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We present results on the diffusive motion of a charge interacting with the nonlinear dynamics of a ther-
malized underlying lattice. Signatures of anomalous diffusive properties are found at relatively high tempera-
tures, where highly nonlinear excitations are present. A sublinear diffusion and a plateau appear before the
standard long-time diffusion during the evolution of the mean-squared displacement and a significant degree of
heterogeneity is exhibited among individual trajectories. Both properties are connected with the existence of
vibrational hot spotgbreather or multibreather excitationgransport parameters of the charge are strongly
affected in this case, as can be exemplified by the significant suppression of the diffusion coddficiéet
variation of D with temperature follows a stretched exponential law. The results are contrasted with those of
the linearized case, in the absence of breathers. Such anomalous diffusion of a charge coupled to a thermalized
lattice may be relevant in low-dimensional soft materials with strong anharmonicities, such as biomolecules,
conducting polymers, etc.

DOI: 10.1103/PhysRevE.71.061901 PACS nun®)er87.15-v, 63.224+m, 05.90:+m

I. INTRODUCTION at finite temperaturgd 8] and their lifetime is orders of mag-
The problem of charge transport in low-dimensional flex-nitude longer than the characteristic time scales of the corre-

ible materials, apart from its own fundamental interest, isSPonding normal modeg.9].
related to important technological or biological issues. For Here, continuing the study of the effects observed at the
example, many optoelectronic devices have been constructégicroscopic level in Ref[15], we considermacroscopic
by conjugated polymerfgl], while the potential use of DNA characteristics of charge transport in a dynamical nonlinear
in molecular electronics has attracted considerable attentiolattice, by examining its diffusive properties. We follow the
[2] (for recent reviews on charge transport in DNA see Refsevolution of the charge’s mean-squared displacement and
[3,4]). Furthermore, charge migration along biomoleculescalculate the diffusion coefficient through the long-time lin-
may be involved in various biological processes. ear dependence. We find that hot spots give rise to a sublin-
In all these cases, the propagating charge interacts witear time dependence or a plateau in the mean-squared dis-
the underlying flexible structurs—8]. A convenient way to placement and a significant degree of heterogeneity among
include the effects of intrinsic structural dynamics on chargegndividual trajectories. Such a behavior is reminiscent of
transport is provided through coupled charge-lattice micro@nomalous relaxation in glass-forming systef@6—22. In
scopic dynamical models, which are commonly used for théhe latter case, mutual interaction and concomitant caging
study of polarons. In this respect, the Su-Schrieffer-Heegegffects slow down the motion of particles and hinder their
model has been successfully used for the study of organidiffusion, resulting in a characteristic plateau. In our case,
conductorg5,6,9], while a variety of models have been pro- charge’s confinement and irregular motion is provided by the
posed for the case of DNALO-13, depending on which thermally induced hot spots in the lattice.
parameter of the charge transptoh-site energy or overlap The structure of the paper is as follows. In the next sec-
integra) is coupled to the structural motions of the doubletion, we briefly present the dynamical model we use. In Sec.
helix and which intramolecular degrees of freedom are indll, the time evolution of the mean-squared displacement is
volved in this interaction. The evolution of such coupleddiscussed and compared to the corresponding linearized
systems is easily obtained numerically in the approximatiorease, in order to clarify the effects of the hot spots. Section
of the semiclassical equations of motigi¥]. In this frame- |V presents the variation of the diffusion coefficient with
work, thermal fluctuations can be incorporated by usingilemperature, which is also compared to the corresponding
Langevin dynamics for the classical lattice comporidrii]  results obtained for the linearized case. Section V presents
[see Eq(3) below] calculations of the non-Gaussian parameter, which quantifies
Using this formalism, it has been recently shown that forthe deviation of the charge probability from a Gaussian
relatively high temperature§.e., when highly anharmonic shape. Finally, in the last section we draw our conclusions.
excitations are presentvibrational hot spots enhance the

spatial confinement of a charge carrier, and the dependence Il. THE MODEL
of this phenomenon on the temperature and the charge-lattice ’
coupling constant has been investigaf&f]. The strong an- We consider the diagonal couplirfign the on-site ener-

harmonicity of the lattice is responsible for these hot spotgjies of a tight-binding charge with the Peyrard-Bishop-
and their presence becomes more evident by increasing ter@auxois (PBD) [23] lattice-dynamical model. The Hamil-
perature. They constitute manifestations of breathE8sl7]  tonian of the charge-lattice interacting system reads
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k _ whereM(y) is the Morse potential and/(x,y) is the intersite
— BYntYn-1) — 2 !
* 2(1 Tpe 0= Yn-0)” |- (@) interaction[the last two terms, respectively, in Hamiltonian

(1)], and a prime denotes differentiation with respecyto
The indexn enumerates the lattice sites on which the chargé-or the friction constant in Eq3), we have used the value
propagates and],c, are the corresponding creation and an-y=0.005 ps*, while the random force(t) has the usual
nihilation operators. The first term in Eql) is a tight-  statistical  properties: (f,(1))=0 and (f,(t)f,(t"))
binding Hamiltonian allowing hopping between adjacent=2kgTmy &, d(t—t"), wherekg is the Boltzmann constant
sites with transfer integra¥. The second term provides the and T the temperature. The significant influence of lattice
charge-lattice interaction through the linear coupling ofthermal motions in the propagation of the charge is coming
charge’s on-site energy with the displacemgnbf the cor-  through the last term in the Schrodinger equati®n where
responding lattice sit¢y is the coupling constantFinally,  the lattice displacements provide fluctuating on-site energies
the last sum is the PBD Hamiltonian, consisting of the ki-for the charge.
netic energy, an on-site Morse potential, and a nonlinear in-
tersite interactionm is the mass of the oscillators at each
lattice site,D and a the parameters of the Morse potential, lil. ANOMALOUS DIFFUSION DUE TO HOT SPOTS

andk,p, B, the parameters of the intersite interactions. To investigate diffusive properties of a charge coupled to

The PBD model has been used to accurately describe thie nonlinear lattice dynamics, we start with an initial wave
nonlinearities of the stretching vibrations of hydrogen-bondfynction completely localized at the sitg,

paired bases within a base pair in DN23-2§ (i.e., the
anharmonic dynamics of base pair openjnd#e interaction Wi(t=0) = np, (4)
of a charge with the PBD model, as given by the Hamil-

tonian (1), has been introduced in order to study the effecté"’h”? the lattice is thermalized at tempera}tuTe and, by,
of thermal fluctuations in charge transport in DNA. More SCIVing Eds.(2) and(3), calculate the evolution of charge’s

details with respect to this description can be found in Refsmean-squared displacement

[12,15. Here, we consider the PBD model as representing a 2/ _ 2 2_ 2
typical, breather-bearing, nonlinear lattice. We expect our re- X = % (M)W - (nl)”, ®)
sults to apply in general to charge diffusion on thermalized
nonlinear discrete systems, wherever charge-lattice interagvherel is the lattice constant. Thé(t) in Eq. (5) is a quan-
tion exists and strong lattice anharmonicities are present. tum mean value. Then a thermal avergg&t)) is obtained

We consider the case of a homogeneous lattice in order tover a number of different realizations of the thermalized
isolate the effects of nonlinearity from static disorder. Thelattice. Since there is no external bias, the mean value of the
site-independent parameter values used \ér0.1 eV, y  charge displacement along the lattices=ngl.
=0.6 eV/A, m=300 amu, D=0.04 eV, a=4.45 A}, k In Fig. 1, we present the charge’s mean-squared displace-
=0.04 eV/#, p=0.5, and3=0.35 AL, These values are rel- ment as a function of time for various temperatures, ranging
evant for the case of DNA apart from the charge-lattice coufrom 10 K up to 350 K. In log-log scaléx?(t)) starts linearly
pling parametel, where there is no realistic estimate avail- with a slope 2(i.e., (x2 ~t?) for very short timegat fs time
able. Here, we present results for the valueyef.6 eV/A,  scales, while at sufficiently long timegof the order of pit
which corresponds to a weak coupling, in the sense that gcquires a slope d.e., (x2)~1), as it is expected in diffusion
large polaron is the ground state of the system at zero ten,7) \while this crossover is smooth at lower temperatures,
perature[12]. We note that, using these parameters, an enx¢ pigherT a fractional power-law dependence or sublinear
hanced charge trapping due to vibrational hot spots at thitsion appears, which becomes a plateau preceding the
microscopic level has been previously obser{88l, which  ganqard long-time behavior at the highest temperatures. The

is the motivation of our present calculation of macroscopiyigher the temperature, the more evident is this anomalous
diffusion properties. relaxation.

In the semiclassical approximati¢h4], supplemented by Ag mentioned in the Introduction, in the microscopic level
a Langevin description of the classical component of latticgqe gistinctive feature of the system at higher temperatures is
dynamics, the equations of motion for the charge wave funC,e anpearance of hot spots in lattice dynamics, which result
tion W, and the displacement, are[15] in an enhanced confinement of the charg®. In particular,
charge is found to be trapped between hot sfs#s Fig. 5 of

i = V(P + W)+ P 2 Ref.[15]) up to ps time scales. The higher the temperature,

dt (¥nea+ W) +x Yo' @ the higher the intensity of hot spots. The existence of hot

spots is responsible for the anomalous behavior revealed in

and the (x?(t)) dependence in Fig. 1. To demonstrate that indeed

061901-2



BREATHER-INDUCED ANOMALOUS CHARGE DIFFUSION PHYSICAL REVIEW H1, 061901(2005

)

exist hot spots at high temperatures, while they are absent in
the linearized caseii ). This is demonstrated in Fig. 2, where
the evolution of the lattice displacements is shown for rep-
resentative realizations at 300 K in each of these cases. No-
tice the difference on the amplitude of the displacements in
the linearized casdower pane), comparing to the other two
E caseqd28].

In Fig. 3, we plot the evolution ofk?(t)) at differentT for
the casesi) (dotted line$, (ii) (dashed lines and(iii) (solid
lines). Although the behavior of all three cases is similar in
low T, where the weak thermal fluctuations are not able to
§ explore the strongly nonlinear regime, this is not the case in
the higher temperatures. In this highregime, there is a
smooth crossover in the linearized c#gi@ from ~t2 behav-
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10° /,,;f'/ E ior at short times to-t dependence at longer times, and the
107 = o 0 o ppe plateau disappears. On the contrary, the presence of hot spots
Time (psec) at high T in the other two case§) and (i) gives rise to

anomalous behavior. Similarly, the same changes in[REj.
FIG. 1. (Color onlin® Time dependence of the mean-squared!€d to a disappearance of the increased charge’s confinement
displacementx(t)) (in units of squared lattice constaify, aver-  With temperature only in the completely linearized cése,
aged over 200 thermal realizations, for different temperatures. Thhere there exist no breathers, contrasting the behavior ex-
size of the system varies from 500 up to a few thousands of lattic&ibited in casegi) and(ii) (see Fig. 3 of Ref[15]). There-
sites, depending on the temperat(itee lower theT, the larger the  fore, it appears a consistent explanation that the anomalous
size of the systein Parameter values are given in the text. diffusion, as demonstrated by the existence of sublinear dif-
fusion and a plateau ifx?(t)) at high T, is related to the
this is the case, we have performed similar calculations byxistence of vibrational hot spots.
changing key components in the lattice PBD Hamiltonian of Plateaus in the evolution of the mean-squared displace-
the system. Results for the mean-squared displacement haweent are typical signatures of caging effects observed in
been obtained for three different situationg) the full  glassy systems. Charge diffusion in our coupled model ex-
Hamiltonian(1), (ii) by switching off the nonlinearity only in  hibits similar anomalous behavior, like diffusion in other
the intersite interaction, i.e., putting=0, while keeping the complex systems. However, there is a substantial difference
Morse on-site potential, andi) in the completely linearized between these two cases. In the case of glassy systems, the
problem withp=0 and substitution of the Morse potential by caging is due to mutual interactions between diffusive par-
its linearized formM,;,(y,) =Da??. In casegi) and(ii), there  ticles. The energy landscape experienced by a particular par-

4
3 FIG. 2. (Color online Density
12 plots of the displacements from
equilibrium, y,(t) (in A), of each
lattice site atT=300 K. A single
0 thermal realization is shown for
(i) the nonlinear lattice Hamil-
tonian (1) (upper panel (ii) the
case where=0 in Eq.(1) (middle
pane), and (ii) the completely
linearized case wheye=0 and the
Morse potential has been substi-
1 tuted by its linearized form
: , Min(y)=Da%y5 (lower panel.
27(;' au dn 0 0 0 20 % Eerio%ic boquaryl tt(.:onditior?st
; ; ave been used in a lattice consist-
(o)== A= ,Iiattlce SItQ‘ = : - J ing of 100 sites. The other param-
8\20 — / s 7-"""-\.: = f'_ ,-l! :_ o = o8 eters are the same as in Fig. 1. The
1) = === - e e e e e S o ’ bar at the right of each panel indi-
- - e — e 0 cates the values represented by
@ 60 o e e > e~ different color scales. The exis-
=80 g e e "‘:‘.,_' e el - E' - tence of hot-spots is evident in
: . = . ; 04 caseqi) and (ii).

[
R & | :
LAY “i‘uL -

[
-

i
I

|II
)

_‘
ok
S

20 30 40 50 60 70 80 a0
Lattice site

T T

-@ J‘i‘ll‘l

—_
o
o

i
i
!

(o s
I

1

10 20 30 40 50 60 70> 80 a0 100
Lattice site

061901-3



KALOSAKAS, NGAI, AND FLACH

PHYSICAL REVIEW E 71, 061901(2009

10° [ ' ' ' —] 10" F ' ' ' :
p—y (a) T=10K 10° (b) T=50K_—~
E 10' - FIG. 3. (Color online Time dependence of
= - the mean-squared displacemér®(t)) (in units
ff ' 10, of squared lattice constal®), averaged over 200
5 .6 thermal realizations, for(a) T=10K, (b) T
g 10F =50 K, (c) T=100K, (d) T=200K, (e) T
§ 10° L =300 K, and(f) T=350 K. Dotted lines corre-
o spond to the full nonlinear lattice Hamiltonian, as
% 10" in Fig. 1. Dashed lines corresponds0 in Eq.
o (1) (linear intersite interaction Solid lines corre-
g 105 5, spond to the completely linearized problem, i.e.,
=N p=0 and substituting the on-site potential
o 100 F D(e®n—1)2 by its linearized formDa?y? in Eq.
5 0 | (1). The other parameters are as in Fig. 1. The
g three cases cannot be distinguished at the lower

10" | temperatures.

10, ' ' = ——'10, : ' L '

105 10 104 10 10 105 102 104 10 10

Time (psec)

ticle is fluctuating, since it is created from the nonlinear in-

Breathers at finite temperatures correspond to local devia-

teractions with the neighboring particles, which also attemptions from thermal equilibrium, persisting for relatively long

to diffuse. Therefore, the anomalous relaxation results fromimes (compared to characteristic vibrational times of the
motions in a fluctuating complex landscape, which is collec-system. In the time scale of the diffusion observed in Figs. 1
tively created by the diffusive particles in question. In ourand 3, this heterogeneity of the landscape at each individual
case, the anomalous diffusive behavior is also due to a fluGase at highr is reflected by large deviations of individual
tuating landscape, but provided by an external field, viz., thgrajectories from the averaged behavior. In Fig. 4, we plot the
vibrational hot spots of the anharmonic lattice dynantgee o\ o|utions of \X2(t) [wherex2(t) is given from Eq.(5)] for

Fig. 2), which act as temperature-dependent confinement p‘t{:ree random individual realizatiorfghin lines, and also the

tentials generating "cages” that hinder charge propagation. 7220 o e
is worth noticing at this point that complex dynamical be- ermally averaged(x(t)) (smooth thick linek for differ

havior, typical of what is observed in glassy systems, ha§

nt temperatures. Both cases of the fully anharmonic Hamil-

been also reported for the relaxation of the energy-energ{Pnian(1) [case(i)] and the corresponding completely linear-

correlation function in another breather bearing mode¢

one-dimensionalp* chain [29].

ized problem[case (iii)] are shown for comparison. The

significant degree of heterogeneity among individual trajec-

(a) T=30K (d) T=30K
QSOO B 300 |- linearized b
©
£ FIG. 4. (Color online Time dependence of
€ 0 — = ‘ ‘ 0 — = the root-mean-squared displaceméint units of
f’ 107 10" 10" 10" 10° 107 10 10T 10" 10 lattice constant) for three individual trajectories
5 ‘ ' (thin lines, along with the thermal average ob-
€ o | (b) T=200K 100 | (8) T=200K | tained over 200 different realizationsmooth
g linearized thick line), for temperaturega),(d) 30 K, (b),(e)
- 200 K, and(c),(f) 350 K. (a), (b), and(c) corre-
% /\ spond to the full nonlinear lattice Hamiltonidmh)
S 0, — %_41—””( " 0L — = - L [case(i)], while (d), (e), and(f) to the completely
g 107 107 10 100 10 107 107 10 100 10 linearized problenfip=0 and linear on-site poten-
S ‘ ‘ ‘ ' tial, case(iii )], respectively. The other parameters
7 (c) T=350K A | 100 - (f) T=350K ] are as in Fig. 1. The individual trajectories are
5 20 ¢ linearized smooth and cannot be distinguished from the
GE) thermal average at the lower temperature.
o)
o | L i L
€ %% 102 100 10° 10 90 102 107 1 10

Time (psec)
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10* \;-"*7—»4,, 3 D(T) =C eX[{— (T/To)ﬁs] . (7)
. ~ Wesay 9. The fitted values for the cage (nonlinear intersite interac-

& g e oo | tions, p=0.5 are 3,=0.55, T,=8 K, and c=3.1x 10?/ps,
i | !\ ° ] while for the casdii) (linear intersite interactiong,=0) they
9 \‘\ are 3,=0.51,T,=5 K, andc=4.6x 10%?/ps. The results of
N§‘10‘ i \‘\ ] the fitting are shown in Fig. 5 with continuous lines.
S m g N On the contrary, the linearized ca@ie) can be fitted well
@ : ; : by a power law,
‘€ 10" ¥
= | s D(T) = — 8
E’ 10° | = S P linearized ( )_ Thp ( )
3] e e e o
Bl "ifi\;:l\j\ -y | (where T is given in K, with 5,=1.09 and c=18.4
2 P S X 10412/ ps. This fit is also shown in Fig. 5 with dashed lines.
S0 | \’\\t\ The sum of the absolute values of the relative errBitBy;
£ 4 50 100 150 200 20 300 350 —Deaid/Deaio is 8.6 for the power-law fit8) of the linearized
a Temperature (K) case and 20-25 for the stretched exponential(Titsof the

other two casegwith the main discrepancy in these cases
FIG. 5. (Color onling Diffusion coefficient(in units of 1?/ps, coming from the lowest point ai=10 K). As can be seen
wherel is the lattice constapias a function of temperature in log- from the log-log plots in Fig. Supper pang| a power law
log scale(upper paneland lineafX)-log(Y) scale(lower panel.  cannot fit the nonlinear cases. Nonlinearity-induced hot spots
Squares correspond to the full Hamiltonidn, diamonds to linear-  regylt in a stronger temperature dependence of the diffusion
ized intersite interactioip=0), and circles to the completely lin-  ~qefficient.
earized lattice Hamiltoniafp=0 and substitution of the Morse po- We remind the reader here that without charge-lattice cou-

;ential by its Iineari_zEd form (;ontinuous Iin_els showhfits ofhthe pling (.., for y=0), the behavior of a tight-binding charge
ormer two cases with a stretched exponential [Gyv The dashed one dimension cannot, in general, be diffudigé]. In the

I(lg)e shows a fit of the completely linearized case with a power Iowabsence of any disorder, the motion is ballistic, Bt

=(212V?/%2)t?], due to the extended Bloch eigenstates. When
. . ) . static disorder is present, the localized nature of all the eigen-
torles,_.when hot spot_s are present, is evident in the plot%tates results in a boundednessf in particular, X3(t)
Case(ii) shows behavior similar to cas8. shows a transient diffusive behavior, but then it saturates
approaching a localization length. In our case, &4. due to
IV. DIEFUSION COEFFEICIENT the coupling with the lattice fluctuatiorlg # 0), there is a
dynamical disorder resulting in a diffusive motion at long
The above-discussed behavior has important effects ofimes with a finite diffusion coefficientat least for not so
macroscopic transport parameters of the charge. At relativeljarge values ofy).
high temperatures, hot spots lead to a suppression of the
diffusion coefficient by one order of magnitude. This can be
seen in Fig. 5, where the diffusion coefficiddtis plotted as V. NON-GAUSSIAN PARAMETER
a function of temperature. We obtaihfrom the slope of the

long-time linear dependence 6&(1)), as The non-Gaussian parameter, given by

)
3<X2>2
In Fig. 5, we present the dependenceDdfT) for the three in one dimension, quantifies the deviation of the charge prob-
cases(i), (ii), and(iii) described in the previous section. In ability from a Gaussian shag82]. In Fig. 6, we show the
all casesD decreases witlT, since larger thermal fluctua- evolution of this parameter for the three casgs (ii), and
tions hinder charge transport. However, the effect becomegii) for different temperatures. The results have been aver-
more drastic when the lattice vibrations are anharmonicaged over 200 thermal realizations. Again we see that at
where hot spots emerge. Then, at higher temperature, tHewer T the behavior of the wave function is similar in all
density, size, and height of hot spots increase, and therefoteree cases; it very quickly acquires a Gaussian shape and
more and stronger "cages” of smaller size appear impedingemains close to it during its evolution. However, the situa-
the charge’s diffusion and decreasing the diffusion coeffition differentiates at higher temperatures. When nonlinearity
cient. A similar connection between slow dynamics and theand hot-spots are presditigs. §a) and @b)], the deviations
topology of the energy landscape is known in glassy systemgom a Gaussian become larger and very irregular due to the
[30]. strongly fluctuating inhomogeneous landscape. On the con-

The variation of the diffusion coefficient witil in the trary, in the linearized case the behavior remains qualita-
nonlinear case§) and(ii) can be fitted by a stretched expo- tively similar to that in lower temperatures, without any ir-
nential formula, regularities and strong deviations from a Gaussian shape.

(x?) = 2Dt, for larget. (6) a(t) = 1 (9)
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spots. In the completely linearized vibrational system, the

sublinear diffusion and the plateau disappear and the depen-
k& : dence ofD(T) can be described by a power law with expo-

o Sszim T 200KTMo0K T nentB,~-1.

: : 5 - Nonlinear intersite interactions are not crucial in the

10 ‘ 10‘ 10‘ 0 ‘ ‘1? model (1) for the presented anomalous behavior, since con-
r sidering p=0 reproduces qualitatively similar results. Even
4t 350K 5 1 ) Lo though for the pure PBD lattice and its application to the
- A anni DNA opening dynamics these intersite nonlinearities appear
of e T s mo o be very important for the denaturation transit{@3] and

] the correct positions of site-dependent openings in real DNA
sequences at physiological temperatUrs|, they have no
"\ significant effects in the case of charge transport coupled to
M l the structure. This has been already suggested in previous
studies[15]. Regarding charge motion, what seems to be
important in the presence of charge-lattice interaction, at
10 least in models similar to the Hamiltonid), is the on-site
Time (psec) nonlinearity, which contributes the dominant effects.
Here we have an example where a particular property of a
FIG. 6. (Color onling The non-Gaussian paramesgras a func-  nonlinear systen{macroscopic charge transporould be

tion of time for (a) the full lattice Hamiltonian(1) [case(i)], (0)  possibly used to provide an indirect observation of breathers
linearized intersite interactiorip=0, case(ii)], and (c) the com- iy thermal equilibrium. Up to now, studies of possible
pletely linearized problerficase(iii)]. Dashed lines correspond 10 praather signatures in thermalized lattices have been mainly
temperature 10 K, dotted to 100 K, soliq to 200 K, and dot-dasheqocused on spectral characteristjag].
to 350 K. The other parameters are as in Fig. 1. The phenomena discussed above are valid in the weak-
coupling regime(small values ofy, i.e., existence of large
polarons aff=0 K). They may be qualitatively different for

Our calculations show features of anomalous diffusion in€latively large coupling constants, where a single-site

the propagation of a charge interacting with the fluctuatingSmal) polaron replr:esents thel gr_ounhd state Off the systelml at
nonlinear dynamics of the underlying flexible lattice struc-2€r0 temperature. For example, in the case of a strongly lo-

ture, at relatively high temperatures. The characteristics Oﬁaali_zed polaron, it i.s expected t.hat there exists a temperature
this anomalous behavior ata) existence of sublinear diffu- €9ime whereD(T) increases withr, due to thermally acti-

sion and a plateau in the mean-squared displacement, precé{ﬂted .hop.ping. The behavior in this regime is currently under
ing the standard long-time diffusion(b) heterogeneity 'Nvestigation. .

among individual trajectories, arid) a suppressed diffusion _Finally, we expect that analogous anomalous properties of
coefficientD(T), having a stronger temperature dependenceth@rge transport may be exhibited by other quasi-one-
These results demonstrate a similar phenomenology regarg_”nens'Onal flexible systems, which are described through

ing charge transport in flexible materials at thermal equilib-Slmllar polaron Hamiltonians and characterized by strong

rium and complex behavior typically observed in glassy Sys_nonIinearities in the structural dynamics at thermal equilib-

tems. We mention that similarities have also been foundi“m: It iS. an open questipn whether the observed' behavior

between relaxation properties of proteins and glag38k survives in hlgher_d|men3|ons, because of alternative escap-
Intrinsic inhomogeneous vibrational hot spots, spontane!Nd Pathways available to the charge.

ously emerged by thermal fluctuations, are responsible for

enhanced charge trapping on the microscopic level, related to

the discussed anomalous phenomena. Anharmonic structural We would like to thank P. Maniadis and S. Denysov for

dynamics constitutes the key element for the presence of hatseful discussions.

Non-Gaussian parameter a,

VI. DISCUSSION
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