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Scaling properties of q-breathers in nonlinear acoustic lattices
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Abstract

Recently q-breathers—time-periodic solutions which localize in the space of normal modes and maximize the energy density for some mode
vector q0—were obtained for finite nonlinear lattices. We scale these solutions together with the size of the system to arbitrarily large lattices.
The first finding is that the degree of localization depends only on intensive quantities and is size independent. Secondly a critical wave vector
km is identified, which depends on one effective nonlinearity parameter. q-breathers minimize the localization length at k0 = km and completely
delocalize in the limit k0 → 0.
© 2007 Elsevier B.V. All rights reserved.

PACS: 63.20.Pw; 63.20.Ry; 05.45.-a
Spatially extended nonlinear Hamiltonian systems serve as
starting models for the study of excitations in many branches in
physics, e.g. anharmonic vibrations of crystal lattices, meso-
scopic and nanoscopic systems, molecules, but also of elec-
tromagnetic, acoustic and other waves in nonlinear media,
to name a few. They have been studied over many decades
in order to understand such intriguing material properties as
heat conductivity, thermal expansion, turbulence, confinement
of light, but also general mathematical aspects such as ther-
malization, mode–mode interactions, etc. While in any real-
istic situation damping and energy input have to be consid-
ered as well, these dissipative effects are often weak enough
to allow the observation of the underlying Hamiltonian excita-
tions.

Recently it was shown [1], that a one-dimensional anhar-
monic atomic chain allows for exact time-periodic solutions
which localize exponentially in the space of normal modes
and have their maximum energy on a mode with mode num-
ber q0. A q-breather, being periodic in time, can be viewed
as one normal mode which is dressed by several other nor-
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mal modes in a neighbourhood of q0 and has an infinite life-
time. The existence and properties of these q-breathers al-
lowed to explain the major ingredients of the famous Fermi–
Pasta–Ulam problem (FPU) [2–4] in a clear and constructive
way. The FPU problem concerns the nonequipartition of nor-
mal mode energies on time scales which can be many orders
of magnitude larger than the characteristic vibration periods.
The key ingredient for the construction of q-breathers is a fi-
nite nonlinear system with dispersion [1]. This is a very gen-
eral condition and may apply to many other systems as well.
It has been recently successfully tested by considering FPU
models with lattice dimension d = 2,3 [5] and also discrete
nonlinear Schrödinger models (DNLS) in various lattice di-
mensions [6]. Further studies also revealed the persistence of
q-breathers in thermal equilibrium [1], which shows their rel-
evance for statistical properties of extended systems. Previ-
ous studies of the FPU problem suggested that the effect of
nonequipartition will disappear for large system sizes [3,4].
That seems to imply a disappearance of q-breathers in that
limit. Here we show that q-breathers persist and have invari-
ant properties for large system sizes. These results are par-
ticularly important because they apply to macroscopic sys-
tems.
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Consider a generic model of a D-dimensional nonlinear lat-
tice of size N1 × · · · × ND , defined by a Hamiltonian

(1)H =
∑

n

[
p2

n

2
+ U(xn) +

D∑
l=1

V (xn+el
− xn)

]

where xn, pn are canonical variables. U(x) and V (x) are anhar-
monic on-site and interaction potentials, respectively, such that
xn = 0 is a stable equilibrium state of the system, and at least
one of U(x) and V (x) has a non-zero quadratic Taylor expan-
sion term. n = {n1, . . . , nD} is a D-dimensional lattice vector
with nl = 1,Nl . el denotes a unitary lattice vector along the
dimension l. We will consider the case of fixed boundary con-
ditions (BC). We have also studied free and periodic BC with
similar results.

This Hamiltonian can be expressed in terms of normal
modes Pq, Qq of the linearized problem, obtained by skipping
all anharmonic terms in the potentials:

(2)H =
∑

q

Eq + H int(Qq), Eq = 1

2

(
P 2

q + ω2
qQ2

q
)
,

where Eq is the energy of a given normal mode and H int is the
mode interaction part of the Hamiltonian which appears due
to anharmonicity. The integer components of the mode vec-
tor q enumerate the modes. That is a class of models for which
exact q-breather solutions may exist [1,5]. Such solutions are
time-periodic and the normal mode energies are exponentially
localized around a mode vector q0.

We search for a size scaling transformation which maps a
given solution Qq(t) of a system (2) of size N to a solution
Q̃q̃(t) of a system of scaled size. Consider a mapping which
consists of scaling the values of mode variables

√
r times and

scaling their indices r times along a chosen lattice dimension l,
filling the gaps with zeros:

(3)Q̃q̃l
(t) =

{√
rQql

(t), q̃l = rql,

0, q̃l �= rql,

and all the other components of q are equal on both sides. For
fixed BC, ql = 1,Nl , and the scaled system size is assumed
Ñl + 1 = r(Nl + 1). In order to identify the applicability of (3),
we will rewrite it in real space and insert into the equations of
motion.

Consider D = 1 in (2). The equations of motion read

(4)ẍn = f (xn) + ϕ(xn+1 − xn) − ϕ(xn − xn−1) .

Here f (x) = −U ′(x), ϕ(x) = V ′(x) and n = 1,N . For fixed
BC, x0 = xN+1 = 0. The normal modes are defined by a dis-
crete sine transform. The transformation (3) is then expressed in
real space by an alternation of spatial blocks, obtained from the
previous by parity and sign reversal transform xn → −xN+1−n.
The blocks are separated by additional nonexcited lattice sites
(see Fig. 1):

x̃n(t) = {
x1(t), . . . , xN(t),0,−xN(t), . . . ,−x1(t),

0, x1(t), . . .
}
.

Fig. 1. (Colour online.) Constructing a solution in a chain of double size in real
space. Boundaries and the additional lattice site in the center are marked with
crosses. Initial size is N = 32. The momentary displacements versus lattice site
are shown.

We further assume an odd restoring force f (x) = −f (−x).
Then it is straightforward to observe that for xn(t) being a so-
lution to the initial system, x̃n(t) is a solution to the scaled-size
system. The scaling rule (3) is thus confirmed for 1D chains (4).

We generalize the above results to higher lattice dimensions.
The transformation to mode variables is a superposition of 1D
transforms along each dimension. Then, the transformation (3)
along a lattice direction l corresponds to the real-space trans-
form already discussed for the D = 1 case. It yields a solution
to a scaled-size system if both f (x) and ϕ(x) are odd functions.

The phase space of the scaled system then possesses an in-
variant subspace (also coined a bush of modes [7]). This pro-
cedure can be applied to construct a solution to a system of
arbitrarily large size, increasing r .

Given a q-breather solution for the original finite system,
we can thus scale the solution to larger system sizes. Its total
energy is scaled like Ẽ = rE, which is ensured by the block
structure of the scaling and the local structure of the coupling
in the Hamiltonian (2). The time-dependent mode energies Eq

are transformed as Ẽq̃ (t) = rEq(t) for q̃ = rq , and Ẽq = 0 for
other q .

Introducing the wave number kq = πq/(N + 1) and aver-
age energy densities ε = E/(N + 1), εkq = Eq/(N + 1), it
is straightforward to observe that the scaling transform leaves
these intensive quantities invariant in the sense that ε̃ = ε and
ε̃
k̃
= εk for k̃ = k. Together with the rigorous proof of existence

of q-breathers for finite systems [1] we arrive at a rigorous proof
of existence of these excitations for infinite system sizes, with
proper scaling and under certain restrictions for the potential
functions. It also implies, that any observable (in particular, the
k-space localization length of a q-breather) which is defined in
terms of intensive quantities must be invariant to scaling trans-
form.

Since the scaled solutions are embedded on mode bushes [7],
the question arises whether q-breathers with other (or any) val-
ues of k0 exist in large systems as well. The fact that the scaling
preserves the localization properties of the scaled excitations
suggests a positive answer. Below we will address this ques-
tion. We also note that we needed certain symmetry properties
of the potentials for the scaling to work. It however does not
imply that for cases with less symmetries q-breathers do not
exist.

The localization properties of q-breathers in the normal
mode space have been obtained analytically using asymptotic
expansions for FPU models in various lattice dimensions. For
f = 0 and ϕ = x + βx3, the result from [1,5] is expressed
in total energies and mode numbers E(2n+1)q0 = λnEq0 with
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Fig. 2. (Colour online.) Dependence of the localization parameter λ on the sys-
tem size N of a q-breather (left panel) for the β-FPU chain at constant energy
density, ε = 4 × 10−4 and 2 × 10−3 (for lower and upper curves, respectively)
and β = 1. q0 is chosen to be the nearest integer to k0(N + 1)/π , k0 = π/15.
Open circles mark system sizes N + 1 = r(N0 + 1), N0 = 15, for which the
prediction is that λ should be invariant on the integer r . The right panel shows
the smooth dependence of the measured λ values on the actual wave numbers
k0 used in the left panel.

√
λ = 3βEq0(N +1)/(8π2q2

0 ) for D = 1 and q0 � N . We con-
clude that it must be possible to substitute densities and wave
numbers instead, and obtain an expression which is independent
of the actual system size. Indeed the outcome of our substitu-
tion is written in the following way:

(5)ln εk =
(

k

k0
− 1

)
ln

√
λ + ln εk0 ,

√
λ = 3β

22+D

εk0

k2
0

.

Note that these results hold actually for D = 1,2,3 [5]. This
expression does not depend explicitly upon N as suggested by
the scaling invariance from above. Note however, that N deter-
mines the grid of allowed wave number values kq .

We test the size-dependence of λ, when the size of the sys-
tem takes different values, and the new wave number k̃0 is
chosen to be the nearest one to the original k0 value. We com-
pute q-breathers for that model with D = 1 for various system
sizes starting with N0 = 15 and plot the numerically found λ

as a function of N in the left panel in Fig. 2. The mode num-
ber q0 is chosen to be the nearest integer to k0(N + 1)/π ,
k0 = π/15. We obtain λ from the ratio of the energy densi-
ties ε5q0/ε3q0 . First we observe that λ is independent on N

when N + 1 = r(N0 + 1). Secondly we observe fluctuations
of λ around a mean value for other values of N due to the fact
that for these system sizes the closest wave number to k0 will
nevertheless be slightly different. Thus we probe λ with wave
numbers slightly varying around k0. These deviations decrease
with increase of the system size. The fluctuation amplitude in
Fig. 2 decreases as well due to a smooth dependence of λ on k0,
which is confirmed in the right panel in Fig. 2.

Let us analyze the k-dependence of (5) for D = 1. For q-
breathers at fixed average energy density ε it follows within the
approximation of exponential localization that εk0 = (1 − λ)ε.
Fig. 3. (Colour online.) The slope S as a function of k0 for the β-FPU chain
and three different energy densities ε = 6.08 × 10−4, 9.6 × 10−4, 1.57 × 10−3

and β = 1 (dashed curves, from bottom to top). Symbols and eye-guiding solid
lines: estimate of the slope from numerical computations of q-breathers for
N = 149 and N = 359.

Inserting this expression into (5) and resolving it in terms of√
λ, we calculate the slope S whose absolute value is the inverse

localization length in k-space:

(6)S = 1

k0
ln

√
λ,

√
λ =

√
1 + 4ν4/k4

0 − 1

2ν2/k2
0

, ν2 = 3β

8
ε.

S is negative, vanishes for k0 → 0 and has its largest absolute
value max(|S|) ≈ 0.7432/ν at kmin ≈ 2.577ν. For a fixed ef-
fective nonlinearity parameter ν the q-breather with k0 = kmin
shows the strongest localization. For k0 → 0 the q-breather de-
localizes completely. With increasing ν, the localization length
of the q-breather for k0 = kmin increases. For k0 	 ν it follows
S ≈ 2/k0 ln(ν/k0) and for k0 � ν we find S ≈ −k0/(2ν2).

We plot in Fig. 3 the dependence S(k0) for the β-FPU chain
according to (6) (dashed curves) at three different energy densi-
ties. If ν or N are small enough, then the first non-zero k0 value
will appear for k0 > kmin. Increasing ν or N we shift some al-
lowed low lying k values to the left of the minimum k0 < kmin.
For very large systems (dense filling of the x-axis in Fig. 3 with
allowed k0 values) we thus expect that among them there is an
optimum wavelength which provides strongest localization.

We test our prediction by computing the slope for vari-
ous q-breathers of the β-FPU chain. The results are shown in
Fig. 3 (symbols). We nicely observe an optimum value of k0
for localization. Increasing the nonlinearity parameter (by ei-
ther increasing the nonlinearity strength or the energy density)
the critical wavenumber is shifted further away from the edge
of the spectrum and gets shallower, as predicted. Deviations
from the theoretical curves for small k0 are due to strong non-
linear corrections to our estimates, while deviations at larger
k0 are finite size corrections to the analytical estimates. Note
the smooth dependence of S on k0 which does not depend
on the system size, thus confirming the scaling results from
above.
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Fig. 4. (Colour online.) The master slope function Sm(z) (dashed line). Differ-
ent symbols correspond to the numerically obtained slopes from Fig. 3 which
are scaled accordingly and fall on a single curve.

Fig. 5. (Colour online.) The profiles of q-breather solutions for N = 359,
β = 1, ε = 9.6 × 10−4 and three different values of q0 which yield
k0/π = 0.011,0.022,0.067 and correspond to the most left point on the mid-
dle curve in Fig. 3, its minimum and a point to the right of it. Symbols denote
the mode energies at the moment of vanishing coordinates xl = 0. The verti-
cal bars denote the range of mode energy values taken during one period of the
q-breather.

We plot in Fig. 4 the single master slope function Sm(z) =
νS with z = k0/ν and scale all numerically obtained slopes as
well. The numerical data all condense on one single curve at
small k0. Thus higher order corrections to the decay law do
not alter the scaling properties of q-breathers in the limit of
small k0.

The profiles of three q-breather solutions for ε = 9.6 × 10−4

are shown in Fig. 5. The symbols correspond to normal mode
energies at the moment when all coordinates vanish. Among
them is the q-breather with the strongest localization. The pre-
cision of computation is 10−8 (see [1] for details). Since the
normal mode energies are not conserved quantities, we show as
well the fluctuation range for each of them. These fluctuations
become stronger at particular k-values and are possibly due to
a closely nearby lying resonance, which nevertheless does not
destroy the localization profile.

Let us discuss the obtained results. The reason for the weaker
localization of q-breathers when k0 	 ν is the increasing dis-
tance 3k0 between modes excited in consecutive orders of per-
turbation theory. The delocalization for k0 → 0 however is due
to an approaching of resonances nωk0 → ωk for some inte-
ger n [1]. Note that the same approaching of resonances holds
at the upper frequency cutoff where the frequency detuning is
quadratic in k and the relevant integer n = 1. We computed the
dependence of the slope S there and obtained a behaviour sim-
ilar to the one in Fig. 3. Similar results were also obtained for
free BC at the lower and the upper spectrum edges. We expect
the above results to qualitatively hold independent of the dimen-
sion D. It remains a challenging task to perform computations
for, e.g., D = 2, since one needs about 105 lattice sites, which
is presently not reachable with our numerical tools.

We fixed the average energy density in order to ensure finite
temperatures. If the energy density εk0 is fixed, then q-breathers
will delocalize for some non-zero value of k0. For a finite lattice
ε ≈ Nεk0 at that point.

We derived similar results for the α-FPU model with ϕ =
x +αx2 using the estimates from [1]. We obtain strongest local-
ization for km ≈ 2.39ξ and max(|S|) ≈ 1.5/ξ with the effective
nonlinearity parameter ξ = √

α/πε1/4. For small k0 the slope
S ∼ −(2k0/ξ)1/3.

In all cases the localization becomes meaningless when
|S|−1 ≈ π which is the size of the first Brillouin zone. That
happens at k̃0 ≈ 3βε/(4π) (β-FPU) and at k̃0 ≈ α2ε/(2π5) (α-
FPU). Well defined and localized q-breathers exist for k0 	 k̃0.
Strong resonances destroy them for k0 � k̃0 and lead to an ef-
fective redistribution of mode energy in that regime. The same
reasoning defines a critical nonlinearity value, for which km

reaches the center of the band. It can be roughly estimated as
ν, ξ ∼ 1. For larger values of ν, ξ the system will enter a regime
of strong nonlinearity, where q-breathers may become mean-
ingless for any k0.

We considered standing waves. We expect the results to be
also of importance for travelling waves which are reflected at
boundaries or inhomogeneities.
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