either type A or B is launched in

the center of the system. The DB frequency is then tuned by
a spatially uniform dc bias g.

We simulate an open-ended JJL with N=100 cells, damp-
ing a=0.05, discreteness bL=0.5, and anisotropy h=0.35.
The vertical junction at the left edge n=1 is driven by a
time-dependent current with gac=0.05. The driving fre-
quency is swept within 3øvø5. At each frequency step, the
system is integrated over a time period of 500 units to allow
for relaxation. The dynamical values are then monitored over
the following 300 time units. During that time the oscillation
power and phase velocities are averaged and recorded.

Figure 5sad displays the obtained average oscillation
power spectrum in the vertical junction n=101 sat the right
edge of the ladder which is opposite to the ac-driven junc-
tiond. In the empty case without a scattering DB state inside
the ladder, the oscillation power shows a broad peak when
the excitation frequency v is inside the v3 band. Outside the
band, the oscillations quickly decay to a level below 10−20.
As a test, the frequency-dependent spatial decay was com-
pared to the analytical predictions and perfect agreement was

FIG. 4. Transmission coefficient vs v3sqd with Fano resonances
for waves scattered by A-type sdashedd and B-type ssolidd DBs with
one vertical resistive junction for Vb=3.1, bL=0.5, and h=0.35.

FIG. 5. Direct numerical simulation of the linear wave propaga-
tion in a JJL with N=100 cells, a=0.05, bL=0.5, h=0.35 with a
boundary ac bias g1=gac cossvtd. sad Oscillation power of vertical
junction n=101 vs excitation frequency v for an empty system
sdotted lined, for an A DB at site n=50 with frequency Vb=2.777
ssolid lined, and Vb=3.284 sdashed lined. sbd Transmission coeffi-
cient t for an A DB of frequency Vb=2.777 ssolid lined, Vb

=3.284 sdashed lined, and frequency V=3.082 sdotted lined.

RESONANT PLASMON SCATTERING BY DISCRETE… PHYSICAL REVIEW B 71, 174306 s2005d

174306-5



found. When a scattering DB is inserted into the system at
the central site n=50, the propagation of linear waves is
modified, and dips may appear in the power spectrum
sdashed line in Fig. 5d.

We obtain the transmission coefficient t by relating the
oscillation power at the boundary vertical junction sn=101d
with and without a DB inside the system, as

t ;
Pac,101 swith DBd

Pac,101 swithout DBd
. s12d

Figure 5sbd shows the obtained transmission for type A
scatterer states. Outside the v3 band, linear waves do not
propagate, hence any obtained transmission coefficient is
meaningless. Inside the band, we show the transmission
through DBs of three different frequencies. In the first case
of small DB frequency Vb=2.777, the transmission curve
has a broad maximum. The DB is practically transparent in
the center of the v3 band. If we increase the frequency of the
scattering DB, dips appear in the transmission at frequencies
vdip. The values of these frequencies change upon variation
of the scatterer DB frequency Vb.

We systematically varied the scattering DB frequency and
computed various transmission curves. In Fig. 6, we show
the dependence of the positions of the dips in the spectrum
vdip as a function of the scattering DB frequency Vb for type
A and B states. The obtained dependence is linear and fol-
lows

vdip = A0 + A1Vb. s13d

For the type A scattering DB, two dips were observed. For
the lower one we find A0=0.601 and A1=1.015 from a least
squares fit, while the upper resonance satisfies A0=0.680 and
A1=1.009. In the case of a B type DB, we observe only one
resonance, following A0=0.995 and A1=0.966. We interpret
A0 as the frequency of a dc local mode, while A1 is practi-

cally equal to unity, and find perfect agreement with Eq. s11d.
We thus conclude that the dips in the transmission spectrum
are in fact Fano resonances.

The persistence of the Fano resonance in the direct simu-
lations of the finite-size Josephson ladder including damping
gives a strong indication for a possible experimental obser-
vation of the phenomenon. Experimentally, the time-
dependent local biasing of one ladder end requires micro-
waves. However, instead of using an external source, a
resonant DB state, as studied experimentally in Ref. 21,
could be used to create linear waves. A scattering setup
should therefore consist of a resonant DB state used as an
emitter screating linear wavesd, while another snonresonantd
DB within a suitable distance would act as a scatterer. For
the detection of radiation we suggest the use of another set of
resistive Josephson junctions inside the ladder, situated at the
far end. These junctions may be seen again as a DB state.
Their property of quasiparticle detection can be then used by
biasing them close to the superconducting gap voltage.23 Fig-
ure 7 gives a sketch of the experimental setup of locally
biased DB states used as linear wave source, scatterer, and
detector. Promising experimental studies are under way ssee
Ref. 24 for detailsd.

IX. CONCLUSION

We investigate theoretically the existence of Fano reso-
nances in wave scattering by DBs in JJLs. Due to the weak
coupling between open and closed channels of the scattering
potential, generated by a DB, perfect reflection occurs, ac-
cording to the theory in the Hamiltonian limit, when mul-
tiples of frequency of DBs match the difference between the
frequency of a dc local mode and some frequency in the
spectrum. Numerical calculations of the transmission coeffi-
cient based on the Floquet approach confirm this analytical
prediction. Moreover, Fano resonances survive even the
presence of dissipation and external dc bias. Direct numeri-
cal simulations of the damped and biased system demon-
strate Fano resonances as well. This is a strong indication
that Fano resonances can be observed experimentally in Jo-
sephson junction ladders.

An interesting question is why the direct numerical simu-
lations do not show a perfect reflection ssee Fig. 5d, at vari-
ance with the computation of the transmission coefficient
based on the Floquet approach ssee Fig. 4d. We checked that
this is neither an artifact of the numerics, nor due to finite
size effects. The two methods sdirect simulations and Floquet
based approachd differ in the way boundary conditions are

FIG. 6. Dip frequency vdip in the transmission from Fig. 5sbd vs
DB frequency V for a type A DB stwo dips, marked by circles and
squaresd and a type B DB sone dip, diamondsd. Lines indicate linear
fits of the dip frequency to Eq. s13d.

FIG. 7. sColor online.d Schematic experimental setup for mea-
suring the plasmon scattering by a DB, showing source, scattering,
and detector DB. The individual DBs are controlled using local bias
currents g1−g3. Technical details are found in Ref. 24.
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defined. The only explanation we thus arrive at, is that al-
though the damping is weak, it leads to a different damping
of the propagating waves in different channels. Waves propa-
gating locally around the breather at different frequencies
si.e., in different channelsd are damped at a different rate,
which depends on the frequency of oscillations. Correspond-
ingly the phase and amplitude relations between the partial
waves in different channels are changed, leading only to a
partial destructive interference.25 Alternative explanations in-
volve the broadening of a resonance frequency line due to
damping. The damping causes the transmission to stay non-
zero in the resonance, and changes sbroadensd the line width
of the resonance. This also leads to the impossibility of re-
solving two closely nearby lying resonances, exactly as we
found in our numerical studies for the type B breather.

Fano resonances can be considered as a benchmark of
dynamical localized excitations sDBsd in their action on
propagating waves in the system. A similar proposal for the
observation of Fano resonances in light-light scattering in
nonlinear optical media has been reported in Ref. 26.
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APPENDIX: DISPERSION OF LINEAR WAVES

Substituting the expressions s2d into system s1d together
with the transformation s3d and linearizing with respect to
the small excitations, we obtain

c̈n
v + SÎ1 − g2 −

a2

4
Dcn

v =
1

bL
sDcn

v + ¹ cn−1
h − ¹ c̃n−1

h d ,

c̈n
h + S1 −

a2

4
Dcn

h = −
1

hbL
s¹cn

v + cn
h − c̃n

hd ,

c̃
¨

n
h + S1 −

a2

4
Dc̃n

h =
1

hbL
s¹cn

v + cn
h − c̃n

hd . sA1d

By using the plane wave ansatz

cW n = eisqn−vqtdAW q, sA2d

one obtains that there are three bands. One of them is disper-
sionless

v1
2sqd = 1 −

a2

4
. sA3d

For a=0 this is the plasma frequency and it is characterized
by in-phase excitations of upper and lower horizontal junc-

tions Ah= Ãh and all vertical junctions being at rest Av=0.
Due to the absence of dispersion this mode can be excited in
each cell with arbitrary amplitudes, since it does not propa-
gate along the ladder.

The two other bands are located above and below it

v2,3sqd2 = F 7 ÎF2 − G ,

F =
1

2
+

1

bLh
+

1

2
Î1 − g2 +

1

bL
s1 − cos qd −

a2

4
,

G = S1 +
2

bLh
−

a2

4
DSÎ1 − g2 −

a2

4
D

+
2

bL
F1 − S1 +

a2

4
Dcos q −

a2

4
G . sA4d

The dispersion of the second band v2sqd is weak. The polar-
ization vectors of these two branches can be written in a
compact form

Ah = − Ãh, Ah =
eiq − 1

bLhf1 − v2,3
2 sqd − a2/4g + 2

Av. sA5d

In the Hamiltonian limit a=0 and g=0 the band v2
2sqd

=1 becomes dispersionless as well. Its polarization vectors
are simplified to out-of-phase excitations of upper and lower

horizontal junctions Ah=−Ãh and Ah= 1
2 s1−eiqdAv. The third

band v3sqd keeps a finite dispersion

v3
2sqd = 1 +

2

bLh
+

2

bL
s1 − cos qd sA6d

with corresponding in-phase excitations of upper and lower
horizontal junctions and the following relation between ver-
tical and horizontal ones:

Ah = Ãh, Av = hse−iq − 1dAh. sA7d
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