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We present results on the diffusive motion of a charge interacting with the nonlinear dynamics of a ther-
malized underlying lattice. Signatures of anomalous diffusive properties are found at relatively high tempera-
tures, where highly nonlinear excitations are present. A sublinear diffusion and a plateau appear before the
standard long-time diffusion during the evolution of the mean-squared displacement and a significant degree of
heterogeneity is exhibited among individual trajectories. Both properties are connected with the existence of
vibrational hot spotssbreather or multibreather excitationsd. Transport parameters of the charge are strongly
affected in this case, as can be exemplified by the significant suppression of the diffusion coefficientD. The
variation ofD with temperature follows a stretched exponential law. The results are contrasted with those of
the linearized case, in the absence of breathers. Such anomalous diffusion of a charge coupled to a thermalized
lattice may be relevant in low-dimensional soft materials with strong anharmonicities, such as biomolecules,
conducting polymers, etc.
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I. INTRODUCTION

The problem of charge transport in low-dimensional flex-
ible materials, apart from its own fundamental interest, is
related to important technological or biological issues. For
example, many optoelectronic devices have been constructed
by conjugated polymersf1g, while the potential use of DNA
in molecular electronics has attracted considerable attention
f2g sfor recent reviews on charge transport in DNA see Refs.
f3,4gd. Furthermore, charge migration along biomolecules
may be involved in various biological processes.

In all these cases, the propagating charge interacts with
the underlying flexible structuref5–8g. A convenient way to
include the effects of intrinsic structural dynamics on charge
transport is provided through coupled charge-lattice micro-
scopic dynamical models, which are commonly used for the
study of polarons. In this respect, the Su-Schrieffer-Heeger
model has been successfully used for the study of organic
conductorsf5,6,9g, while a variety of models have been pro-
posed for the case of DNAf10–13g, depending on which
parameter of the charge transportson-site energy or overlap
integrald is coupled to the structural motions of the double
helix and which intramolecular degrees of freedom are in-
volved in this interaction. The evolution of such coupled
systems is easily obtained numerically in the approximation
of the semiclassical equations of motionf14g. In this frame-
work, thermal fluctuations can be incorporated by using
Langevin dynamics for the classical lattice componentf15g
fsee Eq.s3d below.g

Using this formalism, it has been recently shown that for
relatively high temperaturessi.e., when highly anharmonic
excitations are presentd, vibrational hot spots enhance the
spatial confinement of a charge carrier, and the dependence
of this phenomenon on the temperature and the charge-lattice
coupling constant has been investigatedf15g. The strong an-
harmonicity of the lattice is responsible for these hot spots
and their presence becomes more evident by increasing tem-
perature. They constitute manifestations of breathersf16,17g

at finite temperaturesf18g and their lifetime is orders of mag-
nitude longer than the characteristic time scales of the corre-
sponding normal modesf19g.

Here, continuing the study of the effects observed at the
microscopic level in Ref.f15g, we considermacroscopic
characteristics of charge transport in a dynamical nonlinear
lattice, by examining its diffusive properties. We follow the
evolution of the charge’s mean-squared displacement and
calculate the diffusion coefficient through the long-time lin-
ear dependence. We find that hot spots give rise to a sublin-
ear time dependence or a plateau in the mean-squared dis-
placement and a significant degree of heterogeneity among
individual trajectories. Such a behavior is reminiscent of
anomalous relaxation in glass-forming systemsf20–22g. In
the latter case, mutual interaction and concomitant caging
effects slow down the motion of particles and hinder their
diffusion, resulting in a characteristic plateau. In our case,
charge’s confinement and irregular motion is provided by the
thermally induced hot spots in the lattice.

The structure of the paper is as follows. In the next sec-
tion, we briefly present the dynamical model we use. In Sec.
III, the time evolution of the mean-squared displacement is
discussed and compared to the corresponding linearized
case, in order to clarify the effects of the hot spots. Section
IV presents the variation of the diffusion coefficient with
temperature, which is also compared to the corresponding
results obtained for the linearized case. Section V presents
calculations of the non-Gaussian parameter, which quantifies
the deviation of the charge probability from a Gaussian
shape. Finally, in the last section we draw our conclusions.

II. THE MODEL

We consider the diagonal couplingson the on-site ener-
giesd of a tight-binding charge with the Peyrard-Bishop-
Dauxois sPBDd f23g lattice-dynamical model. The Hamil-
tonian of the charge-lattice interacting system reads
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The indexn enumerates the lattice sites on which the charge
propagates andcn

†,cn are the corresponding creation and an-
nihilation operators. The first term in Eq.s1d is a tight-
binding Hamiltonian allowing hopping between adjacent
sites with transfer integralV. The second term provides the
charge-lattice interaction through the linear coupling of
charge’s on-site energy with the displacementyn of the cor-
responding lattice sitesx is the coupling constantd. Finally,
the last sum is the PBD Hamiltonian, consisting of the ki-
netic energy, an on-site Morse potential, and a nonlinear in-
tersite interaction;m is the mass of the oscillators at each
lattice site,D and a the parameters of the Morse potential,
andk,r ,b, the parameters of the intersite interactions.

The PBD model has been used to accurately describe the
nonlinearities of the stretching vibrations of hydrogen-bond
paired bases within a base pair in DNAf23–26g si.e., the
anharmonic dynamics of base pair openingsd. The interaction
of a charge with the PBD model, as given by the Hamil-
tonian s1d, has been introduced in order to study the effects
of thermal fluctuations in charge transport in DNA. More
details with respect to this description can be found in Refs.
f12,15g. Here, we consider the PBD model as representing a
typical, breather-bearing, nonlinear lattice. We expect our re-
sults to apply in general to charge diffusion on thermalized
nonlinear discrete systems, wherever charge-lattice interac-
tion exists and strong lattice anharmonicities are present.

We consider the case of a homogeneous lattice in order to
isolate the effects of nonlinearity from static disorder. The
site-independent parameter values used areV=0.1 eV, x
=0.6 eV/A, m=300 amu, D=0.04 eV, a=4.45 A−1, k
=0.04 eV/A2, r=0.5, andb=0.35 A−1. These values are rel-
evant for the case of DNA apart from the charge-lattice cou-
pling parameterx, where there is no realistic estimate avail-
able. Here, we present results for the value ofx=0.6 eV/A,
which corresponds to a weak coupling, in the sense that a
large polaron is the ground state of the system at zero tem-
peraturef12g. We note that, using these parameters, an en-
hanced charge trapping due to vibrational hot spots at the
microscopic level has been previously observedf15g, which
is the motivation of our present calculation of macroscopic
diffusion properties.

In the semiclassical approximationf14g, supplemented by
a Langevin description of the classical component of lattice
dynamics, the equations of motion for the charge wave func-
tion Cn and the displacementsyn are f15g

i"
dCn

dt
= − VsCn+1 + Cn−1d + x ynCn s2d

and

m
d2yn

dt2
= − M8synd − W8syn,yn−1d − W8syn+1,ynd − xuCnu2

− mg
dyn

dt
+ fnstd, s3d

whereMsyd is the Morse potential andWsx,yd is the intersite
interactionfthe last two terms, respectively, in Hamiltonian
s1dg, and a prime denotes differentiation with respect toyn.
For the friction constant in Eq.s3d, we have used the value
g=0.005 ps−1, while the random forcefnstd has the usual
statistical properties: kfnstdl=0 and kfnstdfn8st8dl
=2kBTmg dn,n8dst− t8d, wherekB is the Boltzmann constant
and T the temperature. The significant influence of lattice
thermal motions in the propagation of the charge is coming
through the last term in the Schrödinger equations2d, where
the lattice displacements provide fluctuating on-site energies
for the charge.

III. ANOMALOUS DIFFUSION DUE TO HOT SPOTS

To investigate diffusive properties of a charge coupled to
the nonlinear lattice dynamics, we start with an initial wave
function completely localized at the siten0,

Cnst = 0d = dn,n0
, s4d

while the lattice is thermalized at temperatureT, and, by
solving Eqs.s2d and s3d, calculate the evolution of charge’s
mean-squared displacement

x2std = o
n

snld2uCnstdu2 − sn0ld2, s5d

wherel is the lattice constant. Thex2std in Eq. s5d is a quan-
tum mean value. Then a thermal averagekx2stdl is obtained
over a number of different realizations of the thermalized
lattice. Since there is no external bias, the mean value of the
charge displacement along the lattice iskxl=n0l.

In Fig. 1, we present the charge’s mean-squared displace-
ment as a function of time for various temperatures, ranging
from 10 K up to 350 K. In log-log scale,kx2stdl starts linearly
with a slope 2si.e., kx2l, t2d for very short timessat fs time
scalesd, while at sufficiently long timessof the order of psd it
acquires a slope 1si.e., kx2l, td, as it is expected in diffusion
f27g. While this crossover is smooth at lower temperatures,
at higherT a fractional power-law dependence or sublinear
diffusion appears, which becomes a plateau preceding the
standard long-time behavior at the highest temperatures. The
higher the temperature, the more evident is this anomalous
relaxation.

As mentioned in the Introduction, in the microscopic level
the distinctive feature of the system at higher temperatures is
the appearance of hot spots in lattice dynamics, which result
in an enhanced confinement of the chargef15g. In particular,
charge is found to be trapped between hot spotsssee Fig. 5 of
Ref. f15gd up to ps time scales. The higher the temperature,
the higher the intensity of hot spots. The existence of hot
spots is responsible for the anomalous behavior revealed in
the kx2stdl dependence in Fig. 1. To demonstrate that indeed

KALOSAKAS, NGAI, AND FLACH PHYSICAL REVIEW E 71, 061901s2005d

061901-2



this is the case, we have performed similar calculations by
changing key components in the lattice PBD Hamiltonian of
the system. Results for the mean-squared displacement have
been obtained for three different situations:sid the full
Hamiltonians1d, sii d by switching off the nonlinearity only in
the intersite interaction, i.e., puttingr=0, while keeping the
Morse on-site potential, andsiii d in the completely linearized
problem withr=0 and substitution of the Morse potential by
its linearized formM linsynd=Da2yn

2. In casessid andsii d, there

exist hot spots at high temperatures, while they are absent in
the linearized casesiii d. This is demonstrated in Fig. 2, where
the evolution of the lattice displacements is shown for rep-
resentative realizations at 300 K in each of these cases. No-
tice the difference on the amplitude of the displacements in
the linearized caseslower paneld, comparing to the other two
casesf28g.

In Fig. 3, we plot the evolution ofkx2stdl at differentT for
the casessid sdotted linesd, sii d sdashed linesd, andsiii d ssolid
linesd. Although the behavior of all three cases is similar in
low T, where the weak thermal fluctuations are not able to
explore the strongly nonlinear regime, this is not the case in
the higher temperatures. In this high-T regime, there is a
smooth crossover in the linearized casesiii d from ,t2 behav-
ior at short times to,t dependence at longer times, and the
plateau disappears. On the contrary, the presence of hot spots
at high T in the other two casessid and sii d gives rise to
anomalous behavior. Similarly, the same changes in Ref.f15g
led to a disappearance of the increased charge’s confinement
with temperature only in the completely linearized casesiii d,
where there exist no breathers, contrasting the behavior ex-
hibited in casessid and sii d ssee Fig. 3 of Ref.f15gd. There-
fore, it appears a consistent explanation that the anomalous
diffusion, as demonstrated by the existence of sublinear dif-
fusion and a plateau inkx2stdl at high T, is related to the
existence of vibrational hot spots.

Plateaus in the evolution of the mean-squared displace-
ment are typical signatures of caging effects observed in
glassy systems. Charge diffusion in our coupled model ex-
hibits similar anomalous behavior, like diffusion in other
complex systems. However, there is a substantial difference
between these two cases. In the case of glassy systems, the
caging is due to mutual interactions between diffusive par-
ticles. The energy landscape experienced by a particular par-

FIG. 1. sColor onlined Time dependence of the mean-squared
displacementkx2stdl sin units of squared lattice constantl2d, aver-
aged over 200 thermal realizations, for different temperatures. The
size of the system varies from 500 up to a few thousands of lattice
sites, depending on the temperaturesthe lower theT, the larger the
size of the systemd. Parameter values are given in the text.

FIG. 2. sColor onlined Density
plots of the displacements from
equilibrium, ynstd sin Ad, of each
lattice site atT=300 K. A single
thermal realization is shown for
sid the nonlinear lattice Hamil-
tonian s1d supper paneld, sii d the
case wherer=0 in Eq.s1d smiddle
paneld, and siii d the completely
linearized case wherer=0 and the
Morse potential has been substi-
tuted by its linearized form
M linsynd=Da2yn

2 slower paneld.
Periodic boundary conditions
have been used in a lattice consist-
ing of 100 sites. The other param-
eters are the same as in Fig. 1. The
bar at the right of each panel indi-
cates the values represented by
different color scales. The exis-
tence of hot-spots is evident in
casessid and sii d.
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ticle is fluctuating, since it is created from the nonlinear in-
teractions with the neighboring particles, which also attempt
to diffuse. Therefore, the anomalous relaxation results from
motions in a fluctuating complex landscape, which is collec-
tively created by the diffusive particles in question. In our
case, the anomalous diffusive behavior is also due to a fluc-
tuating landscape, but provided by an external field, viz., the
vibrational hot spots of the anharmonic lattice dynamicsssee
Fig. 2d, which act as temperature-dependent confinement po-
tentials generating ”cages” that hinder charge propagation. It
is worth noticing at this point that complex dynamical be-
havior, typical of what is observed in glassy systems, has
been also reported for the relaxation of the energy-energy
correlation function in another breather bearing modelsthe
one-dimensionalf4 chaind f29g.

Breathers at finite temperatures correspond to local devia-
tions from thermal equilibrium, persisting for relatively long
times scompared to characteristic vibrational times of the
systemd. In the time scale of the diffusion observed in Figs. 1
and 3, this heterogeneity of the landscape at each individual
case at highT is reflected by large deviations of individual
trajectories from the averaged behavior. In Fig. 4, we plot the
evolutions ofÎx2std fwherex2std is given from Eq.s5dg for
three random individual realizationssthin linesd, and also the
thermally averagedÎkx2stdl ssmooth thick linesd, for differ-
ent temperatures. Both cases of the fully anharmonic Hamil-
tonians1d fcasesidg and the corresponding completely linear-
ized problemfcase siii dg are shown for comparison. The
significant degree of heterogeneity among individual trajec-

FIG. 3. sColor onlined Time dependence of
the mean-squared displacementkx2stdl sin units
of squared lattice constantl2d, averaged over 200
thermal realizations, for(a) T=10 K, (b) T
=50 K, (c) T=100 K, (d) T=200 K, (e) T
=300 K, and (f) T=350 K. Dotted lines corre-
spond to the full nonlinear lattice Hamiltonian, as
in Fig. 1. Dashed lines correspond tor=0 in Eq.
s1d slinear intersite interactiond. Solid lines corre-
spond to the completely linearized problem, i.e.,
r=0 and substituting the on-site potential
Dse−ayn−1d2 by its linearized formDa2yn

2 in Eq.
s1d. The other parameters are as in Fig. 1. The
three cases cannot be distinguished at the lower
temperatures.

FIG. 4. sColor onlined Time dependence of
the root-mean-squared displacementsin units of
lattice constantld for three individual trajectories
sthin linesd, along with the thermal average ob-
tained over 200 different realizationsssmooth
thick lined, for temperatures(a),(d) 30 K, (b),(e)
200 K, and(c),(f) 350 K. sad, sbd, and scd corre-
spond to the full nonlinear lattice Hamiltonians1d
fcasesidg, while sdd, sed, andsfd to the completely
linearized problemfr=0 and linear on-site poten-
tial, casesiii dg, respectively. The other parameters
are as in Fig. 1. The individual trajectories are
smooth and cannot be distinguished from the
thermal average at the lower temperature.
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tories, when hot spots are present, is evident in the plots.
Casesii d shows behavior similar to casesid.

IV. DIFFUSION COEFFICIENT

The above-discussed behavior has important effects on
macroscopic transport parameters of the charge. At relatively
high temperatures, hot spots lead to a suppression of the
diffusion coefficient by one order of magnitude. This can be
seen in Fig. 5, where the diffusion coefficientD is plotted as
a function of temperature. We obtainD from the slope of the
long-time linear dependence ofkx2stdl, as

kx2l = 2Dt, for larget. s6d

In Fig. 5, we present the dependence ofDsTd for the three
casessid, sii d, and siii d described in the previous section. In
all casesD decreases withT, since larger thermal fluctua-
tions hinder charge transport. However, the effect becomes
more drastic when the lattice vibrations are anharmonic,
where hot spots emerge. Then, at higher temperature, the
density, size, and height of hot spots increase, and therefore
more and stronger ”cages” of smaller size appear impeding
the charge’s diffusion and decreasing the diffusion coeffi-
cient. A similar connection between slow dynamics and the
topology of the energy landscape is known in glassy systems
f30g.

The variation of the diffusion coefficient withT in the
nonlinear casessid andsii d can be fitted by a stretched expo-
nential formula,

DsTd = c expf− sT/T0dbsg. s7d

The fitted values for the casesid snonlinear intersite interac-
tions, r=0.5d are bs=0.55, T0=8 K, and c=3.13104l2/ps,
while for the casesii d slinear intersite interactions,r=0d they
are bs=0.51,T0=5 K, andc=4.63104l2/ps. The results of
the fitting are shown in Fig. 5 with continuous lines.

On the contrary, the linearized casesiii d can be fitted well
by a power law,

DsTd =
c

Tbp
s8d

swhere T is given in Kd, with bp=1.09 and c=18.4
3104l2/ps. This fit is also shown in Fig. 5 with dashed lines.
The sum of the absolute values of the relative errors,ouDfit
−Dcalcu /Dcalc, is 8.6 for the power-law fits8d of the linearized
case and 20–25 for the stretched exponential fitss7d of the
other two casesswith the main discrepancy in these cases
coming from the lowest point atT=10 Kd. As can be seen
from the log-log plots in Fig. 5supper paneld, a power law
cannot fit the nonlinear cases. Nonlinearity-induced hot spots
result in a stronger temperature dependence of the diffusion
coefficient.

We remind the reader here that without charge-lattice cou-
pling si.e., for x=0d, the behavior of a tight-binding charge
in one dimension cannot, in general, be diffusivef31g. In the
absence of any disorder, the motion is ballistic, i.e.,x2, t2f
=s2l2V2/"2dt2g, due to the extended Bloch eigenstates. When
static disorder is present, the localized nature of all the eigen-
states results in a boundedness ofx2; in particular, x2std
shows a transient diffusive behavior, but then it saturates
approaching a localization length. In our case, Eq.s2d, due to
the coupling with the lattice fluctuationssxÞ0d, there is a
dynamical disorder resulting in a diffusive motion at long
times with a finite diffusion coefficientsat least for not so
large values ofxd.

V. NON-GAUSSIAN PARAMETER

The non-Gaussian parameter, given by

a2std =
kx4l

3kx2l2 − 1 s9d

in one dimension, quantifies the deviation of the charge prob-
ability from a Gaussian shapef32g. In Fig. 6, we show the
evolution of this parameter for the three casessid, sii d, and
siii d for different temperatures. The results have been aver-
aged over 200 thermal realizations. Again we see that at
lower T the behavior of the wave function is similar in all
three cases; it very quickly acquires a Gaussian shape and
remains close to it during its evolution. However, the situa-
tion differentiates at higher temperatures. When nonlinearity
and hot-spots are presentfFigs. 6sad and 6sbdg, the deviations
from a Gaussian become larger and very irregular due to the
strongly fluctuating inhomogeneous landscape. On the con-
trary, in the linearized case the behavior remains qualita-
tively similar to that in lower temperatures, without any ir-
regularities and strong deviations from a Gaussian shape.

FIG. 5. sColor onlined Diffusion coefficientsin units of l2/ps,
wherel is the lattice constantd as a function of temperature in log-
log scalesupper paneld and linearsXd-logsYd scale slower paneld.
Squares correspond to the full Hamiltonians1d, diamonds to linear-
ized intersite interactionsr=0d, and circles to the completely lin-
earized lattice Hamiltoniansr=0 and substitution of the Morse po-
tential by its linearized formd. Continuous lines show fits of the
former two cases with a stretched exponential lows7d. The dashed
line shows a fit of the completely linearized case with a power low
s8d.
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VI. DISCUSSION

Our calculations show features of anomalous diffusion in
the propagation of a charge interacting with the fluctuating
nonlinear dynamics of the underlying flexible lattice struc-
ture, at relatively high temperatures. The characteristics of
this anomalous behavior aresad existence of sublinear diffu-
sion and a plateau in the mean-squared displacement, preced-
ing the standard long-time diffusion,sbd heterogeneity
among individual trajectories, andscd a suppressed diffusion
coefficientDsTd, having a stronger temperature dependence.
These results demonstrate a similar phenomenology regard-
ing charge transport in flexible materials at thermal equilib-
rium and complex behavior typically observed in glassy sys-
tems. We mention that similarities have also been found
between relaxation properties of proteins and glassesf33g.

Intrinsic inhomogeneous vibrational hot spots, spontane-
ously emerged by thermal fluctuations, are responsible for
enhanced charge trapping on the microscopic level, related to
the discussed anomalous phenomena. Anharmonic structural
dynamics constitutes the key element for the presence of hot

spots. In the completely linearized vibrational system, the
sublinear diffusion and the plateau disappear and the depen-
dence ofDsTd can be described by a power law with expo-
nentbp<−1.

Nonlinear intersite interactions are not crucial in the
model s1d for the presented anomalous behavior, since con-
sidering r=0 reproduces qualitatively similar results. Even
though for the pure PBD lattice and its application to the
DNA opening dynamics these intersite nonlinearities appear
to be very important for the denaturation transitionf23g and
the correct positions of site-dependent openings in real DNA
sequences at physiological temperaturesf26g, they have no
significant effects in the case of charge transport coupled to
the structure. This has been already suggested in previous
studiesf15g. Regarding charge motion, what seems to be
important in the presence of charge-lattice interaction, at
least in models similar to the Hamiltonians1d, is the on-site
nonlinearity, which contributes the dominant effects.

Here we have an example where a particular property of a
nonlinear systemsmacroscopic charge transportd could be
possibly used to provide an indirect observation of breathers
in thermal equilibrium. Up to now, studies of possible
breather signatures in thermalized lattices have been mainly
focused on spectral characteristicsf34g.

The phenomena discussed above are valid in the weak-
coupling regimessmall values ofx, i.e., existence of large
polarons atT=0 Kd. They may be qualitatively different for
relatively large coupling constants, where a single-site
ssmalld polaron represents the ground state of the system at
zero temperature. For example, in the case of a strongly lo-
calized polaron, it is expected that there exists a temperature
regime whereDsTd increases withT, due to thermally acti-
vated hopping. The behavior in this regime is currently under
investigation.

Finally, we expect that analogous anomalous properties of
charge transport may be exhibited by other quasi-one-
dimensional flexible systems, which are described through
similar polaron Hamiltonians and characterized by strong
nonlinearities in the structural dynamics at thermal equilib-
rium. It is an open question whether the observed behavior
survives in higher dimensions, because of alternative escap-
ing pathways available to the charge.
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