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a b s t r a c t

Nonlinear classical Hamiltonian lattices exhibit generic solutions — discrete breathers.
They are time-periodic and (typically exponentially) localized in space. The lattices have
discrete translational symmetry. Discrete breathers are not confined to certain lattice
dimensions. We will introduce the concept of these localized excitations and review their
basic properties including dynamical and structural stability. We then focus on advances
in the theory of discrete breathers in three directions — scattering of waves by these
excitations, persistence of discrete breathers in long transient processes and thermal
equilibrium, and their quantization. The second part of this review is devoted to a detailed
discussion of recent experimental observations and studies of discrete breathers, including
theoretical modelling of these experimental situations on the basis of the general theory
of discrete breathers. In particular we will focus on their detection in Josephson junction
networks, arrays of coupled nonlinear optical waveguides, Bose–Einstein condensates
loaded on optical lattices, antiferromagnetic layered structures, PtCl based single crystals
and driven micromechanical cantilever arrays.
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1. Introduction

This review is about localized excitations in spatially extended discrete systems, i.e. lattices. These systems are
translationally invariant, implying the absence of disorder or defects. The common expectation (throw a stone into the
water of a lake, and follow the evolution of the localized surface wave perturbation) is that an initially localized excitation
should distribute its energy over the entire system in the course of time. What could stop such a delocalization process? It
needs just two ingredients — the above-mentioned discreteness of a system, and evolution equations which are nonlinear.
As a result a new paradigm of nonlinear science recently emerged — the concept of discrete breathers (DB), equally coined
intrinsic localized modes (ILM) in solid state physics and discrete solitons (DS) in nonlinear optics. These exact solutions of a
huge variety of underlying nonlinear lattice models are typically characterized by being time-periodic and spatially localized,
independent of the actual (assumed to be large) size of the lattice, independent of the spatial dimension of the lattice, mostly
independent of the actual choice of nonlinear forces acting on the lattice, etc. Mastering their mathematical properties in
Hamiltonian lattices allows one with relative ease to include also effects of dissipation, driving, quantization, to name a few
important ones.

Nonlinearity is inherent to many systems in nature [75]. Discreteness is common as well — e.g. solids (crystals) and
molecules which provide a natural underlying lattice, and artificial systems, based e.g. on Bose–Einstein condensates,
Josephson junctions, optical devices, or micromechanical devices, which involve lattice structures. It thus makes perfect
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sense to understand the mechanisms of localization in nonlinear lattices and to apply the knowledge to various fields of
physics, chemistry, biology and mechanics.

The first report by Ovchinnikov on localized excitations in one-dimensional chains of coupled anharmonic oscillators
dates back to 1969 [298]. Kosevich and Kovalev reported on similar results in 1974 [226]. After a long temporal gap
Sievers and Takeno took up the issue again considering the famous Fermi–Pasta–Ulam (FPU) chain and obtaining localized
excitations there, starting in 1988 [369,380,378]. Page, and Sandusky et al., added the first studies of the stability of
various mode patterns [301,345]. At that time Campbell and Peyrard observed (and coined the term for) these excitations
– discrete breathers – in various lattice models, as a positive result of the unsuccessful search for breathers in nonlinear
field equations [55]. From the beginning of the 1990s a large number of research groups began to study these localized
excitations with great mathematical rigour and detail. The review [133], though published in 1998, was essentially written
in 1996 — in the midst of this process. Since then a considerable amount of further mathematical beauty was (and still is
being) added to the theory of localized excitations. Most importantly, since 1998 experimental studies were initiated, on
a large variety of very different systems, demonstrating the fruitfulness of the concept of localization by discreteness and
nonlinearity [43,54,57,387]. In the following we will review these new developments, briefly touching basic aspects known
before. The interested reader can also consult the collection of lectures of a summer school in Les Houches in 2003 [74], as
well as further reports in the field [18,20,121,368].

1.1. Nonlinearity and symmetry — the dimer

Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. Consider the evolution of a linear
system (say coupled ordinary differential equations, or a partial differential equation). Linearity implies that the solutions
of the equations can be found by considering an eigenvalue problem. The symmetries of the original equations will also
be represented in the eigenvalue problem. Excluding potential degeneracies, these symmetries will be transported to the
solutions — the eigenvectors. By introducing nonlinearity we cannot reduce the dynamical equations to an eigenvalue
problem, and consequently the solutions of the dynamical system do not have to obey the symmetries which the underlying
dynamical system has.

Let us give a simple example using the Nonlinear Schrödinger dimer, which serves as a toymodel for the energy exchange
between two bonds in a small molecule, Bose–Einstein condensates trapped in two wells, a large spin with easy-axis
anisotropy in a transverse magnetic field, among others. The Hamiltonian is given by

H = Ψ ∗

1 Ψ1 + Ψ ∗

2 Ψ2 + v4
1
2

(
(Ψ ∗

1 Ψ1)
2
+ (Ψ ∗

2 Ψ2)
2)

+ C
(
Ψ ∗

1 Ψ2 + Ψ ∗

2 Ψ1
)
. (1.1)

The equations of motion are Ψ̇1,2 = i∂H/∂Ψ ∗

1,2:

−iΨ̇1,2 = Ψ1,2 + v4|Ψ1,2|
2Ψ1,2 + CΨ2,1. (1.2)

The Hamiltonian and the equations of motion are invariant under permutation of the two indices 1 ↔ 2. What about the
solutions? Can we find solutions where either |Ψ1| or |Ψ2| is strongly excited, while the other one is not?

For v4 = 0 the equations become linear, and the solutions, after a trivial shift in time, become

Ψ1,2 = aseiωst ± aaei(ωat+φ) (1.3)

where ωs,a = 1 ± C and as,a, φ are real. It follows that

|Ψ1,2|
2

= a2s + a2a ± 2asaa cos(2Ct − φ). (1.4)

Whatever the choice of the initial conditions as, aa, φ is — a shift of time t → t+π/(2C)will be equivalent to a permutation
|Ψ1| ↔ |Ψ2|. The permutation symmetry of the equation is reflected in the permutation symmetry of the solutions.

For v4 6= 0 and B = |Ψ1|
2
+ |Ψ2|

2 > 2C/v4 Eq. (1.2) permits other solutions of the form

Ψ1,2 = A1,2ei(1+v4B)t , (1.5)

where the amplitudes satisfy A1 = A+, A2 = A− or vice versa A1 = A−, A2 = A+ with

A2
±

=
1
2
B

(
1 ±

√
1 −

4C2

v24B2

)
. (1.6)

These solutions are not invariant under permutation 1 ↔ 2. They are characterized by a strong excitation of either of the
two sites, while the other one is weakly excited — for all times.

Having introduced nonlinearity, why do we then need discreteness, if we want to obtain localization of excitations? Or
in other words, why don’t we use spatially continuous partial differential equations (PDE) which describe the evolution of
some physical fields? A detailed discussion on that issue can be found in [133]. Rather than repeating that discussion again,
let us give here an essence of these thoughts. While a few cases of PDEs (in one spatial dimension) are known, which admit
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Fig. 1. The dispersion relation of small amplitude plane waves of the model (1.7). Only the positive frequency axis is shown.

localized (nontopological) excitations, decade-long efforts to generalize these results to other PDEs have failed, including
also extension to larger space dimensions. Many studies indicated that the reason is simply resonances of the dynamics of a
local excitation with the spectrum of plane waves of the nonexcited part of the system. These resonances lead to a radiation
of energy out of the core of a local excitation and to its ultimate decay. The reader will see in the next section, why and how
a spatial lattice solves this problem, thus removing all obstacles and making localized excitations exact solutions.

1.2. Spatial discreteness and nonlinearity

Let us study the combined effect of nonlinearity and discreteness on the spatial localization of a discrete breather on a
basic level. For that we look into the dynamics of a one-dimensional chain of interacting (scalar) oscillators or atoms with
the Hamiltonian

H =

∑
n

[
1
2
p2n + V (xn)+ W (xn − xn−1)

]
. (1.7)

The integer n marks the lattice site number of a possibly infinite chain, and xn and pn are the canonically conjugated
coordinate andmomentumof a degree of freedom associatedwith site number n. The on-site potential V and the interaction
potential W satisfy V ′(0) = W ′(0) = 0, V ′′(0),W ′′(0) ≥ 0. This choice ensures that the classical ground state xn = pn = 0
is a minimum of the energy H . The equations of motion read

ẋn = pn, ṗn = −V ′(xn)− W ′(xn − xn−1)+ W ′(xn+1 − xn). (1.8)

Let us linearize the equations of motion around the classical ground state. We obtain a set of linear coupled differential
equations with solutions being small amplitude plane waves:

xn(t) ∼ ei(ωqt−qn), ω2
q = V ′′(0)+ 4W ′′(0) sin2

( q
2

)
. (1.9)

Thesewaves are characterized by awave number q and a corresponding frequencyωq. All allowedplanewave frequencies fill
a part of the real axiswhich is called the linear spectrum. Due to the underlying lattice the frequencyωq depends periodically
on q and its absolute value has always a finite upper bound. The maximum (Debye) frequency of small amplitude waves
ωπ =

√
V ′′(0)+ 4W ′′(0). The dispersion relation ωq is shown in Fig. 1. Depending on the choice of the potential V (x), it

can be either acoustic- or optic-like, V (0) = 0 and V (0) 6= 0, respectively. In the first case the linear spectrum covers the
interval −ωπ ≤ ωq ≤ ωπ which includes ωq=0 = 0. In the latter case an additional (finite) gap opens for |ωq| below the
value ω0 =

√
V ′′(0). Two further characteristics of the linear spectrum are the group velocity vg and the phase velocity vph.

The group velocity vg(q) = dωq/dq is a periodic function of q and describes the propagation speed of a wavepacket centered
at q. At the edge of the linear spectrum vg = 0. Otherwise its absolute value has a finite upper bound. The phase velocity
vph = ωq/q is a nonperiodic oscillating function of q. It covers the whole real axis for an optic-like linear spectrum since
ωq=0 6= 0. Its absolute value has a finite upper bound |vph| ≤ vg(q = 0) for acoustic-like linear spectra.

For large amplitude excitations the linearization of the equations of motion is no longer correct. Similar to the case of
a single anharmonic oscillator, the frequency of possible time-periodic excitations will depend on the amplitude of the
excitation, and thus may be located outside the linear spectrum. Let us assume that a time-periodic and spatially localized
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state, i.e. a discrete breather, x̂n(t + Tb) = x̂n(t) exists as an exact solution of Eqs. (1.8) with the period Tb = 2π/Ωb. Due to
its time periodicity, we can expand x̂n(t) into a Fourier series

x̂n(t) =

∑
k

AkneikΩbt . (1.10)

The Fourier coefficients are by assumption also localized in space

Ak,|n|→∞ → 0. (1.11)

Inserting this ansatz into the equations of motion (1.8) and linearizing the resulting algebraic equations for Fourier
coefficients in the spatial breather tails (where the amplitudes are by assumption small) we arrive at the following linear
algebraic equations:

k2Ω2
bAkn = V ′′(0)Akn + W ′′(0)(2Akn − Ak,n−1 − Ak,n+1). (1.12)

If kΩb = ωq, the solution to (1.12) is Ak,n = c1eiqn + c2e−iqn. Any nonzero (whatever small) amplitude Ak,n will thus oscillate
without further spatial decay, contradicting the initial assumption. If however

kΩb 6= ωq (1.13)

for any integer k and any q, then the general solution to (1.12) is given by Ak,n = c1κn
+ c2κ−n where κ is a real number

depending onωq,Ωb and k. It always admits an (actually exponential) spatial decay by choosing either c1 or c2 to be nonzero.
In order to fulfill (1.13) for at least one real value ofΩb and any integer k, we have to request |ωq| to be bounded from above.
That is precisely the reason why the spatial lattice is needed. In contrast most spatially continuous field equations will have
linear spectra which are unbounded. That makes resonances of higher order harmonics of a localized excitation with the
linear spectrum unavoidable. The nonresonance condition (1.13) is thus an (almost) necessary condition for obtaining a
time-periodic localized state on a Hamiltonian lattice [249,110].

The performed analysis can be extended tomore general classes of discrete lattices, including e.g. long-range interactions
between sites, more degrees of freedom per each site, higher-dimensional lattices etc. But the resulting non-resonance
condition (1.13) keeps its generality, illustrating the key role of discreteness and nonlinearity for the existence of discrete
breathers.

As with any rule, the nonresonance condition may also have exceptions. But as with any exception, there is a price to
pay. When staying within the class of spatially continuous Hamiltonian systems, for the examples we will discuss below
(Nonlinear Schrödinger equation, sin-Gordon equation) the price is imposing additional symmetries. While that may be of
particular interest for a given application, in general additional symmetries restrict the richness of possible solutions. And
losing the symmetries leads to a loss of localized excitations — at variance to the nonlinear lattice case, where no further
symmetries are requested.

While the nonlinear lattice appears as a natural mathematical path to avoid resonances with planewaves as they happen
in spatially continuous nonlinear Hamiltonian field equations, there are other ways the mind could take. If resonances with
plane waves are an obstacle, then either remove the resonances or simply remove the plane waves! The first possibility can
be realized by using a lattice, or restricting oneself to equations which either do not contain linear terms or where at least
the linear interaction terms vanishmaking the linear spectrumdegenerate— nomatterwhether for a lattice or a continuum.
The second possibility – removing the plane waves – can be achieved by considering dissipative systems. Indeed dissipation
will prevent the persistence of plane waves travelling over infinite distances. Thus delocalization by itself is not a problem
then. The loss of energy inside a breather core due to dissipation has to be taken care of, by properly pumping the energy
into the breather again. We will discuss examples, and note that a recently rapidly developing branch of dissipative solitons
appears to follow exactly that latter path.

1.3. Why only time-periodic orbits?

In the previous section we demonstrated how the interplay between nonlinearity and discreteness supports time-
periodic and spatially localized solutions — discrete breathers. What can we say about the existence of more general
types of localized solutions with other than time-periodic dynamical behavior? An analogous approach yields, that for a
quasi-periodic DB with N incommensurate frequencies {Ω1,Ω2, . . . ,ΩN} the non-resonance condition (1.13) transforms
into [110]

{k1Ω1 + k2Ω2 + · · · + kNΩN}
2

6= ω2
q (1.14)

with ki being arbitrary integer numbers. In other words, neither any of the principal frequencies {Ω1,Ω2, . . .ΩN} nor
any linear combination of their multiples should resonate with the linear spectrum. However any incommensurate pair
of frequencies Ω1 and Ω2 with irrational ratio Ω1/Ω2 will generate an infinite number of pairs k1, k2 which violate the
non-resonance condition (1.14) [110]. Therefore, in general quasiperiodic DBs are not expected to exist as exact spatially
localized solutions.
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Fig. 2. The frequency versuswavenumber dependence of the linear spectrum for a one-dimensional chain of anharmonic oscillators with potentials (1.17).
Chosen DB frequencies are marked with green arrows and lie outside the linear spectrum ωq . Red circles indicate the oscillator displacements for a given
DB solution, with all velocities equal to zero. Lines connecting circles are guides for the eye. From [57].

Another question concerns the possibility of existence ofmoving DBs. A rather general definition of amoving DB assumes
a localized object which translates n sites in a certain direction after m periods of internal oscillations with the ratio n/m
being in general irrational. In a one-dimensional chain such a moving DB corresponds to a solution of Eq. (1.8) in the form

xn(t) = φ(ξ, t), ξ = n − Vt (1.15)
φ(ξ, t + Tb) = φ(ξ, t), φ(ξ → ±∞, t) → 0. (1.16)

A detailed analysis of possible resonances is discussed in chapter 4.5. It follows that one has to avoid resonances of the
velocity V with phase velocities vph of small amplitude plane waves (of sometimes modified linear spectra as compared to
the original underlying one). The essence is that these resonances cannot be avoided, so that moving DBs are not expected
to be exact solutions for a general nonlinear lattice.

So moving DBs face the obstacle of resonances with phase velocities of plane waves. By removing the plane waves (c.f.
previous section) we can again try to escape the above described resonances and construct quasiperiodic DBs and even
moving DBs.

1.4. Examples of discrete breather solutions

Let us show discrete breather solutions for various lattices. We start with a chain (1.7) with the functions

V (x) = x2 + x3 +
1
4
x4, W (x) = 0.1x2. (1.17)

The spectrum ωq is optic-like and shown in Fig. 2. Discrete breather solutions can have frequencies Ωb which are located
both below and above the linear spectrum. The time-reversal symmetry of (1.8) allows one to search for DB displacements
xn(t = 0) when all velocities ẋn(t = 0) = 0. These initial displacements are computed with high accuracy (see following
sections) and plotted in the insets in Fig. 2 [57]. We show solutions to two DB frequencies located above and below ωq —
their actual values are marked with the green arrows. To each DB frequency we show two different spatial DB patterns
— among an infinite number of other possibilities, as we will see below. The high-frequency DBs (Ωb ≈ 1.66) occur for
large-amplitude, high-energy motion with adjacent particles moving out of phase. Low-frequency DBs (Ωb ≈ 1.26) occur
for small-amplitude motion with adjacent particles moving in phase.

In Fig. 3 we show two DB solutions for a Fermi–Pasta–Ulam chain of particles coupled via anharmonic springs V (x) =

0,W (x) =
1
2x

2
+

1
4x

4 (c.f. (1.7))whichhas an acoustic-type spectrum [121]. TheDB frequency is in both casesΩb = 4.5. Again
the displacements xn are shown for an initial time when all velocities vanish. In the inset we plot the strain un = xn − xn−1
on a log-normal scale. The DB solutions are exponentially localized in space.
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Fig. 3. Discrete breather solutions for a Fermi–Pasta–Ulam chain (see text). These states are frequently referred to as the Page mode (left) and the Sievers-
Takeno mode (right). Figure from [121].

Fig. 4. Displacements of DBs on a two-dimensional lattice (1.18) with k = 0.05, all velocities equal to zero. (A) Ωb = 1.188; (B) Ωb = 1.207; (C)
Ωb = 1.319. From [93].

Finally we show DB solutions for a two-dimensional square lattice of anharmonic oscillators with nearest neighbour
coupling. The equations of motion read

ẍi,j = k(xi+1,j + xi−1,j − 2xi,j)+ k(xi,j+1 + xi,j−1 − 2xi,j)− xi,j − x3i,j (1.18)

with oscillator potentials V (x) =
1
2x

2
+

1
4x

4. In Fig. 4 we plot the oscillator displacements with all velocities equal to zero
for three different DB frequencies and k = 0.05 [93]. For all cases adjacent oscillators move out of phase.

We conclude this section by emphasizing that DB solutions can be typically localized on a few lattice sites, regardless
of the lattice dimension. Thus little overall coherence is needed to excite a state nearby — just a few sites have to oscillate
coherently, the rest of the lattice does not participate strongly in the excitation.

1.5. The discrete nonlinear Schrödinger equation

One of the simplest discrete lattice models, which deserves special attention, is represented by the Discrete Nonlinear
Schrödinger (DNLS) equation [89], which is a lattice generalization of the dimer example (1.1):

i
dψn

dt
+ εψn + C (ψn+1 + ψn−1)+ γ |ψn|

2ψn = 0. (1.19)

Similar to the dimer case, this model allows time-periodic solutions where only one harmonic in the time evolution is
excited. For that reason treatment of periodic orbits in DNLS models is relatively simple, making the model a playground to
analyze basic nonlinear phenomena. On the other hand DNLS models can be derived as the approximate small-amplitude
dynamics ofmore general nonlinear latticemodelswith on-site nonlinear potential (Klein–Gordon lattices) [133,285,73,212,
215], inter-site nonlinear interaction (Fermi–Pasta–Ulam lattices) [51,67,213,149] and for mixed type nonlinearities [181].
One essentially uses the RotatingWave Approximation (RWA), which neglects the effect of higher harmonics generation. In
the past decade a substantial growth of interest in DNLS models appeared due to their direct applicability to experimental
setups of coupled nonlinear waveguide arrays [92] and Bose–Einstein condensates (BEC) trapped in periodical optical
lattices [11]. We will discuss these experiments in more detail in Sections 10.2 and 10.3, respectively.
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Fig. 5. Profiles of the single site (a) and two site (b) stationary DB solutions of Eq. (1.19) in a normal and log-normal (insets) plot. Parameter values are:
Ωb = 1.0, C = 0.25, γ = 1. Lines are guiding the eye.

The DNLS possesses a gauge symmetry, i.e. if ψn(t) is a solution to (1.19) then Ψn(t) = ψn(t)e−iεt is a solution to (1.19)
with ε = 0. So we can always gauge transform ε to zero. The staggering transformation ψn → (−1)nψn together with
change of sign of time t is equivalent to the change of sign of the nonlinear constant γ , therefore the latter can be always
fixed to be positive. Furthermore, by rescaling the amplitudes ψn → ψn/

√
γ the coefficient γ can be removed completely

from Eq. (1.19). By additional scaling of time t and amplitudes ψn the coupling coefficient C can be also fixed to be unity
C = 1, however for the sake of considering the uncoupled limit C → 0 it is sometimes useful to keep the coupling constant in
Eq. (1.19).

The DNLS equation (1.19) (with ε = 0) conserves the Hamiltonian

H =

N∑
n=1

[
C(ψ∗

nψn+1 + ψnψ
∗

n+1)+
γ

2
|ψn|

4
]

(1.20)

with canonically conjugated coordinates ψn and momenta iψ∗
n . In addition it also conserves the norm

N =

∑
n

|ψn|
2. (1.21)

The norm has a clear physical meaning being proportional to the total light power in the case of coupled optical waveguides
or to the number of particles in a BEC. By scaling the amplitudes ψn and the nonlinear coefficient γ it is always possible to
fix the norm to be unity N = 1. Alternatively, as mentioned above, by rescaling the amplitudes (and thus the norm) one can
fix γ = 1.

The two conserved quantities, the Hamiltonian (1.20) and the norm (1.21), ensure integrability of Eq. (1.19) in the case of
two coupled sites (dimer) (1.1) [178], while for more sites it is not integrable. It needs other structures of DNLS-type lattice
models, like the Ablowitz–Ladik model [1] or the Izergin–Korepin model [170] to sustain integrability for arbitrary size.

Stationary solutions of the DNLS equation (1.19) have the form ψn(t) = φn exp(iΩbt) with amplitudes φn satisfying
algebraic equations

−Ωbφn + C (φn+1 + φn−1)+ γ |φn|
2φn = 0. (1.22)

Profiles of some basic stationary DB solutions are shown in Fig. 5. They were predicted and obtained by Christodoulides and
Joseph [63]. In the uncoupled limit C = 0 (also known as anti-continuous limit [249,18]) these solutions asymptotically
approach compact single-site or two-site excitations with one or two sites excited to the amplitude φ(0) =

√
Ωb/γ and all

the rest of the lattice amplitudes being exactly zero (see also [203,190]). Often these solutions are also coined site-centered
and bond-centered DBs, respectively, referring to their spatial structures.

2. Existence proofs

This section is devoted to a brief discussion of existence proofs for discrete breathers. Certainly the fine mathematical
aspects of rather different methods are outside the scope of the present work (but see for instance Ref. [20]). The situation
is further complicated by the different possibilities of grouping various results. From a physics perspective, we prefer to
group them according to the differentmodel classes the proofs apply to. From amathematics perspective, onewould tend to
grouppublications according to the techniques used—e.g. implicit function theorem, centermanifold reductions, variational
approaches, separation of variables, etc. This being a report for a physics community, we prefer the first way. The interested
reader should consult Ref. [20], where the second way is explored. Additional results are summarized by Pankov [302].
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2.1. Networks of weakly interacting anharmonic oscillators

From the present perspective the most important result in this field is due to MacKay and Aubry [249]. Though the
case has been already discussed in [133,18], we nevertheless want to summarize these results. MacKay and Aubry consider
d-dimensional lattice models of coupled anharmonic oscillators (cf. e.g. Eq. (1.18) for d = 2) in the limit of very weak
interaction (anticontinuous limit). For zero interaction the oscillators decouple, and it is trivial to construct arbitrary spatially
localized excitations. MacKay and Aubry choose those trajectories which are periodic in time, and time-reversible. These
trajectories can be encodedby a sequence of time-periodic and time-reversible functions,where each of them is representing
the time-dependence of the coordinate of an oscillator. Note that the period is one and the same for all functions. The
sequence can be formally represented as a N-dimensional vector function, where N is the number of oscillators, and each
component is a time-periodic and time-reversible function. The vector can be embedded in a corresponding Banach space.

The original equations of motion are used to define a map of a vector from that Banach space onto another vector.
Solutions of the equations of motion are those vectors which are mapped into the zero (origin) of the space. For zero
interaction the simplest example is when one oscillator is excited and all others are at rest.

One of the most elegant parts of the existence proof of MacKay and Aubry is the use of the Implicit Function Theorem
in order to show that when the interaction is small but nonzero, there is a new vector in the neighbourhood of the old
one, which is still mapped into the origin, and thus there is a solution of the equations of motion. And moreover they use
the norm properties of vectors from Banach space to show that the still existing but deformed vector solution corresponds
to an exponentially localized excitation on the original lattice. Remarkably the necessary condition for the proof to work
is the nonresonance condition (1.13). Note that in contrast to the localization argument in Section 1.2 the nonresonance is
needed in theMacKay/Aubry paper not for the exponential localization, but for the very existence of the periodic orbit itself!
However in particular cases even that restriction can be removed, as shown recently for purely harmonic oscillators with
weak but purely anharmonic interaction potentials, where a strictly localized but noncompact excitation on the decoupled
harmonic oscillator lattice is continued into the interaction case preserving its strong localization [116].

The power of that existence proof is that it is essentially insensitive to the lattice dimension, the type of interaction on the
lattice, and the number of originally excited sites. Moreover the method turned out to be very flexible and can be adapted
to many other situations as well. The above-mentioned restriction to time-reversible orbits helps to remove degeneracies,
i.e. to exclude non-zero dimensional manifolds of vectors in the Banach space which contain the correct one, andwhich also
map to the origin. In fact it is not time-reversibility itself, but the easy fixing of an overall phase for all periodic functions
which is used. Later, themethod has beenmodified to prove persistence of non-time-reversible periodic orbits aswell [365].

2.2. Anharmonic interactions

Switching off the oscillator potentials, and leaving all the nonlinearity in the interactionsmakes thingsmore complicated.
The Fermi–Pasta–Ulam lattice is a prominent example. Here the above discussed proof does not apply, since for zero
interactions we are left with free particles, which will not oscillate but propagate at constant velocities if excited. Therefore
one needs other limiting cases that allow for a solution of the equations of motion. This requirement lead to an impressive
series of mathematical studies which used different methods and techniques in order to tackle the problem.

The first proof of existence of DBs in such one-dimensional systems used the special case of homogeneous interaction
potentials, which allows for a separation of time and space variables [111] (for amore detailed discussion see also Ref. [133]).
This homoclinic orbit approach was recently also applied to nonlinear Schrödinger chains [325].

Livi, Spicci and MacKay considered more general potentials, but used the limit of strongly alternating particle masses
instead [246]. In the limit of infinite (or zero) mass ratio the lattice dynamics is reduced to a special anticontinuous case
of light masses oscillating between immobile heavy masses. With the help of the Implicit Function Theorem localized
vibrations were continued into the regime of finite mass ratio. A similar approach was taken by Aubry, who dimerized a
d-dimensional lattice, and considered the case of weak interactions between the dimers [19].

2.3. Breathers with frequencies close to the linear spectrum

So far we have discussed existence proofs which were limited to weak interactions, by literally cutting the interactions
out, by choosing strongly alternating mass ratios, or by dimerizing the lattice. Another possibility is to consider the general
case of finite interactions, but to take the limit of breathers having frequencies close to the linear spectrum. Aubry et al.
performed a variational approach to rigorously prove the existence of DBs for essentially any lattices with pure convex
interaction potentials [23]. James performed a center manifold reduction and proved the existence of weakly localized DBs
in one-dimensional FPU chains [174], and extended together with Noble to arbitrary mass ratios of alternatingmasses [177]
(see also Ref. [175] for an extensive review of that technique).

2.4. Applicability

A very important aspect of the existence proofs is the rigorous mathematical statement of existence by itself. Most of the
above proofs are implicit, i.e. the existence of DBs is proven without explicit construction of the solutions. In exceptional
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cases explicit solutions can be constructed [300,290] or even be obtained as part of a complete integration of the coupled
lattice equations [1].

However, the case of weak interactions, and the limit of frequencies close to the linear spectrum, defines the precise form
of the solutions in that very limit (e.g. [343,176]). Therefore, numerical continuation tools (see chapter 3) harvest on that
information — they use the exact solution in the limit, the knowledge that it can be continued away from the considered
limit, and therefore successfully generate solutions further and further away.

3. Computational methods for obtaining and analyzing discrete breathers

In this sectionwewill briefly review themostlywidely usedmethods to observe DBs in numerical runs, to obtain them as
exact solutions with high accuracy (basically, up or close to machine precision) and to analyze them. The interested reader
can find more detailed information in [115].

3.1. Targeted initial conditions

One of the easiest ways to observe DBs in numerical runs is to use targeted initial conditions: put an initially localized
excitation (strong enough so that the nonlinear terms become non-negligible in the corresponding equations of motion)
in the otherwise non-excited lattice. Since the non-resonance condition (1.13) can be satisfied in a rather general class of
discrete nonlinear lattices, the chances are very high, that localization will persist in the dynamics.

To illustrate this, let us take a 1D lattice with the Hamiltonian (1.7) and choose the potentials [133,131,134]

V (x) =
x2

2
−

x3

3
+

x4

4
, W (x) = 0.1

x2

2
. (3.1)

At time t = 0 we displace site l = 0 by a certain amount x0(0), while all other sites are at rest pl(0) = 0, xl6=0(0) = 0. Then
we integrate the equations of motion e.g. using the Verlet method [160]. We expect at least a part of the initially localized
energy excitation to spread among the other sites. This may induce finite size effects due to recurrence of emitted waves
which travel around the whole system and return to the original excitation point. The simplest way to avoid these effects
is to choose the system size large enough, so that during the time of integration the radiation simply does not reach the
boundaries. In our case the maximum group velocity of plane waves [derived from the dispersion relation (1.9)] is of the
order 0.1. This implies, that, by taking the system size N = 3000, our simulation will emulate the behavior of an infinite
chain with the above initial conditions up to tmax ∼ 30 000.

To monitor the evolution of the system we define the discrete energy density

el =
1
2
p2l + V (xl)+

1
2
(W (xl − xl−1)+ W (xl+1 − xl)). (3.2)

The sum over all local energy densities gives the total conserved energy. If DBs are excited, the initial local energy excitation
should mainly remain at its initial excitation position. Thus, we will monitor the amount of energy stored in (2m + 1) sites
surrounding the central one

e(2m+1) =

m∑
−m

el. (3.3)

If this function does not decay to zero or does so on a sufficiently slow time scale, the existence of a breather-like object
can be confirmed. The term ‘slowly enough’ has to be specified with respect to the group velocities of small amplitude
plane waves, i.e. with respect to the characteristic time for linear phonons to escape a volume of size m. The estimate for
m = 2 gives the corresponding time scale tmin ∼ 10 [131,134]. In Fig. 6 the time dependence of e(5) for an initial condition
x0(t = 0) = 2.3456 is shown [131,134]. Clearly a localized excitation is observed. After a short time period, of the order
of 100 time units, nearly constant values of e(5) are achieved. The breather-like object is stable over a long period of time
with some weak indication of energy radiation. The energy distribution within the object is shown in the inset of Fig. 6.
Essentially three lattice sites are involved in the motion.

Analogous procedures can be performed with higher-dimensional lattices, leading to qualitatively the same result. In
Fig. 7 the residual energy distribution in a DB-like excitation is shown, and the inset displays the time dependence of a local
energy similar to e(5)(t), for the 2D generalization of the above model [125].

The method of targeted initial conditions is very effective for demonstration of the general concept of dynamical
localization in nonlinear lattices. However, it is certainly not suitable for obtaining DB solutions with a reasonable precision.
It suffers from transient times needed for the system to relax and for radiation to escape the localization region. Despite
the relatively fast escape of the main radiative part indicated in Fig. 6, the relaxed localized structure in many cases is a DB
with several localized modes excited on top of it. Performing quasiperiodic dynamics, such an object induces resonances
with small-amplitude extended states resulting in further relaxation processes, which may be extremely slow [134]. Also
one has to deal with the problem of finite size effects causing reflection of the radiated waves on the boundaries. The use of
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Fig. 6. e(5) versus time (dashed line). Total energy of the chain, solid line. Inset: energy distribution el versus particle number for the same solution
measured for 1000 < t < 1150. Figure from [131].

Fig. 7. Energy distribution with initial energy E = 0.3 after waiting time t = 3000. The filled circles represent the energy values for each particle; the
solid lines are guides to the eye. Inset: Time dependence of the energy e(5) . Figure from [127].

absorbing boundary conditionsmay essentially reduce this effect [127], but not remove it completely. The only way to avoid
the boundary problem is to take a large enough system size, which is quite expensive from a computational point of view,
especially when dealing with more than one spatial dimensions. Another obvious disadvantage of the described method is
that it does not provide one with control of the parameters of a resulting DB. In particular, with such a technique one can
not obtain dynamically unstable (but still existing as exact solutions!) DBs. Therefore, in order to perform a detailed analysis
of possible DB solutions and their properties, including their stability, more careful methods are needed for computing DBs
with a desired precision.

3.2. Obtaining DB solutions with high precision

The general idea underlying most methods for computing DB solutions is to find the zero of a certain map. The set of
relevant variables and the algorithm for searching for the zero might be quite different though, resulting in the number of
approaches established nowadays [133,115]. Each of thesemethods has its own advantages and disadvantages, and the final
choice very much depends on the concrete model and particular properties of the desired DB solution.

3.2.1. Periodic orbits in phase space
The mostly used, and very general, method for computing DB solutions is based on finding the corresponding periodic

orbits (PO) in phase space. Generic POs of nonintegrable Hamiltonian systems are isolated, i.e. in a small neighborhood in
phase space one cannot find other slightly deformed POswith identical values of conserved quantities like energy, action etc.
At the same time, the fact that DBs usually belong to one-parameter families of solutions implies that for slightly different
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Fig. 8. Schematic representation of a family of isolated POs. Green sector — stable POs, red sector — unstable POs, blue line — bifurcation location of
additional PO family detaching.

values of the conserved quantities one will generally find new slightly deformed POs. Thus, we can think of isolated POs
residing on cylinders in phase space, where each point on a cylinder belongs to a closed loop which is a PO. Sliding along the
cylinder, i.e. sliding along the family of the corresponding solutions, we change all the parameters of the PO. In particular, a
PO can turn from stable to unstable, due to a bifurcation, possibly resulting in new families of POs, as indicated in Fig. 8.

Taking into account the described degeneracy, one has to fix some parameter of the desired PO (equivalently, the
parameter of the corresponding family of DB solutions). Themost natural way is to fix the corresponding period Tb, however
some other parameters can be used as well, e.g. DB energy, amplitude of the central site etc. The next step is to construct
the map. Consider a 1D lattice of size N (it is straightforward to extend the procedure to any higher dimensional problem).
Take an initial condition ER = {Xl, Pl} in the 2N-dimensional phase space with components

xl(t = 0) ≡ Xl, pl(t = 0) ≡ Pl (3.4)

and integrate it over a certain time Tb:

xl(Tb) ≡ Ixl ({Xl′ , Pl′}, Tb), pl(Tb) ≡ Ipl ({Xl′ , Pl′}, Tb). (3.5)

If ER belongs to a PO with period Tb, then it should coincide with the point in phase space given by (3.5). In other words, the
vector function EF(ER) = {F x

l (
ER), F p

l (
ER)} with components given by

F x
l = Ixl − Xl, F p

l = Ipl − Pl, (3.6)

should be zero for any point ER from a PO. This condition constitutes our map:

EF(ER) = 0. (3.7)

Thus, the problem of finding a periodic orbit is equivalent to the problem of finding zeros of the function EF(ER) (3.6).
Different methods can be used for this. The most common one is the generalized Newton–Raphson method in phase space
[261], which gives an iterative scheme with the correction E∆(i) on the i-th step of iteration to the trial vector ER(i−1) given by

EF
(
ER(i−1)

)
+ M E∆(i) = 0, (3.8)

where the elements of the tangent matrix M are:

Mnm =
∂Fn
∂Rm

∣∣∣∣
ER(i−1)

. (3.9)

We denote the components of the corresponding L-dimensional vectors by Rn and Fn. L < 2N is the dimensionality of the
suitably defined subspace SL of the original 2N-dimensional phase space (the issue of a relevant choice of the subspace SL

will be addressed below). Since the function EF(ER) is defined through the integration of the model dynamical equations over
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the period Tb, one has to integrate the system L times with L small orthogonal perturbations of the vector ER(i−1) to compute
Mnm on each iteration step:

Mnm =

Fn
(
ER(i−1)

+Elm
)

− Fn
(
ER(i−1)

)
|Elm|

, (3.10)

where the vectorsElm, 1 ≤ m ≤ L define a complete basis which spans the L-dimensional subspace SL.
The main task is to compute the matrix elements Mnm. Integrating a single perturbed trajectory yields a complete row

(or line) of thematrix. The integration can be either done using the full nonlinear equations —then one has tomake sure that
the perturbation is small enough for the linearization of the phase space flow around the trajectory to hold. A much better
way is to linearize the equations around a given trajectory explicitly (see 3.3) and to integrate the linearized equations.

In order to calculate the correction E∆(i) from Eq. (3.8), one needs to invert the matrix M. Therefore, all possible
degeneracies which lead to zero eigenvalues of the matrix should be removed. In other words, the function EF(ER) should
have a unique zero (if any) in a vicinity of the initial point ER(0). The degeneracy associated with sliding along the family of
POs is lifted by fixing the period Tb in the map. However, there is at least one more degeneracy connected to the sliding
along the given PO: if ER belongs to the PO, then a 1D manifold of points belong to this PO. This degeneracy can be removed
by fixing the initial phase, e.g. by adding one additional condition Pm = 0 in (3.4) (sliding along the PO one can always find
a point, at which the momentum of themth site is zero). The corresponding component of the function EF(ER) should also be
removed, so that the problem is reduced to the L = 2N − 1 dimensional phase subspace. One has to take care, however,
that a zero of this reduced (2N − 1) dimensional problem together with the condition Pm = 0 uniquely fixes the zero of
the initial 2N dimensional problem, e.g. through energy conservation. An essential further reduction of the problem can be
obtained, when searching for time-reversible POs. In that case the momenta of all the sites can be fixed to zero, and we are
left with an N dimensional subspace [261,133,221].1

For a successful implementation of the Newton scheme a good initial guess is needed. The general idea is to choose the
system parameters such that a known solution can be used, and afterwards change the parameters up to the desired values
by small steps, tracing the solution. A good starting point is the anti-continuous limit [249,18] of uncoupled sites. In this
limit an exact solution can be easily constructed by exciting individual sites with the given frequency (corresponding to
the period Tb of the desired PO). The basic prototype of a DB solution would be a single excited site with all the other sites
having strictly zero amplitudes. However, more complicated localized patterns can be chosen as well. Each of these patterns
corresponds to a coding sequence, indicating the state of each site. The simplest variant of the coding sequence consists of
two code types: ‘‘0’’ corresponds to a site being at rest and ‘‘1’’ corresponds to an excited site. Thus, a single-site excitation
will have the coding sequence (. . . 0001000 . . .). In this sense, the introduced coding sequence is a unique identifier of a
given DB solution. Constructing DB solutions starting from the anti-continuous limit certainly does not work in the case of
FPU-type lattices with nonlinear interaction between sites, but zero on-site potentials. Then more sophisticated methods
are needed [246,19,23].

The advantage of the Newton scheme is, that it is relatively easy to write a code once we already have a good integrator.
The map converges exponentially fast. Furthermore we may use one Newton matrix for several iterations, which may
be useful when matrices get large. Disadvantages of the Newton scheme may be due to relatively large computational
time ∼N2 because of matrix inversion. Matrix inversions are sensitive to bifurcations, because at bifurcations additional
degeneracies take place, whichmay lead to zero eigenvalues ofM. Sometimes wemay needmore subtle inversion routines,
using e.g. singular value decomposition.

Similar to the Newton map one may also use a steepest descent method in phase space [125] to seek for zeros of the
scalar nonnegative function g(ER) ≡ |EF(ER)|2. Starting from some point in phase space one follows the direction opposite
to the gradient of this function and eventually falls down to the global minimum gmin(ER) = 0. As in the above Newton
scheme a good initial guess is needed, so that we are separated from any possible local minima of the function g(ER). The
advantage of steepest descent is that the computational time grows proportional toN . Furthermore themethod is insensitive
to bifurcations, since nomatrix inversion is needed. Disadvantages of the steepest descent are that the convergence is slower
than that of Newton maps and that it may be hard to distinguish zero height minima from almost zero height minima.

Yet another twist is taken if the steepest descent method is considered as a map. The idea is to search for a minimum of
g(ER) by approximating the function around the minimum with a quadratic form. Formally that seems to repeat the above
discussed Newton method. Yet there is more to say. Indeed, as mentioned before, a Newton method which operates just on
the amplitudes of oscillatorswhen searching for a time-reversible orbit, will in general produce large errors on the velocities.
The normminimization can solve this problem. It does so by taking themapping into the full phase space, but inverting only
sub-blocks of the obtained matrix. And it can be used essentially for any case of a reduced number of variables as compared
to the full phase space dimension. A nice example is to compute a time-reversible DB by choosing initially all velocities to
be zero, and by fixing the amplitude of a (central) oscillator to a given amplitude. Then all trajectories are integrated up to

1 Note however, that the true error ε will be larger than the one of the reduced dimensional problem (εr ). If the kinetic energy is a quadratic form of the
momenta, ε ∼

√
εr . One can overcome this problem by using modified Newton schemes [58,68,219].



S. Flach, A.V. Gorbach / Physics Reports 467 (2008) 1–116 15

the time when the velocity of the central oscillator vanishes again, and its amplitude has the same sign as at the beginning.
The above Newton map can be done solely on the N − 1 remaining coordinates. To improve the precision on the velocities
as well, the norm minimization can be used again. We first define a scalar nonnegative function g(ER), and then define the
relevant variables which should minimize that function.

3.2.2. Periodic orbits from Fourier space
Instead of working in phase space, one can also reformulate the problem of finding a DB solution in terms of the Fourier

coefficients [110,112]. Despite the fact, that the number of variables will drastically increase in this case (typically up to
20–30 per lattice site), the main advantage is that one has to deal with algebraic equations for the Fourier coefficients. In
particular, the method becomes extremely efficient once the equations for the Fourier coefficients can be written down
explicitly. Then one can again use the Newton algorithm to solve these equations, but this time the coefficients of the
Newton matrix are known explicitly, and there is no need to integrate the system over a desired DB period in order to
obtain them. Further optimizations can be done e.g. by using specific maps to solve the algebraic equations for the Fourier
coefficients [112], however such methods have unpredictable convergence criteria. Yet if they converge to something
meaningful, it happens very quickly.

3.2.3. Use of symmetries
In some specific cases one can use symmetries of the system to develop special methods or to simplify the above listed.

As we already mentioned, while searching for time-reversible solutions one can reduce the effective dimensionality of the
phase space by a factor of 2 (keep in mind, however, the discussed issue of the accuracy of solutions, obtained by such
reduced schemes). This means, that the rank of the Newton matrix M in (3.8) will be reduced by a factor of 2, and the
procedures for calculating its coefficients and for inverting M will run faster. Another simplification can be made in the
case of symmetric on-site and inter-site potentials, which support an additional symmetry of DB solutions with period
Tb: xn(t + Tb/2) = −xn(t), pn(t + Tb/2) = −pn(t). In this case the map in the phase space (3.6) can be redefined for
the half-period Tb/2, again saving computational time [115]. A very specific example is given by homogeneous potentials
which support time–space separation xn(t) = φnG(t) [214,110,155]. In this case one deals with a single equation for the
time-periodic function G(t) and a set of algebraic coupled equations for a DB profile φn. These equations can be then solved
separately e.g. by using the Newton method. Similarly, as mentioned in Section 1.5, stationary DB solutions in DNLS models
satisfy algebraic equation (1.21).

3.2.4. Dissipative DBs
ComputingDB solutions in dissipative systems deserves special attention. In such systemsDBs no longer form continuous

families of solutions, but they may survive as attractors, provided some sources of incoming energy are present e.g. by
applying an external bias, see Section 4.6. In terms of POs in the phase space, only some slices of the cylinder in Fig. 8 may
survive in non-Hamiltonian systems. In most of the cases the parameters of these POs are unknown a priori, therefore one
has to modify the map (3.6) and (3.7), incorporating the period Tb in the set of variables ER to be defined. Note, that the
degeneracy associated with sliding along the PO persists. As earlier, it can be removed by fixing Pm = 0. Thus, ER is defined
as

ER = {X1, X2, X3, . . . , XN , P1, P2, P3, . . . , Pm−1, Pm+1, . . . , PN , Tb} , (3.11)

and the function EF(ER) (3.6) includes now the error on the variable Pm, so that both EF and ER are 2N dimensional vectors. Zeros
of EF(ER) can be found then by Newton or steepest descent methods. As usual, a good initial guess is needed.

3.3. Perturbing discrete breathers

Once a DB solution is found, one has to characterize its stability and the related question of interaction of the DB with
other types of excitations. For that one has to study the evolution of a perturbation εn(t) added to the DB solution x̂n(t). If
the perturbation amplitude is large enough, one may expect generic dynamical features of a nonintegrable system, which
are usually rather complicated and hard to address analytically. However, assuming that the size of perturbation is suitably
small, one may linearize the resulting equations for εn(t) [18,262]:

ε̈n = −

∑
m

∂2H
∂xm∂xn

∣∣∣∣
{x̂l(t)}

εm, (3.12)

where H is the Hamiltonian of the system. Within that linear approximation in the perturbation amplitude εn(t), the DB
acts as a parametric time-periodic driver, and the Eq. (3.12) corresponds to a time-dependent Hamiltonian H̃(t):

H̃(t) =

∑
n

 π2
n

2
+

1
2

∑
m

∂2H
∂xn∂xm

∣∣∣∣∣
{x̂l(t)}

εnεm

 , (3.13)
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ε̇n =
∂H̃
∂πn

, π̇n = −
∂H̃
∂εn

. (3.14)

The specific structure of the Hamiltonian H̃ ensures that the conservation law İ = 0 [18,16] for the symplectic product

I =

∑
n

[
εn(t)π ′

n(t)− ε′

n(t)πn(t)
]

(3.15)

holds for any pair of trajectories y = {εn, πn} and y′
=
{
ε′
n, π

′
n

}
. It can be written as the scalar product

I = (Jy, y′), (3.16)

where J is the 2N × 2N matrix

J =

(
0 I
−I 0

)
, (3.17)

and I is the N × N unit matrix. The conservation of the symplectic product I implies that the evolution matrix U(t), which
maps the linearized phase space flow around the given PO onto itself,{

ε(t)
π(t)

}
= U(t)

{
ε(0)
π(0)

}
, (3.18)

is symplectic:

UTJU = J. (3.19)

Consequently it follows that if y is a right eigenvector of the matrix U with the corresponding eigenvalue λ

Uy = λy, (3.20)

then Jy is the right eigenvector of the transposed matrix UT (or equivalently the left eigenvector of the same matrix U) with
the corresponding eigenvalue 1/λ [115]

UT(Jy) =
1
λ
(Jy). (3.21)

Since the spectra of transposedmatrices coincide, both λ and 1/λ are eigenvalues of the matrix U . But in general, there is no
straightforward relation between the corresponding eigenvectors (in other words, there is no connection between the left
eigenvector Jy and the right eigenvector y′ which corresponds to one and the same eigenvalue 1/λ).2 If U is real, its complex
eigenvalues form complex conjugated pairs. Thus, if λ is an eigenvalue of U , then so are λ∗, 1/λ and 1/λ∗.

Due to the time-periodicity of all the coefficients in the r.h.s. of Eq. (3.12), the dynamics of a small-amplitude perturbation
εn(t) is fully determined by the Floquet matrix F ≡ U(Tb), i.e. by the evolution matrix over one DB period Tb. Thus, the
problem is reduced to determining the eigenvalues and eigenvectors of the symplectic Floquet matrix F . The coefficients
of this matrix are determined in a similar way to the coefficients of the Newton matrix M (3.10), discussed above, but with
use of the vector function EI(ER) (3.5) instead of EF(ER) used in (3.10):

Fnm =

In
(
ER + Eδ(m)

)
− In

(
ER
)

|Eδ(m)|
, (3.22)

where the vectors Eδ
(m)
n ,m = 1, 2, . . . , 2N form a basis of orthogonal perturbations in the 2N dimensional phase space and

ER defines a point on the PO orbit corresponding to the DB solution. In other words, there is a simple relation between the
Floquet and the Newton matrices: F = M + I . Therefore, to reduce computational time one can use the Newton matrix M
obtained on the last step of theNewton iteration scheme (i.e. reasonably close to the exact DB solution) in order to determine
most of the coefficients of the Floquet matrix F . The still missing elements of the Floquet matrix F have to be calculated
separately.3

In many cases one works with real valued variables xn(t) and εn(t). Then the Floquet matrix will be also real, but its
eigenvalues and eigenvectors are complex. Take a complex valued eigenvector y = yr + iyi corresponding to the eigenvalue

2 Dealing with time-reversible DB solutions, one may nevertheless conjecture this connection: if y = {ελ, πλ} is the eigenvector corresponding to an
eigenvalue λ, then y′

= {ελ,−πλ} should be the eigenvector corresponding to the eigenvalue 1/λ. However, we are not aware of any strict proof of this
conjecture, although the numerical studies show that it is fulfilled.

3 It is worth mentioning, that being symplectic, the Floquet matrix F can be easily inverted: F−1
= −JF TJ . However the Newton matrix M = F − I

introduced in (3.8) is no longer symplectic. It is a challenging task to construct a modified map in phase space, which would involve a symplectic Newton
matrix.
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λ = λr + iλi. How is it related to the original real phase space variables εn, πn? Using F y = λy it is straightforward to
obtain

F yr = λryr − λiyi, (3.23)
F yi = λiyr + λryi. (3.24)

Thus, taking any linear combination of yr and yi as an initial condition for εn, πn, the Floquet map will perform a rotation
and expansion (contraction) in the subspace spanned by the real and imaginary parts of the complex conjugate pair of
eigenvectors y and y∗. In other words, this subspace is invariant under application of the Floquet mapping. If |λ| = 1,
this mapping simply performs a rotation, otherwise it adds a contraction |λ| < 1 or an expansion |λ| > 1, related to DB
instabilities. This issue will be addressed in detail in Section 4.2.

4. Basic properties of discrete breathers

This section is devoted to a discussion of the main mathematical properties of discrete breathers. It will include a brief
discussion of aspects which have been already published, and include a more focussed analysis on subfields which emerged
in the past years. Among the latter ones are such topics as long range interaction, quasicompact discrete breathers, and also
recent developments in the area of modulational instability and the influence of dissipation.

4.1. Spatial localization

Discrete breathers are generic solutions on nonlinear, typically nonintegrable, lattices. The price to pay is that we usually
do not have a closed analytical expression for these states. Thus we need approximation tools to analyze their properties,
by assuming that, for a given system, DBs with certain properties exist. As concerning their localization properties in space,
we can consider both the profile inside the core of the DB, as well as the decay properties in its spatial tails. The former
aspect is the hardest one, since it needs the mastering of the full nonlinear equations. The latter one is more accessible,
since breather amplitudes in their tails become small. A linearization of the equations of motion in the tails is then usually
expected to correctly describe the tail asymptotics. However, one can even systematically go beyond such a linearization
and treat nonlinear corrections as well. Tail analysis is the focus of this chapter.

To make things precise, we will consider a model with one degree of freedom per unit cell. Generalizations to more
complicated cases should be straightforward. The Hamiltonian reads

H =

∑
l

[
1
2
P2
l + V (Xl)+

∑
l′

Wl,l′(Xl − Xl′)

]
. (4.1)

The hypercubic lattice has dimension d, and the lattice index l is a d-dimensional vector with integer components. The
interaction potential Wl,l′ = Wl+m,l′+m, and thus the model, are translationally invariant. All zero and first derivatives of
the potential functions vanish for zero arguments. By the virtue of the discreteness the frequency spectrum ωq of small
amplitude plane waves is bounded in absolute value.

A discrete breather solution is given by

Xl(t) =

∑
k

AkleikΩbt . (4.2)

Here the Fourier number k is a scalar integer independent of the lattice dimension d. The breather is localized in spacewhich
implies

Ak,|l|→∞ → 0. (4.3)

Assuming that the potential functions have nonzero second derivatives at their origin, i.e. V ′′(0) = v2 6= 0 and
W ′′

0,l = w0,l 6= 0 for some l, we may linearize the algebraic equations for the Fourier coefficients Akl in the spatial tails
|l| → ∞:

k2Ω2
bAkl = v2Akl +

∑
l′
wl,l′(Akl − Akl′). (4.4)

Since the Fourier amplitude equations decouple after linearization,we can solve each of these equations separately. Recalling
that the necessary condition for the localization of each Fourier amplitude is the nonresonance condition kΩb 6= ωq, the
spatial decay of the k-th amplitude is then given by the lattice Green’s function [84]

Gλ(l) =

∫
1.BZ

cos(ql)
ω2

q − λ
ddq, λ = k2Ω2

b . (4.5)

Here the integration extends over the first Brillouin zone of the reciprocal wavevector space q. We note that the spectrumωq
is periodic in q, with its irreducible multidimensional period residing exactly in the first Brillouin zone. Fixing the direction
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Fig. 9. Amplitude distribution of a breather solution of the three-dimensional DNLS system (4.6) with linear size N = 31. Only a distribution in a cutting
(x; y) plane is shown (the plane cuts the center of the breather). The intersections of the grid lines correspond to the actual amplitudes, the rest of the grid
lines are guides to the eye. Left panel — amplitudes are shown on a linear scale. Right panel — the same solution with amplitudes plotted on a logarithmic
scale. Data are from Fig. 2 in [125].

of l and changing its absolute value, Eq. (4.5) will then generate the Fourier coefficients of the periodic function (ω2
q − λ)−1.

The spatial decay of the breather is thus characterized by the convergence properties of the corresponding Fourier series.
Also the convergence properties of Fourier series are defined through the analytical properties of the generating periodic
function.

4.1.1. Short-range interactions
We define a lattice having short-range interactions, if the corresponding squared spectrum ω2

q is an analytical function
on the extendedwavevector space q, i.e. when all its derivatives at any point q exist and are finite. Examples are lattices with
nearest neighbour interaction, or more general lattices with finite-size interactions where w0,l = 0 for |l| > r with r being
a positive real number. However, we can even generalize by considering lattices where the harmonic interaction potential
extends over the whole lattice, with exponentially decaying amplitudes [25]w0,l ∼ e−|l|/r for |l| � r . For all these cases the
denominator (ω2

q − λ)−1 which enters (4.5) is an analytical periodic function of q, and thus the convergence of its Fourier
series and the spatial localization of a DB is bounded by exponential tails [412]. The exponent will depend on λ = k2Ω2

b .
The localization length will grow whenever any of the multiples kΩb comes close to an edge of the spectrum ωq.

In the insets in Fig. 3 the exponential localization of two DBs is shown for a one-dimensional FPU chain with nearest
neighbour interaction. In the insets of Fig. 5 a similar exponential localization is plotted for DBs of the one-dimensional
DNLS chain with nearest neighbour interaction. The comparison between the numerically obtained localization length and
the prediction from Eq. (4.5) has been extensively analyzed for various one-dimensional lattices [110,112] and is discussed
extensively in Ref. [133].

Here we also show the amplitude distribution of a DB solution for a three-dimensional cubic DNLS lattice with nearest
neighbour interaction

Ψ̇l = i

(
Ψl + |Ψl|

2Ψl + 0.1
∑
m∈Nl

Ψm

)
, (4.6)

where Nl denotes the set of nearest neighbours of l. Making the substitution Ψl = AleiΩbt the algebraic equations are solved
for the real amplitudes Al [125] for a lattice with linear size 31. To visualize the solution, we place the DB center at the lattice
site l = (16, 16, 16) and plot its amplitude distribution as a function of the x, y coordinates in a plane with fixed coordinate
z = 16 which contains the lattice site with the maximum breather amplitude. Note that the DB is strongly localized on a
few lattice sites (left plot in Fig. 9). The same solution, when displayed on a logarithmic amplitude scale, shows a conical
structure (right plot in Fig. 9) as expected from the predicted exponential decay in space.

4.1.2. Long-range interactions
We define a lattice having long-range interactions, if the corresponding squared spectrum ω2

q is a nonanalytical function
on the extended wavevector space q, i.e. some of its derivatives at some points q do not exist or diverge. That happens
e.g. when the harmonic interaction potential extends over the whole lattice, and decays algebraically with increasing
distance w0,l ∼ |l|−s with some positive exponent s. Despite the slow decay of interactions, discrete breathers still exist,
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Fig. 10. Left panel: breather solution at time t = 0 with Pl(t = 0) = 0. The corresponding displacements (amplitudes) Xl(t = 0) are plotted versus lattice
site. The nonzero model parameters are v2 = v4 = 1, C = 0.01. The period of the solutions T = 4.7682. Circles: s = 10, squares: s = 20, diamonds:
s = 30. Lines are guides to the eye. Right panel: same as in left panel but only for s = 20 in a log–log plot. Data from [114].

but will now localize slower than exponentially. In fact what matters is the analysis of the degree of nonanalyticity of ω2
q ,

which straightforwardly gives a power law convergence of the Fourier series (4.5) (see [412]) and thus an algebraic spatial
localization of DBs.

Wewill present the results obtained in Ref. [114] to illustrate that the true DB localization can bemore complicated even
for simple one-dimensional lattices. We consider the Hamiltonian

H =

∑
l

[
1
2
P2
l + V (Xl)+

∑
l′

W|l−l′|(Xl − Xl′)

]
. (4.7)

The on-site potential V (z) =
∑

∞

µ=2
vµ

µ
zµ generates an optical phonon spectrum, and the interactionWl(z) =

∑
∞

µ=2
φµ(l)
µ

zµ

incorporates long range interactions with φ2(l) =
C
2

1
ls . For small values of Pl and Xl the classical Hamiltonian equations

of motion Ẋl =
∂H
∂Pl
, Ṗl = −

∂H
∂Xl

can be linearized in Xl. Solving the corresponding eigenvalue problem with plane waves
Xl(t) ∼ expi(ql−ωqt), one obtains

ω2
q = v2 + 2C

∞∑
m=1

1
ms
(1 − cos(qm)). (4.8)

Let us discuss the properties of Es(q) = ω2
q ≥ 0. Es(q) is bounded from above for all s > 1 and periodic in qwith period 2π .

Most important is that Es(q) is a nonanalytic function in q, i.e. its κ = (s−1)-st derivativewith respect to q is discontinuous at
q = 0 (when s is noninteger, (s−1) < κ < s). This follows already from the fact that the convergence radius of (4.8) is zero for
nonzero imaginary components in q. Indeed for even integers s one finds [412] (Es(q)− v2) ∼ Bs(q/(2π)) for 0 ≤ q ≤ 2π .
Here Bs(z) is the Bernoulli polynomial of s-th order. Consequently at small q the expansion of Es(q) contains a term qs−1

which, together with the periodicity of Es(q), leads to the mentioned nonanalyticity. For odd integers s the expansion of
Es(q) contains a term qs−1 ln(q), and for noninteger s a term qs−1 (follows from d2Es(q)/dq2 = −Es−2(q)+ 2Cζ (s − 2)with
ζ (z) being the Riemann Zeta function). Finally for small q the leading term in the expansion of Es(q) is v2 + Cζ (s − 2)q2 for
s > 3 and v2 + 2Ca(s)qs−1 for 1 < s < 3 with a(s) =

∫
∞

0 (1 − cos x)/xsdx. Note that the dispersion at the upper band edge
(q = π ) is in leading order always proportional to (q − π)2. Some of these results have been discussed at length in [260]
(see also original references therein).

Nowwe can turn to the first problem of the spatial decay of a breather. In order to generate a breather solution we chose
v4 6= 0 and all other anharmonic terms in V (z) and W (z) being zero. Since we can only simulate finite system sizes N , we
use periodic boundary conditions. In that case we have to define a cutoff length in the interaction which we chose to be
N/2. Calculated breather solutions for s = 10, 20, 30 are shown in Fig. 10. We observe that the spatial decay of the breather
is exponential for small distances from the center, while it becomes algebraic (in fact exactly 1/ls) after a crossover at some
distance lc (see right panel in Fig. 10). Note that lc is s-dependent. Moreover, lc is also dependent on the parameter which
selects a given breather solution from its one-parameter family (this parameter could be the breather frequency, its energy,
action or something else).

The asymptotic spatial decay of the breather is given by the convergence properties of the Fourier series (4.5). Nonanalytic
functionswith discontinuities in the (s−1)st derivative produce Fourier serieswhich converge algebraically 1/ls [412]. From
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that it follows that at large distances the spatial decay of the breather will be algebraic, which is what we found in Fig. 10. To
obtain the exponential decay at small distances, let us first slide along the breather family such that the breather frequency
(or one of its multiples) approaches the edge of the phonon band ωq. Then the integrand in (4.5) will become very large for
wave numbers close to the band edge approached. Applying a stationary phase approximation to (4.5), i.e. expanding the
integrand around the band edge we obtain

Gλ(l) ∼

∫
∞

−∞

cos(ql)
v2 − λ+ Cζ (s − 2)q2

dq (4.9)

for s > 3 and

Gλ(l) ∼

∫
∞

0

cos(ql)
v2 − λ+ 2Ca(s)qs−1

dq (4.10)

for 1 < s < 3. Standard evaluation of (4.9) (closing the integration contour in the complex plane by adding a half circle with
infinite radius and evaluating the residua) yields Gλ(l) ∼ e−

√
v2−λl for s > 3, i.e. exponential decay [147]! On the other side,

(4.10) yields (closing the integration contour in the complex plane by adding a quarter circle and returning to zero along the
positive imaginary axis, and noticing that there are no poles of the integrand in the enclosed first quadrant including the
imaginary axis) Gλ(l) ∼ 1/ls for 1 < s < 3 [147].

Now we can explain the observed crossover from exponential to algebraic decay in Fig. 10. Indeed, the stationary phase
approximation for these cases leads to (4.9) in the limit (v2 − λ) → 0. This approximation neglects higher order terms in
the expansion of Es(q) around q = 0 which necessarily contain nonanalytic terms. Consequently (4.9) probes (4.5) over not
too large distances (this is counterintuitive to the assumption that the stationary phase approximation is correct for large
l [147], which it is not). Thus we can explain the observed crossover. We can also estimate the crossover distance lc using a
simple argument. A tagged site with index l < lc and l > 0 (the center of the breather is located at lb = 0) will experience
forces from all other sites with index l′ according to (4.7). The amplitude of these forces will monotonously decay to zero for
increasing l′ with l′ > l. However the amplitude of the forces for decreasing l′ will be given by (l − l′)−seν(l−l′) for 0 < l′ < l
(here ν is the given exponent of the spatial decay for |l| < lc). Since for negative l′ the amplitude of these forces will again
monotonously decay to zero, theworst case is reachedwhen l′ = 0. If this force acting from the center of the breather on site
l is comparable to the forces acting on l from its nearest neighbours, the exponential decay will be violated. This condition
yields l−s

c eνlc = 1 or

ln lc
lc

=
ν

s
. (4.11)

Especially we find that lc → ∞ if ν/s → 0. Thus for s > 3 exponential decay is reobtained either for large s or for breathers
with frequencies close to the phonon band edge. Sincewe are considering a lattice, the exponential decay part will disappear
if lc ≈ 1 or smaller. For s = 20 and ν = 4.2724 we obtain lc = 11.39, and for s = 30 and the same value of ν the result is
lc = 21.56. We miss the observed crossovers in (4.2) by just two sites.

For 1 < s < 3 no exponential decay is observed provided the breather frequency is located in the gap below the
phononband. For breather frequencies above the phononband the dispersion at the upper band edge always yields quadratic
dependence in q (see above) and thus therewill always be a crossover from exponential to algebraic decay (provided lc > 1).
All these results were verified by calculating corresponding breather solutions (see also [47,50]).

To conclude this part we want to stress that a modified interaction φ2(l) ∼ (−1)l/ls will simply exchange the notation
of upper and lower phonon band edges, and the case of acoustic interactions is obtained by letting v2 → 0.

4.1.3. Almost compact discrete breathers
A subclass of systems (4.1) is characterized by space–time separation (see [214,106,110,111,261,300,77,155]). Consider

H =

∑
l

[
1
2
p2l +

v2

2
x2l

]
+ POT , (4.12)

with

POT =

∑
l

[v2m
2m

x2ml +
w2m

2m
(xl − xl−1)

2m
]
, m = 2, 3, 4, . . . (4.13)

being a homogeneous function of the coordinates. The equations of motion take the form

ẍl + v2xl = −v2mx2m−1
l − w2m(xl − xl−1)

2m−1
+ w2m(xl+1 − xl)2m−1. (4.14)

These systems allow for time space separation for a sub-manifold of all possible trajectories:

xl(t) = AlG(t). (4.15)
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Fig. 11. Left panel: Schematic representation of function S (4.20) and the pathway to a breather being a saddle. Right panel: Schematic representation
of the map (4.23) and (4.24). Red line — stable invariant manifold, green line — unstable invariant manifold, black spots — intersection points of both
manifolds for a given breather solution. Dashed blue line — diagonal x = y.

Inserting (4.15) into (4.14) we obtain

G̈ + v2G
G2m−1

= −κ, (4.16)

−κ =
1
Al

[
−v2mA2m−−1

l − w2m(Al − Al−1)
2m−1

+ w2m(Al+1 − Al)
2m−1] . (4.17)

Here κ > 0 is a separation parameter, which can be chosen freely. Themaster function G obeys a trivial differential equation
for an anharmonic oscillator

G̈ = −v2G − κG2m−1. (4.18)

Its solution sets the temporary evolution of the breather.
The spatial profile is given by

κAl =
∂POT
∂xl

∣∣∣∣
{xl′≡Al′ }

, (4.19)

or better by the extrema of a function S:

∂S
∂Al

= 0, S =
1
2
κ
∑

l

A2
l − POT ({x′

l ≡ A′

l}). (4.20)

Let us discuss some properties of S. This function has a minimum at Al = 0 for all l with height S = 0 (point P0 in left
panel of Fig. 11). When choosing a certain direction in the Al space starting from P0, S will first increase, then pass through
a maximum and further decrease to −∞. So there is a rim surrounding the minimum Al = 0. Since breathers are spatially
localized solutions, variation of the amplitudes Al in the tails of a breather around zero will increase S. At the same time
the breather corresponds to an extremum of S, but there is only one trivial minimum of S located at P0. Thus breathers are
saddles of S.

It is remarkably easy to compute such a saddle. First choose a direction in the N-dimensional space of all Al, e.g.
(. . . 0001000 . . .), (. . . 0001001000 . . .) etc. Then start from the space origin P0, Al = 0, move with small steps in the
chosen direction, compute S. It will first increase and then pass through a maximum P1. Now we are on the rim. Compute
the gradient of S here and make a small step in opposite direction, to arrive at P2. Maximize S on the line P0 − P2 to be on
the rim again. Repeat until you reach a saddle with required accuracy.

This method has been used to compute various types of breathers and multi-breathers. Note that it is very simple to
extend the computation to two- or three-dimensional lattices [106].

Another approach valid strictly for one-dimensional lattices is to obtain breathers as homoclinic orbits of a two-
dimensional map [111,164,163,218,32,48,33,31]. Indeed, we may rewrite (4.17) in the following way:

Al+1 = Al +
[
v2mA2m−1

l + w2m(Al − Al−1)
2m−1

− κAl
] 1
2m−1 (4.21)

wherewe can compute a given amplitude profile startingwith a given pair of nearest neighbor amplitudes (both to the right
and to the left of course). Using a two-dimensional vector

ERl = (xl, yl) = (Al−1, Al) (4.22)
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Fig. 12. Dependence of the double logarithm of the breather amplitude for different cases versus n from [77]. Note that curves are vertically shifted to
observe a master curve in the tails. The straight lines have slopes ± ln 3. Inset: Dependence of the logarithm of the breather amplitude versus n for same
cases. Note the scale of the y axis.

the procedure can be cast into the form of a two-dimensional map with

xl+1 = yl (4.23)

yl+1 = yl +
[
v2my2m−1

l + w2m(yl − xl)2m−1
− κyl

] 1
2m−1 . (4.24)

This map (right panel in Fig. 11) has a fixed point ERF = (0, 0). The absence of differentiability at the fixed point can be
taken care of by adding small linear interactions, and to consider the limit of their vanishing [111]. The fixed point belongs
both to a stable (red) and unstable (green) one-dimensional invariant manifold. Taking a point on the stable manifold and
iterating forward, we will approach the fixed point. The same happens with a point on the unstable manifold when iterated
backwards. These manifolds intersect at many points. By definition any of these intersection points, when iterated either
forward or backward, will converge to ERF and thus corresponds to a breather solution. Such map trajectories are also called
homoclinic orbits. Note that many intersection points belong to the same homoclinic orbit or to the same breather, as
indicated by the onesmarkedwith black spots in the right panel of Fig. 11. However since the abovemap is locally (around ERF )
volume preserving, the structure of the invariant manifold lines will generically show up with horseshoe patterns (wiggles
in the right panel of Fig. 11). These patterns generate additional intersection points. Consequently there will be an infinite
number of different homoclinic orbits and thus breathers. They will differ by the amplitude distribution inside the breather
core, which can become arbitrary complicated, and an exponential tail outside. Thus in addition to single site breathers
discussed so far, also so-called multi-breather solutions can exist, i.e. localized excitations with a complex pattern of energy
distribution inside the breather core (see also [249]).

Due to the space-reflection symmetry of the map there will be always one intersection point on the line x = y. The
position of this point will depend only parametrically on κ . Thus it is possible to design simple search routines by e.g. fixing
x0 = y0 and varying κ (see [111]). The numerical scheme has been even used for a formal existence proof of breathers as
homoclinic orbits [111].

In order to understand the tail behaviour of quasicompact DBs in one-dimensional lattices, we first note that due to the
lack of harmonic interaction terms in (4.13) the spectrum of small amplitude oscillations is degenerateω2

q = v2. Using (4.5)
and performing the limit to such a degenerate case, we would arrive at a spatial decay which is faster than any exponential
one. We note that the separation parameter κ in (4.17) can be always chosen to be of absolute value one. Then in leading
order we find the asymptotic law (to the right of the breather center):

An ≈ A2m−1
n−1 . (4.25)

This spatial decay is a superexponential one, since

ln | ln |An ‖≈ n ln(2m − 1). (4.26)

For m = 1 various numerically obtained quasicompact DB solutions have been obtained e.g. in Refs. [110,261,77], and the
superexponential decay (4.26) has been confirmed (see Fig. 12). These quasicompact DB states are characterized by a very
fast decay of the amplitude in the tails, which is imprinted just by the type of interaction, independent of the DB amplitude,
frequency etc, see e.g. [261].

These quasicompact DB states can be suitably continued by deforming the underlying equations to the well-known
compacton solutions of nonlinear PDE equations as demonstrated by Rosenau and Hyman [332,331], though these limits
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have to be taken with corresponding care [333,334,155]. Moreover making the purely nonlinear interactions decay
algebraically along the lattice [155], introduces competition between extremely different length scales, and results in many
interesting anomalies in the DB tail. Yet another aspect of purely nonlinear interactions is the absence of a linear spectrum
ωq, and thus the possibility of constructing DB states which evolve quasiperiodically (and possibly even chaotically?) in
time [155].

4.1.4. Resonances with Goldstone modes
It is a widespread expectation that breathers play an important role in the dynamics of anharmonic crystals [368]. Since

any crystal has acoustic phonon branches, and the interparticle interaction potentials are in general not symmetric around
their minimum, one has to face the fact that a breather will be accompanied by a strain field (gradient of the dc component
of the breather) and that the resonance of the dc component with the acoustic phonon branches has to be considered.

As already mentioned, the breather frequency Ωb should fulfill a nonresonance condition nΩb 6= ωq for all integer
n = 0,±1,±2, . . . . This is necessary in general in order to have spatial localization of the corresponding Fourier mode.
In the case of weakly coupled oscillators a proper choice of the breather frequency always ensures nonresonance. In the
case of homogeneous interaction potentials the symmetry of the potential Φ(z) = Φ(−z) is found also in the breather
solution, which implies that only odd Fourier components are present in the breather solution. Thus the dc component
(0 × Ωb = 0) which is in resonance with the mentioned degenerated phonon band is strictly zero, and the resonance is
harmless.

If any nonzero multiple of Ωb resonates even with an edge of a phonon band, this leads either to the vanishing of the
whole breather, or to a delocalization of the breather and to a divergence of its energy. The resonance of the dc component to
be considered here is special — it resonateswith aGoldstonemode, and one can expect the resonance to be not as destructive
to the breather as any resonance at nonzero frequency. From the theory of elastic defects we know the characteristic feature
of the strain decay to be algebraic in the distance (from the defect center). The exponent is only dependent on the dimension
of the system and on the symmetry of the defect (monopole, dipole etc.), but independent of the defect strength.

We will treat the simplest case of hypercubic lattices with one degree of freedom per lattice site and nearest neighbour
interaction, which can be considered as generalized Fermi–Pasta–Ulam (FPU) systems:

H =

∑
l

[
1
2
P2
l +

∑
l′∈DNN

Φ(Xl − Xl′)

]
. (4.27)

Here Pl andXl are canonically conjugated scalarmomenta and displacements of a particle at lattice site l. Note that depending
on the lattice dimension d the lattice site label l is a d-component vector with integer components. The inner sum in (4.27)
goes over all directed nearest neighbours, e.g. for d = 1 and l = n we sum over l′ = n + 1, for d = 2 and l = (n,m) we sum
over l′ = {(n + 1,m); (n,m + 1)} etc. The interaction potentialΦ(z) is given by

Φ(z) =
1
2
φ2z2 +

1
3
φ3z3 +

1
4
z4, (4.28)

which turns out to be generic enough for the purposes discussed below.
Breathers for such a system can be represented in the form (4.2). We will restrict ourselves to solutions invariant under

time reversal, so that all Akl = A−k,l are real. The spatial localization property of (4.2) implies Ak,|l|→∞ → 0 for k 6= 0 and
A0,|l|→∞ → const. The dc component of the breather is given by A0l.

Numerical and approximate analytical studies for one-dimensional lattices show that the acoustic breather exists as a
solution to finite energy [37,166,210]. Its peculiarity is that the dc component of the breather versus lattice site number has
a kink shape A0,l→±∞ → ±const. for free boundaries (Fig. 13). For periodic boundary conditions one would find a linear
decay of A0l far from the breather, but the gradient of the dc components (the strain) is inverse proportional to the size of the
chain, so that in the limit of an infinite chain the result is again a constant for the dc component (zero strain). An analytical
proof of existence has been given by Spicci, Livi and MacKay [246]. The proof considers a diatomic chain with asymmetric
interaction potential (note that the corresponding Hamiltonian differs from (4.27) in that one has to introduce an additional
parameter 1/M 6= 1 in front of each kinetic energy term for say all even lattice site indices). The breather is continued from
the limit of zeromass ratio (heavymasses are infinitely heavy). The problem of resonancewith the Goldstonemode is solved
by coordinate transformation and by imposing a strain field of compact support. This means that the dc displacements at
this limit are given by a step-like kink. The breather is then continued into a sector of the Hamiltonian with nonzero mass
ratio (see also [177]).

Let us now turn to the general d-dimensional case. Suppose that a breather exists, which creates some strain field. The
dc displacements A0l will have some dependence on the lattice site vector l. The strain El is given by the lattice gradient of
A0l. The far field energy is given by the integral over the squared strain. Assuming that the strain does decay algebraically,
we can use continuum theory far from the breather. The corresponding equation is equivalent to the electrostatic equations
in d dimensions. Consider d = 1. A monopole far field E = c 6= 0 and the corresponding energy diverges. Also in this
case the (electrostatic) potential A0l = sgn(l)a + cl. This is clearly not what was observed for acoustic breathers in 1d. A
dipole far field instead will yield E = 0, A0l = sgn(l)a, and the energy is finite. This is the situation observed. So the known
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Fig. 13. An acoustic DB solution for the d = 1 case. Displacements Xl(t = 0) for φ2 = φ3 = φ4 = 1 andΩb = 4.5 are plotted versus lattice site number
l. At this initial time all velocities Pl(t = 0) = 0. Inset: Staggered deformation ul = (−1)l(xl − xl−1) for the same solution on a logarithmic scale versus
lattice site number l. This DB is linearly unstable. Data from [121].

acoustic breather solutions are accompanied by a dipole strain field. The request that the acoustic breather is a solution to
finite energy limits the strain fields to dipole or higher order multipole symmetries. In this special case the potential A0l is
constant far away from the breather, so the corresponding exponent of the algebraic decay is simply zero. That is the reason
why the analytical proof of existence [246] can go through, because a kink-like field for A0l can have the limiting form of a
compact step function, which is precisely the case for the limit of zero mass ratio (see above).

For d = 2 (square lattice) the situation is the following. A monopole will generate a strain E ∼ 1/l and a potential
A0l ∼ ln(l). The energy of such a field diverges. If we search for acoustic breathers with finite energy, we would have
to exclude a monopole field. A dipole generates a strain E ∼ 1/l2 (we skip angular dependencies here) and a potential
A0l ∼ 1/l. The energy for this field is finite. The predicted exponents of the algebraic decay are nonzero, and no simple limit
exists, which makes the strain to be of compact support. So already at this stage it is clear, that existence proofs of acoustic
breathers in two-dimensional systems are much more complicated than for d = 1. Notice that for d = 3 (cubic lattice) a
monopole generates E ∼ 1/l2 and the energy of this field is finite. Aubry has obtained existence proofs, together with the
correct algebraic decay properties of the lattice deformation [19].

Next we will present numerical calculations of acoustic breathers of (4.27) for d = 2 and φ2 = φ3 = 0.01 [126]. The
results show, up to numerical accuracy, that acoustic breathers exist on finite lattices with free boundaries. The symmetry
and spatial decay properties are in accord with the expectations given above. The maximum lattice size is 70 × 70, but
no profound size effects were observed on the existence and symmetry of the acoustic breather when considering smaller
systems. The only size effect (to be expected) is observed even for the largest systems with respect to the algebraic decay
properties. The ac components of the found solution decay exponentially in space and essentially vanish at a distance of 5–7
lattice constants from the center of the breather. In Fig. 14 we show the dc displacements of a DB solution. We do observe
dipole symmetry of the dc field.

To analyse the spatial behaviour of the strain, we plot in Fig. 15 the variation of the absolute values of the strain along
the two diagonals, as in those directions we have the largest distance and can hope that finite size effects are suppressed in
some bulk region. The results depend on the choice of the diagonal. The diagonal which is directed along the dipole moment
gives poor results — the finite size effects are too strong to observe any power law in the double logarithmic plot. The second
diagonal perpendicular to the dipole moment however, though still with strong influence from the boundaries, allows the
fitting of some part of the bulk data with a power law (solid line in Fig. 15). The resulting exponent is 1.85, and considering
the small system size, quite close to the expected value 2.

These results support the expectations that breathers can exist in real crystals.Moreover at any finite temperature excited
breathers will decay after some time. Since they are accompanied by a strain field, those strain fields will be dispersed in the
form of low-lying acoustic modes after the decay of a breather. Thus breathers can act as an efficient energy transfer from
high-frequency excitations into low-frequency acoustic phonons.

4.1.5. Nonlinear corrections
The linearization of the equations of motion in the spatial tail of a DB seems to be fine by virtue of the localized character

of the solution. Yet there may be nonlinear corrections in the tails, which will happen typically whenever any of the
multiples of the DB frequency comes close to the spectrum ωq. While the Fourier amplitude Akl with the weakest spatial
decay, as predicted from linearization, will always decay accordingly, it will do so very slowly by the above assumption.
Consequently nonlinear terms which contain this amplitude and enter the equations for other Fourier amplitudes, e.g. the
one with k′

= 3k, will induce a nonlinear but much slower spatial decay than the linearized one. Details can be found
in Ref. [112], and a discussion is also given in [133]. Here we want to add that these nonlinear corrections also allow one
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Fig. 14. dc displacements of a breather as a function of the lattice vector l. Figure from [126].

Fig. 15. Variation of the absolute value of the strain along the diagonals of the lattice on a double logarithmic plot. Open circles — (1, 1) direction; filled
squares — (−1, 1) direction. Figure from [126].

to systematically account for the surprising localization of all higher harmonics of a breather solution in the continuous
sine-Gordon equation, despite the fact that ωq is unbounded there. It comes together with the property of the sine-Gordon
equation being integrable. This implication of a (perhaps uncountable) infinite number of conservation laws is equivalent
to a corresponding number of symmetries confining the dynamics to high dimensional tori no matter where one starts in
phase space. It has been since conjectured that it is these symmetrieswhich for some reason also guarantee that the breather
exists, since one has to satisfy an infinite number of additional constraints – one for each resonant higher harmonics – in
order to suppress the nondecaying linear solution for it, leaving one with the nonlinear correction only.

4.2. Dynamical stability of perturbed discrete breathers

One of the important problems, associated with discrete breathers, is their dynamical stability, i.e. stability of these
solutions with respect to small perturbations in initial conditions. The issue of dynamical stability of DBs has been also
discussed at length in Refs. [133,18]. Here we will briefly summarize the most important aspects of this problem, and give
some examples.

4.2.1. Linear stability
The most common approach to the problem of dynamical stability of discrete breathers is to consider the linearized

phase space flow around the periodic orbit, corresponding to a given DB solution [263]. We have already discussed the
computational aspects of such an approach in chapter 3.3. Imposing certain restrictions on the perturbation amplitude,
the dynamics of small perturbations εn(t) to the DB solution x̂n(t) is described by the linear equation (3.12). Within this
approximation, the DB acts as a parametric time-periodic driver, and all the necessary information about the dynamics of
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Fig. 16. Floquet spectra and profiles of localized eigenvectors for a bond-centered (a) and site-centered (b) DB in the 1D Fermi–Pasta–Ulam chain with
even interaction potential (the irreducible Floquet period is T = Tb/2). The corresponding DB profiles are shown in Fig. 3. Left panels: location of Floquet
eigenvaluesλ in the complex plane (crosses, diamonds, squares, circles). The unit circle is shown to guide the eye. Right panels: real part of the displacement
components of the Floquet eigenvectors marked with the corresponding symbols (squares and circles). Data from [121].

perturbations is contained in the associated symplectic Floquet matrix (3.22). The period of the Floquet problem generally
coincides with the DB period, T = Tb. However, for symmetric potentials (cf. chapter 3.2.3) the DB solution contains only
odd Fourier harmonics with respect to time, and the Floquet driver is periodic with one half of the DB period, T = Tb/2. The
condition of linear (marginal) stability of the DB solution is that all perturbations stay bounded in time. This implies that all
the Floquet eigenvalues λν are located on the unit circle in the complex plane: |λν | = 1.

It may become quite difficult to assure numerically that a particular eigenvalue is of modulus one. Aubry suggested [18]
an extended eigenvalue problemby adding the term E ·εn to the r.h.s. of Eq. (3.12) and searching only for stateswithmodulus
one. Then, the reformulated eigenvalue problem becomes analogous to the one arising in solid state theorywhen calculating
dispersion curves of electrons, phonons, magnons, etc. The spectrumwill form a set of 2π-periodic symmetric bands Eν(θ),
Eν(−θ) = Eν(θ). The argument θ (wave vector) can be chosen, for convenience, in the interval [−π, π] (Brillouin zone). Any
eigenvalue λν = exp(iθν) lying on the unit circle of the original Floquet problem corresponds to a zero of a dispersion curve
E(θν) = 0. At the expense of more computations, this procedure may allow for a safer elimination of errors in determining
the Floquet eigenvalues located on the unit circle. The trick is that one searches for a curve which intersects a horizontal
line. Such intersection points can be determined with finite numerical accuracy.

All Floquet eigenvalues for a typical DB solution can be divided into two groups: those having spatially localized and
spatially extended eigenvectors. Since the DB is exponentially localized in a finite region of the lattice, the extended
eigenvectors are locally deformed linear modes (standing waves) of the system. The corresponding eigenvalues form
one or several pairs of arcs on the unit circle (depending on the number of bands in the linear spectrum), and their
eigenvalues are indicated by crosses in Fig. 16. If the linear spectrum of the system has an acoustic-like band, i.e. it includes
frequency zero, the corresponding pair of arcs on the unit circle will merge at +1. Fixing the DB parameters, the number
of eigenvalues, corresponding to extended perturbations, increases while increasing the size of the system. In contrast, the
number of eigenvalues, corresponding to spatially localized perturbations (internal modes of the DB), depend solely on the
DB parameters and does not depend on the size of the system.

For Hamiltonian systems there are always two isolated eigenvalues corresponding to fundamental (so called marginal)
localized Floquet modes [18,21]: the phase mode describing a rotation of the overall phase of the breather (i.e. a sliding
along the periodic orbit in phase space), and the growth mode describing a change of DB frequency/energy (i.e. a sliding
along the DB family). The oscillation period of the perturbation along the phase mode equals Tb. The perturbation along
the growth mode, in addition to a periodic oscillation like the phase mode, growths linearly in time (due to the change of
the DB frequency along the family of solutions). The pair of these two modes corresponds to an irreducible Jordan form
of the Floquet matrix, so that the corresponding eigenvalues are located at +1 (−1), when the Floquet driving period is
T = Tb (T = Tb/2), see eigenvalues indicated by diamonds in Fig. 16. The number of fundamental DB modes can increase
pairwise, if additional conservation laws (integrals of motion) exist. Furthermore, pair(s) of eigenvalues can appear at +1
for specific control parameter values corresponding to a bifurcation point of the DB. Note, that eigenvalues λ = +1 of the
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Fig. 17. All Floquet phases θ and the squared eigenvalue length |λ|2 corresponding to unstable perturbations for a bond-centered DB in the 1D
Fermi–Pasta–Ulam chain with an asymmetric interaction potential, as a function of the DB frequency Ωb . The corresponding DB profile for Ωb = 4.5
is shown in Fig. 13. Eigenvalues which correspond to finite size instabilities are shown using gray symbols. Data from [121].

Floquet problem correspond to zero eigenvalues of the Newton matrix (3.9), used to compute the DB solution. Therefore,
the Newton method, described in Section 3.2.1, usually has a bad convergence in a vicinity of such bifurcation points.

Another important localized Floquet mode, indicated by circles in Fig. 16, is coined the ‘‘pinning’’ or ‘‘translational’’
mode [21]. This perturbation tends to shift the DB along the lattice and has a spatial symmetry which differs from that of the
DB itself. For stable DBs the corresponding eigenvalues are shifted away from+1, staying on the unit circle. For unstable DBs
they may be located off the unit circle on the real axis, cf. Fig. 16(a) and (b). Perturbing a linearly stable DB along its pinning
mode will cause oscillations of the DB around its stable position. Perturbation along an unstable pinning mode can result
in the DB motion along the lattice [21,58]. However, during this motion the DB loses energy through radiation of phonons,
and eventually it becomes trapped again by the effective lattice potential.

Changing the control parameters of the model, as well as the DB solution parameter (its frequency or energy), Floquet
eigenvalues will move in the complex plane. But the only way a particular eigenvalue can leave the unit circle is through
a collision with another eigenvalue having an opposite Krein signature [18,17], defined for each pair of complex conjugate
eigenvalues {λν, λ

∗
ν} as

κ(λν) = sign
{
iI(ε(λ)n , ε(λ)∗n )

}
. (4.29)

Here I(., .) is the symplectic product defined in Eq. (3.15) and ελn is the eigenvector corresponding to the eigenvalue λν . The
Krein signature is the sign of the Hamiltonian energy carried by the corresponding eigenvector [49,371]. The above criterion
of a DB instability implies a resonance between two perturbations, one of which takes energy from the DB and passes it
to the other perturbation. Another interpretation of the Krein criterion was given by Aubry [18]. In terms of the dispersion
bands Eν(θ), the Krein signature (4.29) is the sign of the slope of the dispersion curve at its intersection point θ = θν with
the zero axis E = 0:

κ [λν ≡ exp(iθν)] = sign
{

dEν(θ)
dθ

}∣∣∣∣
θ=θν

. (4.30)

Any deviation of a pair (quadruplet) of eigenvalues from the unit circle happens when a band Eν(θ) looses two (four)
zeros. The opposite signs of slopes (4.30) at the points, corresponding to the colliding eigenvalues, is a necessary (but not
sufficient!) condition for such a scenario to occur.

Often, the above collisions occur when a pair of isolated eigenvalues, associated with a localized perturbation, enters
the band of eigenvalues associated with extended perturbations, see Fig. 17 in the region 4.6 . Ωb . 12. Colliding
quadruplets of eigenvalues leave the unit circle, resulting in oscillatory (Krein) instabilities of the DB [180]. Here the term
‘‘oscillatory’’ is used to underline the fact, that the period of the unstable perturbation is incommensuratewith the DB period.
The corresponding unstable perturbations have maximum amplitudes in the DB core together with nonvanishing tails, see
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Fig. 18. Floquet spectrum and profiles of unstable eigenvectors corresponding toΩb = 4.5 in Fig. 13. Left panel: location of Floquet eigenvalues λ in the
complex plane (crosses, diamonds, squares, circles). The unit circle is shown to guide the eye. Right panels: real part of the displacement components of
the Floquet eigenvectors marked with the corresponding symbols (square and circle). Data from [121].

Fig. 19. (a) Eigenvalues, corresponding to the unstable pinningmode for bond-centered (black circles) and site-centered (gray diamonds) DBs, as functions
of the intersite coupling strength. (b) Position of the DB center in dynamics with small perturbation along the unstable pinning mode. Model parameters
are chosen close to the exchange of stability region. Data from [152].

Fig. 18. Similar oscillatory instabilities, but with localized unstable perturbations, can occur when two pairs of complex
conjugate eigenvalues, corresponding to two different DB internal modes, collide on the unit circle [153].

The above oscillatory instabilities result from a resonant coupling between two different perturbations. The breather
provides the coupling between perturbations. A quite different scenario is observed whenever a pair of complex conjugate
eigenvalues collide at ±1. Note, that, by definition, two complex conjugate eigenvalues have opposite Krein signatures,
so that such collisions will often cause the eigenvalues to deviate from the unit circle along the real axis. The associated
instabilities (sometimes coined real instabilities) result from a resonant coupling between the corresponding perturbations
and the DB itself. The impact of real instabilities on the DB dynamics is quite different for extended and localized
perturbations.

Complex conjugate eigenvalues, corresponding to extended perturbations, can collide on the unit circle whenever the
corresponding arcs of eigenvalues overlap at −1, see Fig. 17 in the region Ωb ≤ 4. The resulting instabilities cause the
DB to resonantly pump energy into the unstable mode. Obviously, the strength of real instabilities with extended modes
should depend on the system size. Indeed, such instabilities are known to be finite size effects [262,19,23]. Deviations of the
corresponding eigenvalues from the unit circle are inversely proportional to the linear system size: |λ| − 1 ∼ 1/N .

In contrast, any collision of two complex conjugate eigenvalues, corresponding to localized perturbations, at +1 or −1
will cause instabilities independently of the size of the system (see the corresponding ellipse structure in Fig. 17 in the region
12 . Ωb . 14). The corresponding unstable perturbations have a localized structure, cf. the above pinning instability in
Fig. 16(b). The appearance of such instabilities is usually connected to bifurcations of the DB solution.

In somemodels a relatedmechanismof the exchange of stability [296,152,394] betweenbond-centered and site-centered
DBs can be observed: while changing the model parameters the two principal types of DB solutions exchange their stability
with respect to the pinning perturbation, see Fig. 19(a). In a vicinity of model parameters, where the exchange of stability
occurs, DBs are reported to possess an enhanced mobility, see Fig. 19(b). Furthermore, it was shown [296,394], that the
process of exchange of stability is accompanied by bifurcations of bond-centered and site-centered DB solutions, and the
appearance of an intermediate type DB solution, having no spatial symmetry. Remarkably, in the one-dimensional DNLS
model with saturable nonlinearity these intermediate DB solutions are reported to belong to the one-parameter family of
exact solutions having an analytical sech-shaped form [205,394], despite the fact that the model is non-integrable.
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The details of the various cases of switching between linearly stable and unstable DB states can be quite complicated.
While that may seem as a strange complication of the rather straightforward picture of emergence of DB solutions, it is a
consequence that we deal with periodic orbits in a high-dimensional phase space of nonintegrable systems. The good thing
here is, that this richness may be used for various spectroscopical tools in various settings.

4.2.2. Going beyond linearization
The above linear stability analysis is a powerful tool to predict different types of instabilities of a given DB solution. Still,

there are many questions remaining when one considers the long-time dynamics of perturbed DBs. Do there exist other
possible mechanisms of DB instabilities, apart from exponentially growing perturbations? Does a perturbed linearly stable
DB remain as a localized object for infinitely large times, or does it eventually decay into radiative modes of the system?
If an unstable DB is perturbed along the growing perturbation, the symplectic analysis of the linearized phase space flow
tells that the perturbation grows, with a given fixed Floquet (DB) driving. But the original problem is Hamiltonian, and the
growth of the perturbation has to go on the expense of the DB energy. Evenmore surprising is the situationwhenwe perturb
along the exponentially decaying perturbation. Then after some transient in time the energy will disappear. In the original
Hamiltonian setting that should imply that this energy is transferred to the breather.

In order to answer these questions one has to return to the original nonlinear equations. Unfortunately, not much can be
done analytically in this case (but see [250]). Several numerical experiments [134,127,133] demonstrate, that a perturbed
linearly stable DB can evolve close to the exact time-periodic orbit for large times. Being no longer an exact time-periodic
excitation, such objects will radiate their energy by exciting small amplitude phonons. Yet, the rate of energy losses can
be tremendously small. Furthermore, for some perturbations, while losing energy, the localized object may asymptotically
approach a periodic orbit corresponding to an exact DB solution at lower but still finite energy. In some other cases internal
resonances can trigger chaotic local dynamics and increase the radiation losses by orders of magnitude. Still, even in those
cases the radiation may eventually be strongly suppressed [134,133], and the residual object again starts to slowly relax
toward another, low-energy, DB orbit.

These findings are supported by several analytical estimates. Bambusi showed [26,27], that periodic orbits corresponding
to DB solutions are exponentially stable in the anticontinuous limit. Namely, in the limit of small interaction between sites,
any deviation from the periodic orbit, which is orders of magnitude smaller than the square root of interaction strength, will
stay close to the periodic orbit for times proportional to the exponential of some inverse power of the interaction strength.
MacKay and Sepulchre derived general conditions at the anticontinuous limit such that discrete breathers are l2-linearly
stable for weak enough coupling.

Certain estimates can be made by considering higher order (nonlinear) corrections to the above linear perturbation
theory. Following this path, on the basis of a simple DNLS model, Johansson and Aubry have shown [183] that nonlinear
interactions between a DB and single-mode small-amplitude perturbations can lead to breather growth, but not to breather
decay. Further investigations have revealed [179], that the description of breather decay requires simultaneous excitation
of at least two independent linear modes of the system, while in certain particular cases the DB decay can be realized only
through third- and higher-order radiation processes.

4.3. Modulational instability of extended states and discrete breathers

Consider a family of DB solutions. Let us slide along that family in either of the two directions, exploring also additional
branches which may cross our way at bifurcations. Where do these branches end? Certainly there are many terminating
situations possible. One of them could be where the amplitude of the DB vanishes. This is indeed quite typical, though there
may be families (examples will follow) which do not possess such limiting solutions. So let us assume that we found a DB
family with an end point of zero amplitude. By definition all solutions on the family are localized in space. Thus all multiples
kΩb of the DB solutions are located outside the plane wave spectrum ωq. Since the DB solutions with small amplitudes are
very close to plane waves, the only possibility we are left with is to conclude that in the limit of zero amplitude the main
harmonic of the DB solution Ωb tends to an edge of the spectrum ωq. Thus we may expect that in that limit DB solutions
occur through bifurcations of band edge plane waves or simply band edge modes (BEM). Moreover, since the frequency
(and thus period) of both the BEM and the limiting DB solution coincide in the discussed limit, we are interested in tangent
bifurcations of the band edge plane wave. The study of the bifurcation properties of BEMs thus serves as a valuable source
of information about DB properties in the limit of small amplitudes — and as it will be shown below, not only in that limit.

4.3.1. Tangent bifurcations of band edge plane waves
There exists a well-known approach to analyze plane wave instabilities which is called modulational instability.

Originally this approach was designed for the study of waves in continuous media — some older papers also use the term
Benjamin-Feir instability instead [402]. Within this approach a plane wave solution of the linearized equations of motion is
continued into the weakly nonlinear regime. Small plane wave perturbations (of different wave length) are then added and
the stability of the perturbed wave is analyzed. This approach has been very helpful in connecting the instability of certain
modulated plane waves with spatially localized solutions, which exist because the nonlinearity of the system effectively
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prevents a dispersion of the object. Thus the stability study of planewaves can become crucial when predicting the existence
of localized solutions without actually calculating the latter.

Modulational instability has been analyzed for lattices with respect to discrete breathers in a number of publications
by Kivshar and Peyrard [212], Flytzanis, Pnevmatikos and Remoissenet [143], Tsurui [389] and Sanduski and Page [344].
Extensions to the stability of standing waves with frequencies inside the linear spectrum have been also performed [185].
Dreyer et al. have used it in order to study the transition from micro- to macrostates [83].

Here we follow the approach from [113], where the stability analysis was performed for finite systems. Strictly speaking
we have to analyze the stability properties of a periodic orbit (plane wave). For that we have to linearize the phase space
flow around the periodic orbit — just as we did for the discrete breather. Then we have to find the eigenmodes and
eigenfrequencies. Thus it is reasonable to perform a stability analysis of plane waves for a large but finite system. This
will then lead to results which depend on the size of the system. The stability dependence on the size of the system is
crucial when understanding properties of discrete breathers in different lattice dimensions (cf. Section 4.4). Moreover in
this case we can connect the instability of a plane wave with a bifurcation of new periodic orbits — a connection hard to
make for infinite systems. Further we can prove that the new bifurcating periodic orbits can not be invariant under discrete
translations along the lattice — as expected for discrete breather solutions [113,133].

The most complete analysis of these bifurcations has been recently reported by Dorignac et al. [80], where particular
emphasis was placed on partial and full isochronicity properties of periodic orbits. In what follows we will mainly discuss
these results, referring to previous publications as well [113,133].

Let us now define the concept of partially isochronous BEMs more precisely. Let us first remark that in one-dimensional
convex potentials, themotion is always periodic. To any given energywe find a unique orbit whose frequency is determined
by the features of the potential (basically, its shape).Wewill say an orbit is isochronous if its frequency does not depend on its
energy. Given the one-to-one correspondence between the potential and its orbits, if themotion is isochronous the potential
can be said to be isochronous as well.

The most famous example of a 1D isochronous potential is the harmonic well V (x) = ω2x2/2 whose frequency ω is
well known to be energy-independent. Nevertheless, isochronism is not the privilege of the latter and it can be shown that
appropriate shears of the parabolic curve produce other non symmetric isochronous potentials V (x) 6= V (−x) [45].

Now, for generic convex potentials, the frequency of a given periodic orbit can be expanded at low energies E (bottom
of the potential) as a power series in E. Its behaviour is generally linear with E around the equilibrium position. We will
call partially isochronous or, more precisely isochronous up to order n, orbits whose frequency behaves instead as a nonlinear
function of the energy when expanded around E = 0. Typically, ω2(E) = ω2

0 + γnEn
+ ◦(E)n, n ≥ 2, ω0 > 0 and γn 6= 0.

For n = 1, we recover the case of non isochronous motions or, equivalently in our terminology, of orbits isochronous up to
order 1. Completely isochronous orbits verify ω2(E) = ω2

0 .
We will investigate the dynamical properties of a lattice described by the Hamiltonian

H =

N∑
n=1

[
1
2
p2n + V (xn)+ W (xn+1 − xn)

]
(4.31)

with periodic boundary conditions xn+N = xn. For the sake of simplicity, we consider an even number of sites N . The on-site
(V (x)) and the interaction (W (x)) potentials are both assumed to possess a minimum at x = 0 around which they can be
expanded as

V (x) =

∞∑
µ=2

1
µ
vµxµ; W (x) =

∞∑
µ=2

1
µ
φµxµ. (4.32)

The Hamiltonian equations of motion for (4.31) are given by

ẋn = pn,

ṗn = −V ′(xn)− W ′(xn − xn−1)+ W ′(xn+1 − xn).
(4.33)

Let us introduce the normal coordinates

Qq =
1
N

N∑
n=1

eiqnxn, q =
2π l
N
, l ∈

{
−

N
2

+ 1, . . . ,
N
2

}
. (4.34)

Their properties are

Qq+2π = Qq and Q−q = Q ∗

q (xn ∈ R), (4.35)

and inverting the transform (4.34) yields

xn =

∑
q

e−iqnQq. (4.36)
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Rewritten in terms of normal coordinates, Eqs. (4.33) now read

Q̈q + Fq(Q ) = 0, (4.37)
where

Fq(Q ) =
1
N

N∑
n=1

eiqn
[
V ′

(∑
q′

e−iq′nQq′

)
+ W ′

(∑
q′

(1 − eiq
′

)e−iq′nQq′

)
− W ′

(∑
q′

(e−iq′

− 1)e−iq′nQq′

)]
. (4.38)

A linearization of Fq(Q ) around Qq = 0 leads to the equations of motion of a harmonic lattice, namely

Q̈q + ω2
qQq = 0, (4.39)

where

ω2
q = v2 + 4φ2 sin2

( q
2

)
(4.40)

represents the squared frequency of each linear mode q.
In what follows, we will be interested in the stability of two particular nonlinear modes corresponding to the natural

continuation of the linear q = 0 and q = π modes defined by (4.39). These nonlinear modes are time-reversible periodic
solutions of (4.37) which converge to their respective standing wave linear modes as their energy tends to zero. Notice
that the linear frequency ω0 of the in-phase mode is always nondegenerate and because the number of sites N is even, the
linear frequency ωπ of the out-of-phase mode is nondegenerate as well. All other modes q 6= 0, π are twofold degenerate
(ωq = ω−q).

The system of equations (4.37) is of the form Q̈ + F(Q ) = 0, where Q and F(Q ) denote two vectors of components Qq
and Fq(Q ) respectively, q ∈ {0, 2π/N, . . . , 2(N − 1)π/N}. A perturbation η of the system around the solution Q gives rise
to the following variational system

η̈ + DF(Q )η = 0 (4.41)

where DF(Q ) is the Jacobian matrix of F evaluated in Q whose components are DFqk(Q ) =
∂Fq
∂Qk
(Q ).

To evaluate the Jacobian matrix, we use (4.38) and find

∂Fq
∂Qk

(Q ) =
1
N

N∑
n=1

ei(q−k)n

[
V ′′

(∑
q′

e−iq′nQq′

)

+ (1 − eik)W ′′

(∑
q′

(1 − eiq
′

)e−iq′nQq′

)
− (e−ik

− 1)W ′′

(∑
q′

(e−iq′

− 1)e−iq′nQq′

)]
. (4.42)

Wewill follow themethod described in [113] in order to obtain the critical amplitudes and energies, if any, atwhich orbits
I and II become unstable and bifurcate tangentially to give rise to other types of periodic orbits which break the translational
invariance of the lattice.

Once the periodic solution forQ has been introduced in the JacobianmatrixDF(Q ), the variational system (4.41) presents
itself as a vectorial Hill’s equation for the perturbation η. This type of systems is known as parametrically excited as the
Jacobian matrix generally depends on several parameters. In our case, such parameters are the energy (or the amplitude) of
the solution Q as well as the frequencies of the modes we are interested in. Once expanded as a Fourier series, the Jacobian
matrix may be decomposed into a static (dc-) part (its zero mode) and a driving (ac-) part.

A paradigmatic example of Hill’s equation is the Mathieu equation ẍ(t)+ (δ+ 2ε cos(2t))x(t) = 0. For a comprehensive
treatment of this equation the reader is invited to consult, for example, Ref. [288]. In one dimension (the Jacobian matrix is
reduced to a single element in this case), the parameter δ plays the role of the static part and 2ε cos(2t) the role of the driving.
It is known from the stability analysis of this equation that the behaviour of its solution varies according to the values of the
parameters δ and ε. The solution can be stable, unstable or periodic. In the εδ-plane (δ as x-axis and ε as y-axis), the regions
of instability present themselves as tongues (the so-called Arnold’s tongues) starting from the δ-axis at the values δn = n2,
n ∈ N and widening as ε increases. In these regions the motion is unbounded, whereas outside it is stable (bounded).

Of particular interest are the boundaries of such regions called transition curves that separate stable from unstable
motions. Along these curves, the solution is periodic of period π (n even) or 2π (n odd). For small ε values, a perturbative
treatment of the Mathieu equation which consists in expanding both x(t) and the parameter δ as series in ε allows for the
determination of the transition curves of the form δn = n2

+
∑

l A
s/a
nl ε

l. The coefficients As/a
nl depend on the tongue (n) as

well as on the branch (that is, the boundary) we are interested in. It can be shown that one of these branches is related to
time reversal symmetric solutions η (denoted by the subscript s) whereas the second one is associated with time reversal
antisymmetric solutions (a).

Let us suppose now that we fix the value of δ close to a transition point δn = n2. At ε = 0, the point corresponding to
the state of the system in the parameter space is located in a region of stability. Let us increase the value of ε at fixed δ. If
the corresponding vertical line crosses the transition curve nearby, the solution x(t) becomes unstable above the crossing
point. And right at the intersecting point, the solution is periodic.



32 S. Flach, A.V. Gorbach / Physics Reports 467 (2008) 1–116

4.3.2. Tangent bifurcations of the in-phase mode
Oscillators are said to be in phase when they perform identical periodic motions. This corresponds to

Qq = Q0δq,0 (4.43)

where δq,q′ = 1 if q = q′
[2π ] and 0 else. The previous expression is a solution of the equations of motion (4.37) provided

Q̈0 + V ′(Q0) = 0. (4.44)

The solution Qq = Q0δq,0 represents the in-phase periodic orbit. We call it orbit I. The total energy of the lattice evolving
according to orbit I is

EI = H({xn = Q0}) = N
(
1
2
Q̇ 2
0 + V (Q0)

)
. (4.45)

Wewill use an energy density (or energy per site) rather than the total energy EI to describe this orbit. It is given by εI = EI/N
and represents the energy of the oscillator Q0 evolving according to (4.44).

Evaluated along orbit I, the Jacobian matrix (4.42) is diagonal

DFqk(QI) =

[
V ′′(Q0)+ 4φ2 sin2

(
k
2

)]
δq,k. (4.46)

All perturbations decouple from each other and their equations of motion are

η̈q +

[
V ′′(Q0)+ 4φ2 sin2

( q
2

)]
ηq = 0. (4.47)

As stated in [113], the perturbation η0 describes the continuation of orbit I along itself. It cannot be responsible for a
bifurcation of Q0 as it simply operates a shift in time or modifies the energy (or the frequency) along the one-parameter
family. We then look for the perturbation able to give rise to the required tangent bifurcation. The first to occur will be for
the closest (linear) frequency to the linear in-phase frequency, that is for qc = 2π/N .

Details of the evaluation of these equations are found in [80]. The final outcome is that the critical energy density of the
out-of-phase BEM at the tangent bifurcation for n = 1 (non isochronous potential) is given by [113,80]

ε
(1)
0 =

12φ2v
2
2 sin

2(πN )

10v23 − 9v2v4
+ o

(
N−2) , N → ∞. (4.48)

For partial isochronicity of order n = 2

ε
(2)
0 =

(
54v32φ2

378v3v5v22 − 280v43 − 135v6v32

)1/2

v2 sin
(π
N

)
+ o

(
N−1) , N → ∞ (4.49)

which replaces (4.48) when the denominator in the fraction on the right hand side exactly vanishes. The general case for
partial isochronicity of order n has been treated in Ref. [80]. Note that it always requires positive energy densities and thus
positive denominators in the corresponding expressions like (4.48) and (4.49). This is equivalent to requesting that the BEM
frequency is tuned away from the spectrum ωq when increasing the amplitude.

4.3.3. Tangent bifurcations of the out-of-phase mode
If the potential V (x) is not symmetric (V (−x) 6= V (x)), its Taylor expansion around 0 contains at least one nonzero odd

coefficient. This has no influence on the previous result concerning the in-phase motion because any oscillator of the chain
performs the same motion in the same time. That reduces the set of N Eqs. (4.37) to a single one (4.44), representing the
equation of motion of a single oscillator in the on-site potential V . But as soon as we are interested in an out-of-phase like
motion, we have to consider a dimerization of the chain, each dimer being made of two neighbouring units oscillating in
opposite phase. The lack of symmetry of V induces two different motions to the right and to the left. This prevents us from
finding a pure out-of-phase solution to (4.37) which would imply Qq = Qπδq,π or in real space x2n = −x2n+1. Instead, we
can look for a solution of the type

Qq = Q0δq,0 + Qπδq,π (4.50)

involving both in- and out-of-phase variables, the others being zero. Using (4.36), we obtain xn = Q0 + (−1)nQπ or
x2n = Q0 + Qπ and x2n+1 = Q0 − Qπ . Adding and subtracting the equations of motion for x2n and x2n+1, we finally get

Q̈0 +
1
2

[
V ′(Q0 + Qπ )+ V ′(Q0 − Qπ )

]
= 0,

Q̈π +
1
2

[
V ′(Q0 + Qπ )− V ′(Q0 − Qπ )

]
+ W ′(2Qπ )− W ′(−2Qπ ) = 0.

(4.51)
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The total energy of the system, which evolves according to orbit II is

EII = H({x2n = Q0 + Qπ , x2n+1 = Q0 − Qπ })

=
N
2

(
Q̇ 2
0 + Q̇ 2

π + V (Q0 + Qπ )+ V (Q0 − Qπ )+ W (2Qπ )+ W (−2Qπ )
)
. (4.52)

Evaluated along orbit II, the Jacobian matrix (4.42) now reads

DFqk(QII) =
1
2

[
V ′′(Q0 + Qπ )+ V ′′(Q0 − Qπ )+ 4 sin2 k

2
{W ′′(2Qπ )+ W ′′(−2Qπ )}

]
δk,q

+
1
2

[
V ′′(Q0 + Qπ )− V ′′(Q0 − Qπ )− 2i sin k{W ′′(2Qπ )− W ′′(−2Qπ )}

]
δk,q+π (4.53)

and the corresponding dynamics,

η̈q +
1
2

[
V ′′(Q0 + Qπ )+ V ′′(Q0 − Qπ )+ 4 sin2 q

2
{W ′′(2Qπ )+ W ′′(−2Qπ )}

]
ηq

+
1
2

[
V ′′(Q0 + Qπ )− V ′′(Q0 − Qπ )+ 2i sin q{W ′′(2Qπ )− W ′′(−2Qπ )}

]
ηq+π = 0. (4.54)

Similar to the in-phasemode, the out-of-phasemodewill eventually undergo a first tangent bifurcation via the perturbation
ηqc whose frequency is the closest to ωπ , that is, for qc = π − 2π/N . As N tends to infinity, q = 2π/N plays the role of the
small parameter in the variational equations. But at variance with the in-phase variational equation where∆ ∝ sin2(π/N)
was the unique small parameter, Eq. (4.54) possesses two small parameters through sin2((qc + π)/2) ∼ (π/N)2 and
sin(qc) ∼ π/N . Notice that these two parameters are not of the same order.

Details of the evaluation of these equations are found in [80]. The final outcome is that the critical energy density of the
in-phase BEM at the tangent bifurcation for n = 1 (non isochronous potential) is given by [113]

ε(1)π =
4(v2 + 4φ2)φ2

3(v4 + 16φ4)+
2v23

3v2+16φ2
−

4v23
v2

sin2
(π
N

)
+ o

(
N−2) , N → ∞. (4.55)

Let us notice first that, when v3 = 0 this expression reduces to formula (3.20) of [80] obtained in the special case of a
symmetric on-site potential V (x). The correction introduced by the asymmetry of V (x) (i.e. the term proportional to v23 in
the denominator of (4.55)) has the interesting feature always being negative. Therefore, the following inequality

v23 <
3v2(v4 + 16φ4)(3v2 + 16φ2)

2(5v2 + 32φ2)
(4.56)

has to be satisfied for the out-of-phase mode to undergo a tangent bifurcation. This corresponds, as we have seen in the
section above, to requiring that the frequency increases with the energy.

Another interesting result easily drawn from (4.55) concerns the case of partially isochronous on-site potentials. It is
found in this case that a certain amount of nonlinearity (φ4) in the interaction potential is needed in order to ensure a
bifurcation of the out-of-phase mode. Indeed, the relation between the first coefficients of the Taylor expansion of V (x) is
10v23 = 9v2v4 in this case. The denominator of (4.55) is then positive provided

φ4 >
1
5

v4φ2

3v2 + 16φ2
. (4.57)

So that, in a chain of harmonically coupled partially isochronous oscillators, no discrete breather (if any) stems from the
tangent bifurcation of the out-of-phasemode. At the same timewe can conclude, that breathers appear for fully isochronous
harmonic oscillators (v4 = 0) when coupled anharmonically (φ4 > 0). This statement is to some extent confirmed by a
recent proof that breathers exist and can be continued from zero anharmonic coupling for harmonic oscillators coupled by
a purely quartic interaction [116].

For a first degree of isochronism (n = 2), we obtain [80]

ε(2)π =
v2 + 4φ2

2

(
−φ2

2(v2 + 4φ2)T̃4

)1/2

sin
(π
N

)
+ o

(
N−1) , N → ∞, (4.58)

where T̃4 is a function of the expansion parameters of the potentials [80].
A special case is v2 = 0 and φ3 6= 0. In such a case the spectrum ωq is acoustic, but the interaction potential W is

asymmetric. In the lowest order n = 1 of isochronicity we obtain [113]

ε(1)π =
16π2

N2

φ3
2

3φ2(v4 + 16φ4)− 64φ2
3
. (4.59)
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A tangent bifurcation takes place if

3φ2(v4 + 16φ4) ≥ 64φ2
3 . (4.60)

Consequently for an acoustic spectrum case the condition – that the band edge plane wave frequency is repelled from the
linear spectrum with increasing amplitude – is only necessary but not sufficient for a tangent bifurcation to occur.

Let us give an example where no small amplitude discrete breathers are expected. The one-dimensional Toda chain is
characterized by [385] vµ = 0, φ2 = 1, φ3 = −1/2, φ4 = 1/6. Clearly (4.60) is not satisfied (note that in that case
the frequency of the upper zone boundary plane wave is repelled from the linear spectrum with increase of energy, so
the repelling condition is a necessary condition, but not a sufficient one). Thus in the limit of large system size no tangent
bifurcation occurs at small energies, and no discrete breathers should occur.

4.3.4. Symmetry breaking
At the bifurcation point of the plane wave new periodic orbits occur. Because the bifurcation is tangent, the new orbits

have the same period as the plane wave orbit (at the bifurcation point). Any periodic orbit is a closed loop in the phase space
of the system. Consequently the new bifurcating orbits can be obtained by deformations of the loop corresponding to the
plane wave orbit at the bifurcation. It was proven [113] that there is no possibility to simultaneously deform the plane wave
loop and to keep its invariance with respect to the permutations, i.e. to discrete translations of the lattice. Consequently
there are at least N families of periodic orbits bifurcating from the plane wave orbits at a tangent bifurcation. The spatial
structure of these orbits corresponds to the spatial structure of a discrete breather [113].

4.3.5. Energy thresholds for tangent bifurcations of BEMs
We then turn to the determination of the (total) bifurcation energy E(n)q of a BEM partially isochronous up to order n, in

the thermodynamic limit. We find that [80]

E(n)q = Nε(n)q ∼ N1− 2
n (N → ∞). (4.61)

Now, if the BEM is not isochronous, (n = 1), its total bifurcation energy vanishes as the lattice becomes infinite and so does
the breather energy in this limit. No energy threshold exists in this case as already mentioned in [113]. However, as soon
as the band edge mode bears some degree of isochronism, (n > 1), its total bifurcation energy either converges to a finite
value (n = 2) or simply diverges (n > 2) and energy thresholds are thus expected.

We note incidentally that expression (4.61), although valid for a one-dimensional chain, bears some striking resemblance
with its multi-dimensional counterpart in the non isochronous case which reads E(d)q ∼ N1− 2

d where d is the dimension of
the lattice [80]. Combination of both isochronism (n) and dimensionality (d) leads immediately to the conclusion that the
total bifurcation energy of a BEM scales like

E(n,d) ∼ N1− 2
nd (N → ∞). (4.62)

Energy thresholds for discrete breather families bifurcating tangentially from BEMs are thus expected as soon as one of the
positive integers n or d is strictly greater than one. In general we can identify a critical lattice dimension dc which separates
zero from nonzero energy thresholds for tangent bifurcations of BEMs:

dc =
2
n
. (4.63)

For the general nonisochronous case n = 1 we have dc = 2, for n = 2 it follows dc = 1, and for larger values of n ≥ 3 the
result is dc < 1.

4.4. Energy thresholds of discrete breathers

DB solutions come in one-parameter families. The parameter can be the amplitude (measured at the site with maximum
amplitude), the energy E or the breather frequency Ωb. Its amplitude can be lowered to arbitrarily small values, at least
for some of the families for an infinite lattice. In this zero amplitude limit, the DB frequencyΩb approaches an edge of the
phonon spectrumωq. This happens because the nonresonance conditionωq/Ωb 6= 0, 1, 2, 3, . . . has to hold for all solutions
of a generic DB family. In the limit of zero amplitude, the solutions have to approach solutions of the linearized equations of
motion, thus the frequencyΩb has to approach some ωq, but at the same time not to coincide with any phonon frequency.
This is possible only if the breather’s frequency tends to an edge ωE of the phonon spectrum in the limit of zero breather
amplitude. If we consider the family of nonlinear plane waves which yields the corresponding band edge plane wave in the
limit of zero amplitude A, then its frequency ω will depend on A as

|ω − ωE | ∼ Az (4.64)
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for small A, where the detuning exponent z depends on the type of nonlinearity of the Hamiltonian (4.1), and can be
calculated using standard perturbation theory [288]. Note that at low amplitudes the energy of such a state E ∼ A2 and
thus

z = 2n, (4.65)
so the detuning exponent z is two times the order of isochronicity n from chapter 4.3.1.

From the analysis in chapter 4.3 we expect that in that limit the energy of a DB solution may tend to infinity with
decreasing amplitude, since in the tangent bifurcation point it meets the unstable BEM whose energy may diverge there,
depending on the dimension and the isochronicity order n. In the limit of small amplitudes the energy density in the DB
solution decreases, but theDB itself localizes less and less, spreading over larger and larger parts of the lattice. The divergence
of the total DB energy can thus only originate from a divergence of its energy in the DB spatial tails.

4.4.1. Short range interaction case
Here we follow the lines of argument in Ref. [125]. Let us assume that we have a system with short range interactions

(see chapter 4.1.1) and estimate the discrete breather energy in the limit of small amplitudes. Define the amplitude of a DB
to be the largest of the amplitudes of the oscillations over the lattice. Denote it by A0 where we define the site l = 0 to be
the one with the largest amplitude. The amplitudes decay in space away from the breather center, and by linearizing about
the equilibrium state and making a continuum approximation, the decay is found to be given by Al ∼ CFd(|l|δ) for |l| large,
where Fd is a dimension-dependent function

F1(x) = e−x, F3(x) =
1
x
e−x (4.66)

F2(x) =

∫
e−x

√
1+ζ 2√

1 + ζ 2
dζ , (4.67)

δ is a spatial decay exponent to be discussed shortly, and C is a constant which we shall assume can be taken of order A0. To
estimate the dependence of the spatial decay exponent δ on the frequency of the time-periodic motionΩb (which is close to
the edge of the linear spectrum) it is enough to consider the dependence of the frequency of the phonon spectrumωq on the
wave vector qwhen close to the edge. Generically this dependence is quadratic (ωE −ωq) ∼ |q− qE |2 where ωE 6= 0 marks
the frequency of the edge of the linear spectrum and qE is the corresponding edge wave vector. Then analytical continuation
of (q−qE) to i(q−qE) yields a quadratic dependence |Ωb−ωE | ∼ δ2. Finally wemust insert theway that the detuning of the
breather frequency from the edge of the linear spectrum |Ωb −ωE | depends on the small breather amplitude. Assuming that
the weakly localized breather frequency detunes with amplitude as the weakly nonlinear band edge plane wave frequency
this is |Ωb − ωE | ∼ Az

0. Then δ ∼ Az/2
0 .

Now we are able to calculate the scaling of the energy of the discrete breather as its amplitude goes to zero by replacing
the sum over the lattice sites by an integral

Eb ∼
1
2
C2
∫

rd−1F 2
d (δr)dr ∼ A(4−zd)/2

0 . (4.68)

This is possible if the breather persists for small amplitudes and is slowly varying in space. We find that if d > dc = 4/z
the breather energy diverges for small amplitudes, whereas for d < dc the DB energy tends to zero with the amplitude.
Remarkably this result for the critical dimension coincides precisely with the result (4.63) using (4.65). Inserting z = 2 we
obtain dc = 2,which is in accordwith the exact results on the planewave stability [113] and thus strengthens the conjecture
that discrete breathers emerge through tangent bifurcations from band edge plane waves. Note that for d = dc logarithmic
corrections may apply to (4.68), which can lead to additional variations of the energy for small amplitudes.

An immediate consequence is that if d ≥ dc , the energy of a breather is bounded away from zero. This is because for any
non-zero amplitude the breather energy can not be zero, and as the amplitude goes to zero the energy goes to a positive
limit (d = dc) or diverges (d > dc). Thus we obtain an energy threshold for the creation of DBs for d ≥ dc . This new energy
scale is set by combinations of the expansion coefficients in (4.1). If z = 2 with |Ω − ωE | ∼ βA2 for the nonlinear plane
waves, and the energy per oscillator E ∼ gA2 and the spatial decay exponent δ is related by |Ωb − ωE | ∼ κδ2, then the
energy threshold Emin is of the order of κg/β , and the minimum energy breather in 3D has spatial size of the order of the
lattice spacing, independently of κ, g and β . One should allow for a factor of (2 + d) for underestimating the true height of
the minimum and the contributions of nearest neighbours.

Many numerical results have since confirmed the above results. For the d-dimensional DNLS model (4.6) the left panel
in Fig. 20 shows the variation of the DB energy with its central amplitude, and a clear notion of an energy threshold starting
with d = 2 [125]. Note that in that case n = 1. The minimum energy DB profile for d = 3 is the one plotted in Fig. 9 and is
indeed (still) strongly localized on the lattice. In order to observe the effect of partial isochronicity n ≥ 2 on the appearance
of energy thresholds, we present results for a modified DNLS system in one spatial dimension d = 1:

Ψ̇l = i

(
Ψl + |Ψl|

µ−1Ψl + C
∑
m∈Nl

Ψm

)
. (4.69)
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Fig. 20. Left panel: Breather energy versus amplitude for the DNLS system in one, two and three lattice dimensions. System sizes for d = 1, 2, 3: N = 100,
N = 252 , N = 313 , respectively. Right panel: Breather energy versus maximum amplitude for the DNLS system in one lattice dimension and for three
different exponents µ = 3, 5, 7 (solid lines). The system size is N = 100 and the parameter C = 0.1. The dashed line is for the modified system (cf. text).
Data are from Figs. 1, 3 in [125].

By tuning µwe can realize different orders of isochronicity:

n =
µ− 1

2
. (4.70)

In the right panel in Fig. 20 we show results for d = 1 and µ = 3, 5, 7. Again we find full agreement with the predictions
from above. Note that even one-dimensional lattices exhibit positive lower bounds on breather energies ifµ ≥ 5.Weinstein
has obtained rigorous proofs of these results for any value of µ [399].

We can predict that amodified DNLS systemwith an additional term vµ′ |Ψl|
µ′

−1Ψl can exhibit complex curves Eb(A0). For
example, for d = 1,µ = 7,µ′

= 3 and vµ′ = 0.1, the Eb(A0)-dependence will be nearly identical to the case vµ′ = 0 already
considered, if the amplitude A0 is not too small. Then Eb(A0) will show a minimum at a non-zero value of A0. For small A0
however the energy of the breather will ultimately decay to zero, so the curve has a maximum for smaller amplitudes! The
dashed line in the right panel in Fig. 20 shows the numerical calculation, which coincides with our prediction.

Another example is the two-dimensional lattice system (1.18) which is characterized by n = 1, and thus the critical
dimension is d = 2. The energy thresholds have been computed and reported in [93]. The profiles of DB solutions in Fig. 4
correspond to (A) a low amplitude DB, (B) the minimum energy DB, and (C) a high amplitude DB.

4.4.2. Long range interactions
Let us consider the case of a one-dimensional lattice already discussed in chapter 4.1.2. For s ≥ 3 the critical distance

from the DB core lc (which separates exponential from algebraic decay) tends to infinity in the limit of small DB amplitudes,
i.e. whenΩb approaches a BEM frequency. Consequently the breather energy will have the same qualitative behaviour as in
the case of short range interaction (the results are similar to those obtained in [125], but the height and the position of the
energy minima shift to larger values with decreasing values of s).

However for Ωb < ωq and 1 < s < 3 no exponential decay is observed and the far distance energy of the breather is
given by ∼ A2

∫ 1
r2s

ddr where A is the amplitude of the breather center. This energy will always vanish in the limit of zero
amplitude. We currently do not know how to estimate the tail energy correctly in such a case. Below we will outline an
alternative approach to this problem [114].

We follow the second line of argument for the behaviour of the breather energy at small amplitudes. For that we consider
a finite system of N sites. As was shown in chapter 4.3, band edge modes undergo tangent bifurcations, which creates
discrete breathers. The amplitude Ac of the BEM at the bifurcation point (for nonvanishing cubic and/or quartic terms in
the Hamiltonian) is given by [113]:

Ac ∼

√
|Ω2

BEPW −Ω2
q1 |, (4.71)

where q1 denotes the wavevector closest to the band edge wavevector. Here we consider periodic boundary conditions and
a cutoff in the long range interaction at one half of the system size. This cutoff will induce finite size corrections to the
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Fig. 21. DB energy E versus DB frequency Ωb for the FPU chain with φ2 = φ4 = 1 and φ3 = 0.5 (lower curve) and φ3 = 1 (upper curve). Insets:
Displacements x̂l(t = 0) forΩb = 2.001 versus lattice site number l. Upper left inset for φ3 = 1, lower right inset for φ3 = 0.5. From [121].

dispersion ω2
q for all q except for the band edge points. With q1 =

2π
N this correction amounts to

∆q1 = ω2
q1(∞)− ω2

q1(N) = 2C
∞∑

m=N/2+1

1
ms

(
1 − cos

(
2π
N

m
))

. (4.72)

Evaluation of (4.72) for s > 1 gives

∆q1

2C
≈ b(s)

(
2π
N

)s−1

− 2
(

2
N

)s

(4.73)

with b(s) =
∫

∞

π
1
xs (1 − cos x)dx. Consequently the correct result for (4.71) and 1 < s < 3 is A2

c ∼ c(s)/N s−1 with
c(s) =

∫ π
0

1
xs (1 − cos x)dx. The total energy Ec ∼ NA2

c in the bifurcation point for 1 < s < 3 is finally given by

Ec ∼ N2−s. (4.74)

Note that the considered system has the lowest degree of isochronicity n = 1. This has to be contrasted to the results for
short range interactions in one-dimensional systems which can be obtained from (4.74) by choosing s = 3 and is Ec ∼ 1/N .
We thus find, that anomalous dispersion at the band edge ∼ qs−1 for 1 < s < 3 even further supports the divergence of
the breather energy at small amplitudes, since for cubic and quartic anharmonicities in the Hamiltonian, for which no
divergence in energy is found for short range interactions, energy divergence is obtained for long range interaction with
s < 2. These results confirm studies of nonlinear Schrödinger chains with long range interactions, where s < 2 marks the
appearance of two stable soliton solutions compared to one for s > 2 [147].

The existence of energy thresholds for breather solutions is supported by long range interactions, and can take place
when short range interactions (e.g. in one-dimensional systems) are not capable of producing these thresholds.

4.4.3. No bifurcation but finite thresholds
Let us discuss a result on the one-dimensional acoustic (Fermi–Pasta–Ulam)model (4.31) with vanishing onsite potential

V (x) = 0. From the BEM stability analysis (4.60) we conclude that for φ2 = φ4 = 1 the critical value of φ3 = 0.75
separates existence of DB solutions at small amplitude (φ3 < 0.75) from the nonexistence of DB solutions at small amplitude
(φ3 ≥ 0.75). In Fig. 21 the caseφ3 = 0.5 confirms the absence of an energy threshold, and theDB solution close to the tangent
bifurcation indeed has small amplitudes. What will happen if we choose φ3 = 1? According to the tangent bifurcation
analysis small amplitude breathers should not exist. However, assuming for the moment large amplitude excitations, we
may conclude that the cubic potential terms (φ3) may be neglected together with the harmonic ones, as compared to the
strongest quartic terms (φ4). But then we should expect DB solutions for large energies! Indeed, a computation of that
situation yields DB solutions for large amplitudes and energies (Fig. 21). Since these branches cannot be continued to small
amplitudes, they have to terminate with finite amplitudes, and thus with finite energies. So we conclude that for such a
case DB solutions apparently exist, but since we ruled out the existence of any small amplitude DB solutions, the observed
breathers show up with a nonzero energy threshold (see also [175] and references therein, and [200,199]).
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4.4.4. Some concluding remarks
Finally we want to briefly mention other relevant situations. First, for purely nonlinear interactions from chapter 4.1.3

DB solutions are given by a spatial profile which is independent of their actual amplitude, energy etc. Thus we can always
choose arbitrarily small amplitudes, and obtain arbitrarily small energies for DBs, irrespectively of the lattice dimension and
other effects.

Even in the case when a DB family allows for a limit of small amplitudes and has zero energies in that limit, it may coexist
with other DB families which do not share this property. Thus the general situation is that there exist many DB families, and
most of them will possess a family specific energy threshold. The results discussed in the present chapter allow one to rule
out or to confirm the existence of at least one DB family which does have a zero energy threshold.

4.5. Moving discrete breathers?

Once the existence of discrete breathers is established, a natural question is whether these spatially localized excitations
may also coherently move along certain lattice directions without any loss. Let us give a plain answer to this question. As a
rule for Hamiltonian systems discrete breathers can not move indefinitely. Exceptions confirm the rule.

There are good reasons for this result. Belowwewill give a summary of themain argumentswhich lead to that conclusion
below. Before proceeding, we want to encourage the reader to consult Chapter 9 from Ref. [133] (which mainly focusses on
discussing the impossibility of introducing a so-called Peierls–Nabarro potential for the general case) and the very recent
chapter 7.1 from Ref. [20] (which summarizes the many numerical efforts to obtain moving DBs), where this neverending
problem of moving DBs has been extensively reviewed from different perspectives and different times. We also want to
stress, that despite the above rigorous ‘NO’, moving DB states have been frequently observed in some lattice models at least
on relatively large times, with losses being reasonably low. For some integrable models like the Ablowitz–Ladik chain (an
integrable version of the DNLS) even exact travelling DBs are known to exist [1]. Also moving DB-like objects have been
numerically observed for certain dissipative networks. The argument belowwill give some reasons why these observations
coexist with the plain ‘NO’ from above.

To look for moving breather solutions we need to have some good definition of them. We could define the simplest type
of a moving DB as a solution that repeats itself after the time Ts shifted by one lattice site. Such a solution is a fixed point
of the map RGTs where Gt is the evolution operator in the phase space of the system, and R is the translation operator that
shifts all indices by 1. More sophisticated solutions can be obtained by considering fixed points of themap RnG, i.e. solutions
that repeat themselves after the time Ts shifted by n sites. We assume the lattice spacing to be 1 so the velocity V is then
just n/Ts.

The method of analyzing the decay properties in the tail of a breather is very fruitful. From such an analysis one precisely
derives the nonresonance conditions a stationary nonmoving breather must fulfill in general to exist. This concept has been
extremely useful to explain why stationary breathers are generic in discrete systems, while they are nongeneric in field
theories. A breather is localized in space. Then we can analyze the tails, where all amplitudes are small, and check whether
the solution really CAN decay to zero at infinite distance. This leads to the well-established nonresonance condition for
stationary breathers.

Since a stationary breather is characterized by an internal frequencyΩb, we have to incorporate this inverse time scale
into the definition of amoving breather. Consider a one-dimensional lattice, describing the interaction of degrees of freedom
associated to each lattice site. Each degree of freedom is given by a pair of canonically conjugated variables (e.g. displacement
and momentum) labeled with the site index. Call one of those variables un(t). We define a one-frequency discrete moving
breather solution as4

un(t) = F(Ωbt, n − Vt). (4.75)

Here F(x, y) is a function 2π periodic with respect to x and localized with respect to y:

F(x + 2π, y) = F(x, y), F(x, y → ±∞) → 0. (4.76)

If 1/V and 2π/Ωb are commensurate so k/V = l2π/Ωb, where k and l are integers, then such a breather repeats itself after
time Ts = k/V shifted by k sites and belongs to the simplestmoving breathers defined above. In the general incommensurate
case the breather will never repeat itself although it will come arbitrarily close to it.

In the same manner breathers having more internal frequencies can be defined. This hierarchy incorporates everything
that we intuitively perceive as an object moving through the lattice.

Thinking of moving breathers in terms of fixed points allows one to define other interesting objects on a discrete lattice.
Consider a fixed point of some general map GTsX where X is an element of the lattice symmetry group. If X is the identical
transformation we get stationary breathers. The translation operator gives us moving ones. For a one-dimensional lattice
the only symmetry group element left is the reflection, which gives us reflecting breathers, which mirror themselves after
time Ts. Such hypothetical states would tunnel in space similar to a quantum particle, back and forth between possibly

4 Of course one can choose more complicated forms, which will not be discussed here.
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very distant lattice sites. Higher dimensional lattices provide us with more choices, e.g. by taking a rotation for X we get
rotation breathers, i.e. states which consecutively tunnel from one site to another on some possibly large loop in the lattice.
This list could be continued, but it leads to nowhere, since we first should check whether the simplest case of a moving DB
persists.

4.5.1. The tail analysis for a Klein–Gordon chain
Consider

ün = −αun − C(2un − un−1 − un+1)+ Fnl(un). (4.77)

We search for a moving solution in the form (cf. Eq. (4.75))

un(t) =

∑
k

Ak(n − Vt)eikΩbt . (4.78)

Linearizing the equation in the tails of the assumed existing solution we obtain

V 2 d
2Ak(z)
dz2

− 2ikΩbV
dAk(z)
dz

= (Ω2
− α − 2C)Ak(z)+ C(Ak(z + 1)+ Ak(z − 1)). (4.79)

We make the ansatz Ak(z) ∼ eλkz . Decomposing λ into real and imaginary parts λ = R + iI (R, I real) we find (note that we
skip the index k, so below ω = kΩb − VI):

ω = −
C
VR

sinh R sin I, (4.80)[
C
VR

]2
sinh2R sin2 I = V 2R2

+ α + 2C(1 − cosh R cos I). (4.81)

A detailed analysis of these equations [124] yields that for any V 6= 0 we can generate a moving breather solution in the
tails, for any value ofΩb! Surprisingly the problem of resonances, as in the case of a stationary breather, does not appear on
that stage. The formal reason for this strange result is that as opposed to the case of a stationary DB, the Fourier amplitudes
Ak(z) are now functionswhich should satisfy differential equations.We simply increased the corresponding space of possible
solutions, and end upwith stating that anything is possible so far. Of course that implies only thatwe can construct a solution
of the type (4.78) in the assumed tails independently for each k. Whether these solutions can then be continued into the
nonlinear core of a DB state, is completely untouched here.

4.5.2. A numerical method and analytical consequences
Consider the full equations of motion given by ün = −∂H/∂un. Then the ansatz (4.78) yields equations of the type

V 2 d
2Ak(z)
dz2

− 2ikΩbV
dAk(z)
dz

= Ω2Ak(z)+

∑
n

fn({Ak′(z)}, {Ak′(z + n)}, {Ak′(z − n)}). (4.82)

The essential feature is that these coupled differential equations contain advanced and retarded terms. These terms arise
due to the interaction on the lattice. Instead of directly trying to solve these equations, we consider a lattice governed by
the equations

V 2Äkn(t)− 2ikΩbV Ȧkn(t) = Ω2Akn(t)+

∑
n′

fn′({Ak′n(t)}, {Ak′,n+n′(t)}, {Ak′,n−n′(t)}). (4.83)

Here n is again the lattice site label, and with each lattice site n we have an associated infinite set of variables {Akn},
k = 0,±1,±2, . . . . Eq. (4.83) define a phase space flow in the phase space of all variables Akn, Ȧkn. In general trajectories
generated by those dynamics are not related to solutions of (4.82). However all fixed points of the map RGt=1 (Gt is the
evolution operator defined by (4.83) and R the translation operator that shifts all lattice indices by 1) are solutions of (4.82).
The main reason for that is that all delay and advance intervals are integers. Thus we defined a rigorous map on a phase
space, and can search for fixed points of thismap. Once a fixed point (solution) is found, it can be continued using generalized
Newton methods or steepest descent methods.

Assume that a moving DB exists. It will be a fixed point of the above introduced map. Let us consider the spectrum of the
corresponding linearized map around the fixed point. That spectrum should have unusual properties as compared to the
Floquet spectrum of stationary breathers. It will fill the unit circle densely. Especially there exist eigenvalues with value +1
and thosewith values arbitrarily close to+1,whichwould in generalmake continuation impossible for stationary breathers.
The existence of these eigenvalues can be simply explained. Linearizing the map around a moving breather fixed point, we
obtain an infinite set of eigenvalues with spatially extended eigenvectors. At large distances from the breather center these
eigenvectors will correspond to linear waves. Such a linear wave is given by

ei(ωqt−qn). (4.84)
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It is always possible to cast it into the form

eikΩbte−iq(n−Vt) (4.85)

with given numbersΩb, V by solving

ωq = kΩb + Vq. (4.86)

If we can always find q-values which will do the job, then the spectrum is dense around +1, and continuation (and thus
existence at first hand) seems to be impossible. For the case of a stationary breather V = 0, and we essentially recover the
nonresonance condition, which can be fulfilled by choosing Ωb to be outside the phonon band. Eq. (4.86) was derived for
the DNLS model (k = 1) in [124], and later obtained for FPU and KG models e.g. in Refs. [150,168].

Eq. (4.86) is the central result. In order to be able to generically have and continue a moving DB, we have to request the
generalized nonresonance condition

ωq 6= kΩb + Vq (4.87)

for all k. But recall that ωq is a periodic function in q. Consequently Eq. (4.87) can be never fulfilled for nonzero velocities
V 6= 0.

On a more physical language, the unavoidable resonances (4.86) are generalized resonances between the velocity of a
moving DB and the phase velocity ωq/q of linear waves. So we expect a moving DB to radiate energy in the form of small
amplitude planewaveswith frequencies whichmatch (4.86). In other words, exact travellingwaveswill typically encounter
nondecaying tails, as beautifully analyzed e.g. in Ref. [150].

One can add many more words and discuss various issues of the strength of these resonances etc. But the strict bottom
line is that exact moving DBs do not exist in general because (4.87) cannot be satisfied for a given nonzero V and all integers
k.

We finish this chapter by giving a good reason for the exception to the cases where exact or approximate moving DBs
have been obtained or observed. If the resonances are weak enough, then moving DB-like objects can be observed over
sufficiently long times. If the system is integrable like the Ablowitz–Ladik chain, then it possesses an infinite number of
symmetries, and their existence could be the reason for effectively switching off the resonances, just like the stationary
breather persists in the integrable sine-Gordon field equation despite the formal presence of resonances. Furthermore, for
DNLS-type chains an inverse construction method [135] has been applied to construct potentials which support a given
travelling pulse shape (note that simple moving breathers in DNLS type models can be gauge transformed into a moving
pulse). In a next step the thus obtained lattice model was used to numerically continue the exact (!) moving pulses to
other velocities. As expected, their tails immediately get dressed with nondecaying waves due to the above resonances. The
conclusion is then, that moving pulses may exist for a given lattice problem, but only for a countable set of velocity values
(and sometimes this set can be empty). So for DNLS-type models some exact moving pulses (breathers) with fixed velocity
values may exist, see also recent results for DNLS with saturable nonlinearity in Ref. [274]. This also explains why we can
safely assume that such a set must be empty for the case of a general nonlinear lattice which yields equations of the type
(4.82). Just manually decouple the equations for different k. Then for each truncated equation we may find a discrete set
of velocities which support travelling pulses. But these sets will in general be different for different ks, since the equations
are different. Switching the interaction between the equations back on, it would be a miracle if all equations now support
moving pulses with one and the same velocity. Many further numerical and analytical investigations have shown since, that
whatever small, oscillatory tails are typically unavoidable when constructingmoving breather states [264,6,251,34,151,248,
168,370,53,408].

4.6. Dissipative discrete breathers

So far we have been discussing breathers in Hamiltonian lattices. Any experiment will however show up with some
dissipation. When this dissipation is of a fluctuating nature, it could be simulated using a heat bath. However it is possible
to consider also simple deterministic extensions of the above problems. In Josephson junction systems (see chapter 10.1)
this is actually even implemented experimentally. Here we will only mention some of the basic new features one is faced
with when studying dissipative breathers and their properties [261,142,265].

4.6.1. Obtaining dissipative breathers
Consider the following set of equations of motion:

ẍl = −
∂H
∂xl

− γ ẋl − I (4.88)

with

H =

∑
l

[
ẋ2

2
+ 1 − cos xl − C (1 − cos(xl − xl−1))

]
. (4.89)
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For γ = I = 0 this system is Hamiltonian and corresponds to the Takeno–Peyrard model of coupled pendula [261,
379]. This model allows both for usual discrete breathers, but also for so-called roto-breathers. While for a usual breather
xl(t + Tb) = xl(t) for all l, for the simplest version of a roto-breather one pendulum is performing rotations

x0(t + Tb) = x0(t)+ 2πm. (4.90)

Here m is a winding number characterizing the roto-breather (the simplest realization is m = 1). Note that roto-breathers
are not invariant under time reversal.

For nonzero γ and I = 0 the dissipation will lead to a decay of all breather and roto-breather solutions. But for nonzero
time-independent I roto-breathers may still exist. The reason is that the rotating pendulum will both gain energy due to
the nonzero torque I and dissipate energy due to the nonzero friction γ , so an energy balance is possible (whereas that is
impossible for breathers withm = 0).

In contrast to families of breather periodic orbits in Hamiltonian systems, dissipative roto-breathers will be attractors in
the phase space [250]. Attractors are characterized by a finite volume basin of attraction surrounding them. Any trajectory
which starts inside this basin, will be ultimately attracted by the roto-breather. Thus dissipative breathers form a countable
set of solutions.

To compute such a dissipative roto-breather, we can simplymake a good guess in the initial conditions and then integrate
the equations of motion until the roto-breather is reached. This method is very simple, but may suffer from long transient
times, and also from complicated structures of the boundaries of the basin of attraction.

The Newton method can be applied here as well. Although we do not know the precise period of the roto-breather, we
do not need it either. Instead of defining a map of the full phase space over a given time Tb, we may define a map of the
phase space of all but the rotating pendulum coordinate. The mapping time tmap is trajectory-dependent and is determined
by x0(t = 0) = 0 and x0(tmap) = 2πm. The only two things we have to worry about are: to find a trajectory which leads to
a rotation of x0, and, as usual, to be sufficiently close to the desired solution in order for the Newton map to converge to the
fixed point. Once the solution is found, Tb = tmap.

4.6.2. Perturbing dissipative breathers
As long as a dissipative roto-breather is stable, the volume of its basin of attraction is finite, and small deviations will

return the perturbed trajectory back to the breather. Upon the change of some control parameter the breather may still
persist but become unstable. Consider the linearized phase space flow around the roto-breather of (4.88) and (4.89):

ε̈l = −

∑
m

∂2H
∂xl∂xm

∣∣∣∣
{xl′ (t)}

εm − γ ε̇l. (4.91)

In analogy with chapter 4.2 we may introduce a (quasi-symplectic) matrix R which maps the phase space of the
perturbations onto itself by integration of (4.91) over one breather period [265]. By using the transformation

εl(t) = e−
1
2 γ tκl(t) (4.92)

we obtain

κ̈l = −

∑
m

∂2H
∂xl∂xm

∣∣∣∣
{xl′ (t)}

κm −
1
4
γ 2κl. (4.93)

Eq. (4.93) defines a Floquet problemwith a symplecticmatrixF which properties are discussed above. By backtransforming
to R we find that those eigenvalues which are located on the unit circle for F now reside on a circle with a smaller radius

R(γ ) = e−γ Tb/2. (4.94)

If µ is an eigenvalue of R, so are

µ∗, e−γ Tb
1
µ
, e−γ Tb

1
µ∗
. (4.95)

There is still one eigenvalue µ = 1 which corresponds to perturbations tangent to the breather orbit. The related second
eigenvalue is located at e−γ Tb , contrary to the Hamiltonian case. The schematic outcome of a Floquet analysis of a dissipative
breather is shown in Fig. 22. We close by noting that the above properties of the quasi-symplectic matrix R follow directly
from (4.91) and apply to many other situations when studying the stability of periodic orbits in dissipative systems.
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Fig. 22. Schematic view of an outcome of the Floquet analysis of a dissipative breather. Floquet eigenvalues (filled circles), the unit circle (large radius)
and the inner circle of radius R (4.94) are plotted in the complex plane. Left picture: stable breather (all eigenvalues are located on the circle with radius R).
Right picture: stable breather close to instability (two eigenvalues have collided on the inner circle, and one is departing outside towards the unit circle).
Note that the group of closely nearby lying eigenvalues on the unit circle correspond to the plane wave continuum (extended Floquet eigenstates), while
the separated eigenvalues on the inner circle correspond to localized Floquet eigenstates.

4.7. Resonances again, and how to remove them

Discrete breathers in a Hamiltonian setting are periodic orbits. An outcome of the study of basic properties of DBs is
that one has to pay attention to various resonances (in order to avoid them). Let us remind the reader, that breathers are
nongeneric for nonlinear field equations, because the small amplitude wave spectrum ωq there is typically unbounded. So
the simple trick of making DBs generic objects on lattices is to use the fact that on a lattice ωq is bounded and thus the
nonresonance condition

kΩb 6= ωq (4.96)

can be in principle satisfied for all integer k and proper choices of Ωb, which are regulated by the nonlinearity of the
system. But there is no free lunch. We have to pay for that by giving up the idea pf generically observing DBs which
evolve quasiperiodically in time, or DBs which can move without losses across the lattice. The quasiperiodic DB does not
exist in general due to an extension of the very nonresonance condition (4.96) which even for the simplest case of two
incommensurate frequenciesΩb1,Ωb2 would read

k1Ωb1 + k2Ωb2 6= ωq. (4.97)

As discussed in chapter 1.3, that condition can not be fulfilled in general, since any quasiperiodic spectrum is dense in the
frequency domain. Finally, mobility at some velocity V would be possible in general only if

kΩb + Vq 6= ωq (4.98)

holds. Again that is not the case, as shown in chapter 4.5. All these issues are about resonances of DB frequencies with plane
wave frequencies or about matching of DB velocities and phase velocities of plane waves.

There is of course a simple way to remove these resonances and to expect both quasiperiodic and mobile breathers to
appear. For that one only has to remove the objects with which the DB would otherwise resonate. So it is about removing
the plane waves. We can think of two ways doing so.

We can consider the (strictly speaking nongeneric) case of vanishing harmonic interactions (see chapter 4.1.3). Then
ωq becomes a constant (possibly zero) independent of q, and the corresponding group velocities vanish. While that does
not clearly satisfy any of the two conditions (4.97) and (4.98), numerical results in [155,255] show that quasiperiodic DB
states persist for extremely long times, several orders of magnitude longer than the main DB period. Most importantly,
Yuan published an existence proof of quasiperiodic breathers via a KAM technique construction [409]. Even chaotic DB-like
states seemingly do not show any significant portion of radiation [255]. To the best of our knowledge, mobile DBs were not
reported for such a case. Note also, that reports on quasiperiodic DBs in DNLS models [182,184] do not contradict the above
conclusions, since these special states have a discrete and equidistant temporal Fourier spectrum. After a phase gauge these
states in fact become strictly time-periodic DBs again.

Another way to remove plane waves is to add dissipation. Then plane wave type excitations may simply decay in time. If
a DB is launched in the system, of course it has to be sustained by some proper energy supply. Suppose now that such a DB is
modified so that (4.96) is violated (here ωq is the plane wave spectrum in the absence of dissipation). Then the DB will start
to radiate plane waves. But these waves will decay at some distance from the DB. Thus, if the energy influx into the DB core
is strong enough, such a DB could survive. Indeed such situations have been predicted already in Ref. [130] and observed
both for some toy models in [265] and in the theoretical and experimental investigation of breathers in Josephson junction
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networks (see chapter 10.1). Using the same line of argument, wemay now imagine quasiperiodic DBs which violate (4.97).
A rigorous existence proof was recently supplied by Chung and Yuan [66]. Such states have been observed both for some
toy models in [46,161,265,267] and in the theoretical and experimental investigation of breathers in Josephson junction
networks (see chapter 10.1). And finally we can predict the existence of mobile DBs, violating (4.98). Such states have been
observed in [265,267]. So the bottom line is, that even weak dissipation allows us to construct DBs which resonate with the
spectrumωq, quasiperiodic DBs, andmobile DBs. That allows to useweakly dissipative DBs as spectroscopic tools tomeasure
the frequency spectrum of the nonexcited lattice (chapter 10.1). It also may allow coherent motion of weakly dissipative
DBs along a lattice.

5. Wave scattering by discrete breathers

The stability analysis of various DB solutions, discussed in Section 4.2, in many cases demonstrates surprisingly
high robustness of these objects with respect to perturbations. Practically, the presence of small amplitude extended
states (‘phonons’) in the system hardly affects the dynamics of DBs. The opposite, however, is generally not true: a DB
acts as a time-periodic scattering potential for phonons. Early results of numerical simulations performed on a one-
dimensional lattice [132,133] showed strong reflection of plane waves by DBs with reflectivity properties being dependent
on the incoming plane wave frequency. More recent analytical and numerical investigations [69,207,208,128,129] revealed
resonances and anti-resonances in frequency resolved transmission characteristics. In this chapter we will discuss the
problem of wave scattering by DBs in detail.

5.1. Setting up the problem

Small amplitude (linear) wave scattering by a DB can be treated within the framework of the discussed linear stability
analysis in Sections 3.3 and 4.2, using the Floquet analysis of the linearized phase space flow around the DB periodic orbit,
Eq. (3.12). Of crucial importance now are not the Floquet eigenvalues, but the profiles of the corresponding eigenvectors.

Since the DB is localized in a finite region of the lattice, it essentially does not affect propagation of small amplitude
waves far away from the DB core. We may thus treat the problem by means of standard scattering theory, and consider
incoming and outgoing excitations as plane waves. At variance to a standard time-independent potential scattering, the
DB-induced scattering potential is time-periodic. Denoting by ωq and Ωb the frequencies of the incoming plane wave and
DB, respectively, the scattering states of (3.12) can be represented in the form

εn(t) =

∑
k

enkei(ωq+kΩb)t . (5.1)

As the result of interaction between the incoming planewave and the DB, new frequency channels are created. Each of these
frequencies corresponds to a separate propagation channel, and the DB generates a spatially localized coupling between
different channels [69,128,129]. If a frequencyωq′ = ωq+kΩb is located inside the linearwave spectrum, the corresponding
excitation is extended over the lattice and forms an open channel. Otherwise, the linear mode has to be exponentially
localized around the scattering region and forms a closed channel.

Assume one degree of freedom per lattice site. The generic nonresonance condition, that the harmonics kΩb of the
breather are not resonating with the linear spectrum ±ωq, implies that the width ∆ of the positive (or negative) part of
the linear spectrum ωq is narrow enough: 0 < ∆ < Ωb. Thus, either all channels with k 6= 0 are closed (single channel
scattering), or there exists exactly one additional open channel with a value of k uniquely defined by∆ and q (two-channel
scattering). In the latter situation, the breathermay be linearly unstable for finite size systems but recovers its linear stability
for infinite system size (see chapter 4.2.1). As a result, two situations are possible:

• a one-channel scattering when for any k 6= 0, ωq + kΩb is not in the phonon band. Only channel k = 0 is open and
propagateswaves at infinity. An incomingwavewith frequencyωq andwave vector q, will generate propagating outgoing
waves at the same frequency ωq and wave vector ±q (see Fig. 23).

• a two-channel scattering, when a unique value of k 6= 0 exists such that ωq′ = ωq + kΩb. An incoming wave with
frequency ωq and wave vector q will generate outgoing waves not only at frequency ωq and wave vector ±q but also at
frequency ωq′ and wave vector ±q′.

A generalization tom degrees of freedom per lattice site leads to a maximum of 2m open channels.
A single-channel scattering process is elastic [69], so that the total energy flux of the scattered waves coincides with that

of the incoming wave. In contrast, the general case of two-channel scattering corresponds to an inelastic process, in which
the DB, even though being linearly stable, loses energy [69].

Most of the studies of wave scattering by DBs were focused on one-dimensional lattices [133,132,69,207,208,128,
129]. This is caused, on one hand, by the fact, that scattering in higher dimensional lattices is much harder to be treated
numerically. On the other hand, DBs, being analogues of point scatterers, scatter more weakly, the higher the dimension.
For a one-dimensional lattice, a single-channel scattering process can by analyzed via computation of the transmission
coefficient as a function of the incoming plane wave frequency/wavenumber. In the following Section 5.2 a general method
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Fig. 23. Schematic representation of the single-channel wave scattering process by a DB.

to compute transmission will be introduced. We will discuss the main results, obtained for different 1D models, in Sections
5.3–5.5. Some remarks regarding generalization of the problem towards higher dimensional lattices will be made in
Section 5.6. We conclude with a short discussion of inelastic scattering in chapter 5.7.

5.2. A general method to compute transmission

In order to compute the transmission coefficient for plane waves, one has to fix a large enough system size, so that
extended Floquet states of the corresponding problem are approximated (with exponential accuracy) by plane waves at
large distances from the DB. In other words, the system size should be essentially larger than the localization length of any
Fourier component of the DB solution, see Section 4.1, as well as the localization length of any closed channel [69,115].
Once the appropriate system size is chosen, the transmission coefficient can be measured numerically by launching a small
amplitude monochromatic wave packet towards the DB [132]. The advantage of this method is that it describes the real
interaction of the small-amplitude excitation with the DB without truncating any nonlinear terms. However, this method
requires long calculations in order to produce accurate results. Moreover, it fails to analyze scattering of plane waves with
too small a group velocity [132].

A highly accurate and effectivemethod to compute the transmission coefficient has been proposed by Cretegny et al. [69],
which is based on the assumption, that theDB is spatially symmetric. That allows one to separate the Floquet eigenstates into
symmetric and antisymmetric ones. Computing a pair of symmetric and antisymmetric eigenvectors at a given frequency
ωq, a linear combination of the two can be constructed, which yields a scattering situation (say that to the right of the DB
only outgoing waves exist) [69].

A further generalization of this method, which does not require any spatial symmetry of the DB, was developed in [128].
One emulates an infinite system with proper designed boundary conditions:

εN+1(t) = e−iωqt , ε−N−1 = (A + iB)e−iωqt . (5.2)

Here the amplitude of the transmittedwave is assumed to be unity,while the amplitudes and relative phases of the incoming
and reflected waves are implicitly determined via the coefficients A and B. At the first stage coefficients A and B are chosen
arbitrarily. With the specified boundary conditions (5.2), one has to find the zeros of the following map:

G
(
Eε(0), Ėε(0)

)
≡

(
Eε(0)
Ėε(0)

)
− eiωqTb

(
Eε(Tb)
Ėε(Tb)

)
. (5.3)

The obtained eigenstate, however, generally does not correspond to the scattering setup, since there is no guarantee that in
the right tail it approaches a plane wave traveling to the right only. One has to find the values of A and B, such that

εN = e−iq−iωbt . (5.4)

This can be done in a subsequent Newton map, involving coefficients A and B [115]. Both Newton maps can be combined
into a single one.

After the proper values of coefficients A and B are found, the transmission coefficient T (q) is obtained through the
relation [128,115]:

T (q) =
4 sin2 q

|(A + iB)e−iq + ε−N(0)|2
. (5.5)

The described method is remarkably easy to handle, essentially it takes a single step for the Newton map to converge
(since the map is linear). At the same time it determines the transmission coefficient up to machine precision and does not
care about any symmetries and structures of the DB solution.
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Fig. 24. Dependence of the Floquet spectrum on the coupling constant C for a symmetric DB in a 1D Klein–Gordon chain (see text for details). Right panel
zooms the region where two localized modes detach from the band of extended states. Figure from [69].

5.3. Resonant transmission

Wave scattering by a DB and the linear stability properties of a DB are closely related. Therefore one can establish certain
links between particularities in the transmission and some features in the Floquet spectrum of the DB. Indeed, certain (but
not all!) resonances in the transmission can be connected to the appearance of isolated eigenvalues in the Floquet spectrum,
which correspond to localized modes [206,69]. The underlying mechanism can be illustrated for a particular case of wave
scattering by a spatially symmetric DB [69].

Far away from the DB core the solution of Eq. (3.12) is the sum of two plane waves propagating in opposite directions:

εn = a+eiqn−iωqt + b−e−iqn−iωqt , n → −∞, (5.6)

εn = b+eiqn−iωqt + a−e−iqn−iωqt , n → +∞. (5.7)
The amplitudes of the incoming and outgoing waves are related through the unitary scattering matrix M(q) [69]:(

b+

b−

)
= M(q)

(
a+

a−

)
, M(q) =

(
M++ M+−

M−+ M−−

)
. (5.8)

For spatially symmetric DBs, ε−n(t) is also a solution of Eq. (3.12). This implies the symmetry of the scattering matrix [69]:
M++ = M−−,M+− = M−+. With this condition the unitary matrixM(q) can be written in the form

M(q) = eiγ (q)
(
i sinα(q) cosα(q)
cosα(q) i sinα(q)

)
. (5.9)

The symmetric and antisymmetric scattering schemes are expressed through the eigenmodes of the matrixM(q):

ε(±)n = ± cos(qn − δ±/2)e−iω(q)t , n → −∞, (5.10)

ε(±)n = cos(qn + δ±/2)e−iω(q)t , n → +∞, (5.11)
where δ±(q) = γ ± α are the phase shifts of spatially symmetric and antisymmetric states. Then it is straightforward to
express the transmission coefficient T (q) through the phase shifts [69]:

T (q) = sin2 δ+(q)− δ−(q)
2

. (5.12)

According to the extended Levinson theorem [69], the behavior of the phase shifts δ± at the boundaries of the Brillouin
zone q = 0, π determines the number of spatially symmetric Nb+ and antisymmetric Nb− localized states of the Floquet
operator:

Nb+ = −Int
(

−δ+(0)
2π

)
− Int

(
δ+(π)

2π

)
, (5.13)

Nb− = Int
(
δ−(0)+ π

2π

)
+ Int

(
−
δ−(π)+ π

2π

)
. (5.14)

Here the function Int(x) is defined as the largest integer smaller than or equal to x.
The appearance or disappearance of localized states in the Floquet spectrum of the DB can lead to sharp changes in the

phase shifts δ± at q = 0or q = π . As a result, sharp changes in the transmission T (q) (5.12) are observed at the corresponding
band edge. In Figs. 24 and 25 this scenario is illustrated for a symmetric DB in a one-dimensional Klein–Gordon lattice (1.7)
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Fig. 25. Phase shifts δ+ (solid lines) and δ− (dashed lines) and transmission coefficient of plane waves by a symmetric DB in a 1D Klein–Gordon lattice for
different values of the coupling constant: (a), (b) C = 0.04; (c), (d) C ≈ 0.05; (e), (f) C = 0.08; (g), (h) C = 0.15. Figure from [69].

with cubic on-site potential V (x) = x2/2− x3/3 and harmonic interaction potentialW (x) = Cx2/2. Increasing the coupling
strength C at a given DB frequency, Ωb = 0.85, symmetric and antisymmetric localized modes bifurcate from the edge
of the extended states band for C ≈ 0.05 and C ≈ 0.11, respectively, see Fig. 24. At the localization threshold of the
first mode, C ≈ 0.05, the symmetric phase shift abruptly changes from δ+(0) = −π to δ+(0) = 0, cf. Fig. 25(a) and
(c). Simultaneously, a resonant transmission peak T = 1 appears at the band edge q = 0, see Fig. 25(d). In the interval
0.05 . C . 0.11 the resonant transmission peak gradually drifts towards the opposite band edge q = π , see Fig. 25(f). It
disappears at the localization threshold of the second mode, when a similar abrupt change of the antisymmetric shift δ−(0)
occurs, cf. Fig. 25(e) and (g).

Note, that the location of localized states in the Floquet spectrum does not predict the position (and even existence!)
of resonant transmission. But the fact, that a particular localized state appears or disappears, while changing the model
parameters, can serve as an indication of the appearance of the resonant transmission in a vicinity of the corresponding
parameter.

As follows from the expression (5.12), the transmission coefficient can strictly vanish if δ+(q)− δ−(q) = 0 (mod π ) for
some value of q. Apparently, this condition is satisfied at the boundaries q = 0, π , where the corresponding total reflection
of plane waves can be regarded as the result of vanishing group velocities dωq/dq. However, the phases δ+(q) and δ−(q) can
satisfy the condition for zero transmission at intermediate values of q, where group velocities do not vanish, see Fig. 25(g)
and (h). In contrast to the discussed resonant transmission, one can not generally establish any connection between the total
reflection of plane waves and some features of the Floquet spectrum. This issue will be discussed in the next section.

5.4. Resonant reflection and relation to Fano resonances

An interesting effect, observed inmanynumerical studies ofwave scattering bydiscrete breathers, is the total reflection of
plane waves T = 0 for wave numbers with nonzero group velocities [132,206,69,207,128,121,119,282]. The observed effect
is due to the time-periodicity of the DB which induces an effective time-periodic scattering potential for plane waves. It can
be interpreted as a destructive interference between different co-existing propagation channels, see Fig. 23. The observed
total reflection was shown to be closely related to the well-known Fano resonance [129].

5.4.1. Scattering by a DNLS breather
To explore the origin of this resonance we consider the simple example of plane wave scattering by a single site DB in

the DNLS model (1.19) with ε = 0 and γ = 1, cf. Fig. 5(a). The linear wave spectrum in this model is given by

ωq = 2C cos(q), (5.15)
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and constitutes the open channel of the scattering problem.
Consider a highly localized DB with Ωb � C . The corresponding DB solution ψn = An exp(iΩbt) can be approximated

by a single site excitation: A2
0 = Ωb, An 6=0 = 0. Due to the gauge invariance of the DNLS model (1.19), there are only two

propagation channels, which correspond to the terms with k = 0 and k = −2 in (5.1). With Xn ≡ en,0 and Yn ≡ en,−2, the
coupled equations for the two channels are [129]:

ωqXn = C(Xn+1 + Xn−1)+Ωbδn,0 (2X0 + Y0) , (5.16)

(2Ωb − ωq)Yn = C(Yn+1 + Yn−1)+Ωbδn,0 (2Y0 + X0) . (5.17)

It is straightforward to show, that 2Ωb − ωq 6= ω′
q∀q, q

′, so that the channel Yn is always closed.
It is instructive to consider a generalised problem given by [129]

ωqXn = C(Xn+1 + Xn−1)− δn,0 (VxX0 + VaY0) , (5.18)

(Ω − ωq)Yn = C(Yn+1 + Yn−1)− δn,0
(
VyY0 + VaX0

)
, (5.19)

which is reduced to the system (5.16) and (5.17) whenΩ = 2Ωb, Vx = Vy = 2Va = −2Ωb. Note, that for a particular case
Va = 0, i.e. when the closed channel Y is completely uncoupled from the open channel X , the former possesses exactly one
localized eigenstate for nonzero Vy [129]:

ω
(y)
L = Ω −

√
V 2
y + 4C2. (5.20)

Using the transfer matrix technique, the transmission coefficient T for the generalized problem (5.18) and (5.19) is given
by [129]:

T =
4 sin2 q(

2 cos q − a −
d2κ
2−bκ

)
+ 4 sin2 q

(5.21)

a =
Vx + ωq

C
, b =

Vy +Ω − ωq

C
, d =

Va

C
, (5.22)

where κ is the inverse localization length of the closed channel:

κ =

Ω − ωq +

√(
Ω − ωq

)2
− 4C2

2C
. (5.23)

The transmission coefficient T vanishes, when the condition

2 − bκ = 0 (5.24)

is satisfied. It is equivalent to the resonance conditionωq = ω
(y)
L , which has a clear physical meaning: total reflection occurs

when the frequency of the incoming wave ωq in the open channel X resonates with that of the local mode ω(y)L of the closed
channel Y . Thus the resonance is equivalent to the Fano resonance [98], resulting froma local state interacting and resonating
with the continuum of extended states. An intriguing peculiarity of the case under consideration is that the local state itself
(belonging to the closed channel) is created dynamically, through an interaction between the incoming plane wave and the
scattering DB.

Coming back to the original problem (5.16) and (5.17), the transmission coefficient is given by

T =
4 sin2 q(

2Ωb
C −

Ω2
b

2C2
κ

1+κ cos q

)2
+ 4 sin2 q

. (5.25)

For highly localized DBs with Ωb/C � 1 the total reflection occurs in a close vicinity of q = π/2, see Fig. 26. The above
result is obtained within the approximation, in which the DB is strictly localized on a single site. The actual finite extension
of the DB causes small discrepancies between the analytical result (5.25) and the results of direct numerical computations
of the transmission coefficient. In particular, the position of resonant reflection is slightly shifted, see inset in Fig. 26.

5.4.2. A more general example: Klein–Gordon lattice
The specific type of nonlinearity in the above DNLSmodel results in a single closed channel being excited in the scattering

process. However, in the more general case of weakly interacting nonlinear oscillators, one should expect several closed
channels to be excited, as shown in Fig. 23. As an example, we take a Klein–Gordon lattice (1.7) with potentials

V (x) =
x2

2
+

x3

3
+

x4

4
, W (x) = C

x2

2
. (5.26)
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Fig. 26. Transmission coefficient T (q) for a single site breather in DNLS withΩb = 1 and C = 0.01. Solid line: analytical result given by expression (5.25),
dashed line: numerical result. Figure from [129].

Fig. 27. Density plot of the logarithm of plane waves transmission coefficient by the single-site DB in a Klein–Gordon model with C = 0.001 (a) and
C = 0.01 (b).

The linear wave spectrum of this model

ω2
q = 1 + 4C sin2(q/2), (5.27)

and profiles of the basic types of DBs are shown in Fig. 2 for a particular choice of the coupling constant C = 0.1.
As in the previous example of the DNLS model, a highly localized DB solution X̂n(t) can be approximated by a single site

excitation, X̂n 6=0(t) ≡ 0, so that the linearized equation (3.12) takes the following form:

ε̈n = −εn + C(εn+1 + εn−1 − 2εn)− δn,0

{
V ′′

[
X̂0(t)

]}
ε0. (5.28)

Using the Fourier expansion (5.1) and expanding V ′′

[
X̂0(t)

]
=
∑

k vke
iΩbt , one arrives at the set of equations [129]:

(ωq + kΩb)
2ε0k =

∑
k′
vk−k′ε0k′ , (5.29)

which describe the coupling between the open channel εn0 and different closed channels εnk at site n = 0, where the single
site DB is excited.

Following the same arguments as in the previous example,we ‘‘turn off’’ the interaction between the open channel and all
the closed channels and look for those localized states of closed channels, which resonate with the open channel. In contrast
to the DNLS case, such a case is not necessarily realized for an arbitrary value ofΩb. Generally, in the anticontinuous limit
C = 0 (where the DB is located on a single site), there will be a discrete set of DB frequencies, at which the total reflection
can be observed [129]. An increase of the coupling constant C transforms each of these frequency values into finite-width
stripes on the real axis, which will continue to expand for higher values of C , see Fig. 27.



S. Flach, A.V. Gorbach / Physics Reports 467 (2008) 1–116 49

Fig. 28. Transmission coefficient T for a bond-centered breather in an FPU chain. Model parameters are: φ2 = φ4 = 1, φ3 = 0.5. DB frequency from left
to right:Ωb = 4.5, 4.7, 10. The vertical dashed lines indicate the positions of the oscillatory instabilities, cf. Fig. 17. Figure from [121].

5.4.3. The strength of inter-channel coupling
An important feature of the Fano resonance, often referred to in literature, is the characteristic asymmetry of the line shape

in the proximity of the resonance [98]. Usually such an asymmetry is caused by the simultaneous co-existence of a slightly
detuned pair of resonant transmission and reflection. At this point it is instructive to revisit the generalized problem ofwave
scattering by a DNLS breather, introduced in Eqs. (5.18) and (5.19). Apart from the above resonant reflection of waves, the
transmission coefficient T , Eqs. (5.21)–(5.23), can become unity when

(2 − bκ)(2 cos q − a)− d2κ = 0. (5.30)
Using definitions in Eqs. (5.22) and (5.23), the condition for resonant transmission reads

ωq = Ω −

√
4C2 +

(
Vy +

V 2
a

2Vx

)2

. (5.31)

In the limit µ ≡ V 2
a /Vx → 0 it coincides with the condition ωq = ω

(y)
L for resonant reflection of plane waves (anti-

resonance), cf. Eqs. (5.20) and (5.24). In the case of a weak inter-channel coupling, µ � 1, there exists a pair of a nearby
resonance (T = 1) and anti-resonance (T = 0) in transmission, causing a strong asymmetry of the transmission curve.
Increasing the coupling strength µ, the detuning between the resonance and anti-resonance becomes more pronounced,
and the resonant transmission peak shifts toward the band edge. Finally, when the inter-channel coupling is strong, µ ∼ 1,
the resonance T = 1 is situated outside the transmission band, and the transmission curve becomes nearly symmetric
around the anti-resonance T = 0, cf. Fig. 26.

5.4.4. The FPU chain
The discussed examples of wave scattering by a DB in DNLS and Klein–Gordon lattices represent cases of strong inter-

channel couplings. The opposite regime is obtained for DBs in a Fermi–Pasta–Ulam (FPU) lattice, i.e. in the Hamiltonian
system (1.7) with potentials

V (x) = 0, W (x) = φ2
x2

2
+ φ3

x3

3
+ φ4

x4

4
. (5.32)

The resonant reflection of plane waves by a bond-centered DB can be observed for asymmetric potentials W (x) with
φ3 6= 0 [128,121], and it is accompanied by a nearby situated resonant transmission peak, see Fig. 28. The resonant
transmission can be linked to a localized Floquet state entering the band of extended states [121], as discussed in Section 5.3.
Vertical dashed lines in Fig. 28 indicate positions of the unstable Floquet states, which appear as the result of resonance
between a (former) localized state and an extended state, cf. Fig. 17.

5.5. Plane wave scattering versus wave packet scattering

So far all resonances in the process of wave scattering by DBs have been discussed in terms of the transmission coefficient
for plane waves. How appropriate are these results for the description of a more realistic situation of wavepacket scattering
by a DB? This issue is of particular importance from the point of view of potential experimental studies of the resonances.

Strictly speaking, the plane wave approach is relevant only within the linear approximation, i.e. when the amplitude of
the incoming wave is small enough. Provided this condition is fulfilled, each component of the incomingwavepacket will be
scattered in accordance to the above results for plane waves. Then, the proper averaging (over frequencies/wavenumbers)
of the transmission coefficient for plane waves leads to the effective transmission coefficient for the wavepacket. In order to
resolve a resonance in transmission, one has to operatewithwavepackets,whose spectralwidth is significantly smaller, than
the effective resonance width. Recently, a promising setup has been proposed, based on coupled Josephson junctions [282].
As anticipated in Ref. [282], boundary conditions, practically identical to that corresponding to plane wave scattering
scheme, can be relatively easily created for this setup.
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Fig. 29. Spatial Fourier transform of the incoming (a) and transmitted (b) wavepackets. DB parameters are the same as in Fig. 26. The vertical line in both
figures indicates the position of the resonant reflection for plane waves.

Yet, an alternative way to observe resonances in transmission is to deal with spectrally broad wavepackets. Instead of
computing the averaged transmission coefficient for the wavepacket, one may analyze the spectral characteristics of the
transmitted and reflected waves. The resonant components will be filtered out from the transmitted (resonant reflection)
and reflected (resonant transmission)wavepackets [156]. Thismechanism is illustrated for the case ofwavepacket scattering
by the DNLS breather in Fig. 29. Such a spectral hole burning effect opens a promising way for an experimental detection of
the resonant reflection and transmission, e.g. by using nonlinear optical waveguides [156].

For high amplitude (nonlinear) wavepacket scattering the above plane wave approach obviously fails. Some attempts
have beenmade to estimate nonlinear corrections to the planewaves transmission coefficient and to the position of resonant
reflectionwithin amodified Fano-Andersonmodel [281]. Themost intriguing one is the appearance of bistable transmission
for the case of a continuous wave input, as opposed to the case of wavepacket scattering.

5.6. Extension to higher dimensional lattices

One-dimensional lattices represent a unique sub-class of models, in which DBs strongly interact with spatially extended
excitations. In higher-dimensional systems the interaction is weaker, as the DB-induced scattering potential is spatially
localized and interacts only with a finite region of the wave front. As a consequence, total resonant transmission and
reflection of plane waves will be replaced by a more subtle resonant angle-dependent scattering.

Following essentially the same way, as discussed in Sections 5.3 and 5.4, one can predict the appearance of some
resonant features in the scattering for multi-dimensional systems. Then, it is the matter of a careful numerics to explore the
corresponding resonances. This strategy has been successfully applied to a two-dimensional extension of the Fano-Anderson
model [395]. In the one-dimensional case the model is known to possess a total resonant reflection of plane waves [98,12].
The resonance is demonstrated to persist in the two-dimensional case for the process of wavepacket scattering [395], see
Fig. 30. Remarkably, the total intensity of scattered waves at resonance, as well as the width of resonance, can be estimated
by means of a simple effective one-dimensional model [395], see Fig. 31. Indeed, taking into account the spatial localization
of the scattering potential, one can assume that only a quasi-1D part of the original wavepacket strongly interacts with the
scatterer, while the rest passes throughwithout any essential changes. Themore localized in space the incomingwavepacket
is, the larger the portion of it is, which strongly interactswith the defect and is scattered. On the other hand, high localization
of thewavepacket in real space implies delocalization in the reciprocal space. This, in turn, causes the total scattered intensity
at resonance to vanish, as discussed in Section 5.5. Therefore, the peak intensity of scattered waves at resonance is balanced
by the broadening of the original wavepacket in real and reciprocal spaces [395].

5.7. Inelastic scattering

So far we discussed elastic scattering only, where only one channel is open, and all others are closed. Here we briefly
discuss the effects of inelastic scattering in the case of a one-dimensional Klein–Gordon system (5.26) [69].

As discussed in chapter 5.1, inelastic scattering of waves by a DB is possible, if two open channels coexist, i.e. ωq2 =

ωq1 + kΩb for k 6= 0 integer. In that case, a single incoming wave at frequency ωq1 generates outgoing waves not only at
frequency ωq1 but also at ωq2 .

The real (or the imaginary) part φn(t) = Reεn(t) is a solution which carries an energy flux (per unit of time)
1
2C〈φn(t)φ̇n+1(t)〉 from site n to n+1 (it is the average power of the force of the oscillator n acting on the oscillator n+1) [69].



S. Flach, A.V. Gorbach / Physics Reports 467 (2008) 1–116 51

Fig. 30. Intensity distribution of transmitted and scattered waves after the scattering process in the two-dimensional Fano-Anderson model. The Fano-
Anderson defect is located at site {40, 40}, in the middle of the square lattice. The central frequency of the incoming wavepacket is chosen to be: (a) close
to the predicted resonance for plane waves; (b) away from the resonance. The boundary between ‘‘transmitted’’ (T) and ‘‘reflected’’ (R) regions, used for
numerical computations of the transmitted and scattered waves intensities, is indicated by the dashed line. Figures from [395].

Fig. 31. The total scattered power for the propagating wavepacket calculated from numerical simulations (points) and by means of a one-dimensional
approximation (lines). Data from [395].

The energy flux, carried by a single planewave a cos(qn−ωt) is 1
2C |a|2ω sin q =

1
2CωJ and is proportional to its momentum

multiplied by the frequency ω. Thus for single channel scattering, where the incoming and outgoing waves have the same
frequency, momentum conservation is equivalent to energy flux conservation. In that case, the scattering process is elastic
which means that the incoming flux of energy is identical to the outgoing flux. This is no longer true for multichannel
scattering.

Consider an incoming wave (assuming that ω1 and q1 are positive) carrying energy towards the breather and outgoing
waves carrying energy away from the breather. The asymptotic form of this state is (note that ω2 and q2 are negative)

εn = eiq1n−iω1t + r1e−iq1n−iω1t + r2e−iq2n−iω2t n → −∞

εn = t1eiq1n−iω1t + t2eiq2n−iω2t n → +∞.
(5.33)

Let {εn(t)} be a solution of the linearized equation (3.12). Let us multiply both sides of these equations by ε∗
n and compute

the imaginary part. We obtain

C Im (ε∗

nεn−1 − εnε
∗

n+1) = Im ε∗

n ε̈n = Im
d
dt
ε∗

n ε̇n. (5.34)

Averaging over time, one finds

〈Im ε∗

nεn−1〉 = 〈Im ε∗

n+1εn〉 = −J. (5.35)
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Fig. 32. Energy density in space–time representation for a two-channel inelastic scattering process of a wave by a breather (space along horizontal, time
along vertical axis). Parameters are C = 0.2 and Ωb = 0.7 for the KG chain with Morse potential V (x) =

1
2 (1 − e−x)2 , the wave vector of the incoming

wave is q = 0.8 and its amplitude is 2 × 10−2 . The breather location (high energy density) versus time appears as the white line. The breather starts to
move at the instability threshold whenΩb = 0.73. Figure from [69].

The momentum J of the solution εn(t) is independent of n. The momentum of a single plane wave aei(qn−ωt) is J =

|a|2 sin q. For large |n|, εn(t) is just a sum of plane waves in the open channels. One finds readily that J is the sum of the
contributions of each wave and has to be the same far away from the breather at the right side and the left side.

The momentum conservation (5.35) yields

sin q1(1 − |r1|2)− sin q2|r2|2 = sin q1|t1|2 + sin q2|t2|2. (5.36)
The energy flux carried by the real (or the imaginary) part of (5.33), is the sum of the plane waves contributions.5 It can

be decomposed into the sum of an incoming, a reflected and a transmitted flux of energy I , R, T :

I =
C
2
ω1 sin q1 (5.37)

R =
C
2
(ω1 sin q1|r1|2 + ω2 sin q2|r2|2) (5.38)

T =
C
2
(ω1 sin q1|t1|2 + ω2 sin q2|t2|2). (5.39)

Using Eq. (5.36), the difference between the outgoing flux and the incoming flux of energy

R + T − I =
C
2
(ω1 − ω2) sin(−q2)(|r2|2 + |t2|2) > 0 (5.40)

is necessarily positive. Consequently, the scattering process is inelastic.
This result has been illustrated by a calculation of the transmission coefficient through a single breatherwith bandoverlap

(Fig. 6 in [69]).
All above results consider the incoming wave as being scattered by a given time periodic scattering potential, generated

by the breather. Then, the energy flux which is radiated per unit of time (5.40) is generated by the time dependence of
potential. In reality, the incoming wave is scattered by the breather and the change in the outgoing energy flux is taken at
the expense of the internal breather energy. Then, the breather energy should decay slowly in time with a linear rate given
by (5.40). When the amplitude of the incoming wave is small, the energy loss of the breather found in a direct simulation,
is negligible during the numerical experiment and the expected results for the transmitted and reflected energy flux are
recovered. It has been shown (Fig. 6 in [69]) that in addition to the wave vector q1, wave vector q2 is also present in the
transmitted wave.

When the amplitude of the incoming wave is not too small, the rate of radiation of the breather becomes large enough
to be observable. Then, the breather frequency changes in order to accommodate its loss of energy. For example for a soft
potential (e.g. theMorse potential), its frequencyΩb will increase slowly. This situationwill last until either the two-channel
scattering ends or the breather becomes linearly unstable. Then another scenario will continue the breather evolution.

The example shown in Fig. 32 concerns a single breather of the KG chain with a Morse potential for which a two channel
scattering is expected. It is exposed to an appropriate monochromatic wave with wave vector q1 at the left side. Then,

5 This is not true for the special case ω2 = −ω1 (and q1 = −q2) which has to be treated separately.
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its frequency increases (while the breather remains located at the same site), until it reaches an instability threshold. In
that example, the unstable mode is a pinning mode (see chapter 4.2.1). Then, continuing the experiment, the marginal
component [21] of this pinning mode gets excited by the incoming wave and the breather starts to move, ‘‘surfing’’ on the
incoming wave. It accelerates until it reaches a limit velocity.

6. Statistical properties of discrete breathers

This chapter is devoted to a discussion of the role of discrete breathers in statistical properties of nonlinear lattices.
We will begin with analytical results for DNLS lattices, and discuss the possibility to extend and interpret these findings for
other nonlinear lattices.Wewill then review recent progress in computational tools tomeasure distribution functionswhich
characterize DBs. Finally we will slightly touch the extensive body of numerical studies regarding both thermal equilibrium
and transient processes.

6.1. Discrete breathers in thermal equilibrium

So far we have discussed the generic occurrence of discrete breathers in many different nonlinear lattices. The question
then arises whether DBs can play a role in the statistical properties of nonlinear lattices in thermal equilibrium. Before
answering that question, we remind the reader that various approaches exist to emulate a thermal equilibrium. One way
would be to take a very large system and study the microcanonical evolution of it. Another one would be to add friction and
stochastic forces. The latter path leads on one side to faster equilibration, but at the expense that on long enough time scales
the equilibration processes are completely determined by the heat bath which is coupled to the original system. If we want
to first understand the equilibrium properties of the lattice itself, it is better to consider the microcanonical evolution.

An exact DB will of course almost never be realized in a nonlinear lattice at finite temperatures and thus at finite energy
densities. But the evolution of the system could allow for time intervals during which a DB-like state is formed somewhere
on the lattice. Such nonlinear localized excitations (NLE) will be characterized by their spatial localization and their lifetime.
Thus observation of DBs in thermal equilibrium amounts to the observation and characterization of NLEs. We expect that
the properties of these NLEs will be closely related to the properties of exactly corresponding DB solutions.

Thermal equilibrium is characterized by distribution functions, averages and correlation functions. Suppose NLEs are
frequently generated, and their lifetimes are sufficiently large (compared to the DB periods). Which distribution functions
and correlation functions are they affecting? A reasonable expectation is that DBs and NLEs are most strongly influencing
time-dependent correlation functions. Indeed, think of a system of coupled weakly anharmonic oscillators. Compute some
correlation function which is the average of a function of only the displacements, measured at the same time. Assuming a
Gibbs distribution, we can immediately integrate themomentumpart out, and are left with integrals over the displacements
only. Whether the dynamical evolution generates NLEs frequently or not, seems not to have strong impact on the outcome.
But time-dependent correlation functions will be sensitive, since they not only probe the chance to have say a large energy
fluctuation in a small part of the lattice, but they will also store the information whether this fluctuation was able to stay
there (once created) for sufficiently long times or not. In the most general setting, distribution functions which measure
correlations both in time and space are of interest, since they are directly probing coherent excitations which are local in
space and time.

6.1.1. Analytical results for DNLS and spin systems
A number of analytical treatments of DNLS and spin lattices have been recently published. These systems have the

property that besides the total energy another quantity is conserved — the total norm, or spin, or particle number. Note
that these quantities are very different from e.g. total momentumwhich may be conserved for acoustic lattices. The point is
that systems with different total momentum are easily related by a Galilean transformation. That is not true for the particle
numbers or total spins.

Let us begin by closely following the work of Rasmussen et al. [329]. They consider the one-dimensional DNLS equation
in the form

iψ̇m + ψm+1 + ψm−1 + |ψm|
2ψm = 0. (6.1)

The corresponding conserved energy H is given by

H =

∑
m

(
ψ∗

mψm+1 + ψmψ
∗

m+1

)
+

∑
m

1
2
|ψm|

4.

In addition the norm (or particle number) A =
∑

m |ψm|
2 is also conserved by the dynamics of Eq. (6.1).

In order to study the statisticalmechanics of the system, one calculates the classical grand-canonical partition functionZ.
Applying the canonical transformation ψm =

√
Am exp(iφm) the energy

H =

∑
m

2
√
AmAm+1 cos(φm − φm+1)+

1
2

∑
m

A2
m
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and the partition function

Z =

∫
∞

0

∫ 2π

0

∏
m

dφmdAm exp[−β(H + µA)], (6.2)

where the multiplierµ is introduced in analogy with a chemical potential to ensure conservation of A. Integration over the
phase variables φm reduces the symmetrized partition function to

Z = (2π)N
∫

∞

0

∏
m

dAmI0(2β
√
AmAm+1)e

−β
∑
m

(
1
4 (A

2
m+A2m+1)+

µ
2 (Am+Am+1)

)
.

This integral can be evaluated exactly in the thermodynamic limit (N → ∞) using the eigenfunctions and eigenvalues of
the transfer integral operator [329],∫

∞

0
dAmκ(Am, Am+1)y(Am) = λy(Am+1),

where the kernel κ is

κ(x, z) = I0
(
2β

√
xz
)
e−β

(
1
4 (x

2
+z2)+ µ

2 (x+z)
)
. (6.3)

One obtains Z ' (2πλ0)N , as N → ∞ where λ0 is the largest eigenvalue of the operator. The averaged energy density,
h = 〈H〉/N , and the average norm density, a = 〈A〉/N are given by

a = −
1
βλ0

∂λ0

∂µ
, h = −

1
λ0

∂λ0

∂β
− µa.

The average norm density a can also be calculated as

a =
1
Z

∫
∞

0

∏
m

dAmAm exp [−β (H + µA)] ,

where the integral is obtained with the help of the transfer technique [329]. It yields a =
∫

∞

0 y20(A)AdA, where y0 is
the normalized eigenfunction corresponding to the largest eigenvalue λ0 of the kernel κ (6.3). Thus p(A) = y20(A) is the
probability distribution function (PDF) for the amplitudes A.

The problem is now reduced to finding the largest eigenvalue λ0 and the corresponding eigenfunction y0 of the transfer
operator (6.3). Two limits (β → ∞ and β → 0) are amenable to analytical treatment.

The Hamiltonian is bounded from below, and this minimum is realized by a plane wave, ψm =
√
a exp imπ , whose

energy density is h = −2a +
1
2a

2. This relation defines zero temperature, or the β = ∞ line.
In the high temperature limit β � 1. The modified Bessel function in the transfer operator can be approximated, to

leading order, by unity (this amounts to neglecting the coupling term in the Hamiltonian). This reduces the remaining
eigenvalue problem to the approximate solution valid for thermalized independent units,

y0(A) =
1

√
λ0

exp
[
−
β

4

(
A2

+ 2µA
)]
.

Using this approximation and enforcing the constraint βµ = γ (where γ remains finite as one takes the limits β → 0 and
µ → ∞), one obtains h = 1/γ 2 and a = 1/γ . Thus, h = a2 at β = 0.

The left panel in Fig. 33 depicts the two parabolas in the (a, h)-space corresponding to the T = 0 and T = ∞ limits
(thick lines). Within this region all considerations of statistical mechanics in the grand-canonical ensemble are normally
applicable and there is a one-to-one correspondence between (a, h) and (β, µ). Within this range of parameter space one
expects the system to thermalize in accordance with the Gibbs formalism. However, the region of the parameter space
that is experimentally (numerically) accessible is actually wider since it is possible to initialize the lattice at any energy
density h and norm density a above the T = 0 line in an infinite system. A statistical treatment of the remaining domain
of parameter space can be accomplished introducing formally negative temperatures. But the partition function (6.2) is not
suited for that purpose since the constraint expressed in the grand-canonical form fails to bound the Hamiltonian from
above. A discontinuity has to be assigned to the chemical potential. This discontinuity will destroy the analyticity of the
partition function as the transition line is crossed, and will indicate a phase transformation according to standard statistical
mechanics. From the microcanonical point of view it is also natural to consider negative temperatures because it is possible
to maximize the energy under the constraint of a fixed norm in a finite system. It can be seen that the configuration which
realizes thismaximum is an exact breather solution, whose total energy and frequency scale asA2 andN , respectively. Thus,
the number of microstates sharing the same energy E will decrease with increasing E if the norm A is kept fixed. Due to the
definition of temperature (1/T = ∂S/∂E|A), T becomes negative at high energy density and the β = 0 line is the line of
maximum entropy. Actually the constraint of fixed norm A is a topological one, as we will see later.
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Fig. 33. Left panel: Parameter space (a, h), where the shaded area is inaccessible. The thick lines represent the β = ∞ and β = 0 lines and bound the
Gibbs regime. The dashed line represents the h = 2a+

1
2 a

2 line alongwhich the reported numerical simulations were performed (pointed by the symbols).
Figure from [329]. Right panel: Distribution of A = |ψ |

2 for three cases below (and on) the transition line. The solid lines show the results of simulations
and the symbols are given by the transfer operator. Curves are vertically shifted to facilitate visualization. Figure from [329].

In order to characterize the dynamics of both phases (above and under the β = 0 line) and to verify that the system does
relax to a thermalized state, numerical experiments were performed. The parameters (a, h) are restricted to the dashed line
in the left panel of Fig. 33, choosing a perturbed wave with wavevector q = 0 (ψm =

√
a) as an initial condition, for which

the energy norm relationship is h = 2a+
1
2a

2. This state is modulationally unstable, and can be expected to relax into some
equilibrium. For these initial conditions, the important question is whether one can observe different qualitative behavior
on the two sides of the β = 0 line.

The right panel in Fig. 33 shows three typical examples of what can be observedwhen the energy-norm density point lies
below the β = 0 line. The q = 0 wave is unstable and the energy density forms small localized excitations but their lifetime
is not very long and a stationary distribution of the amplitudes Am is reached. The system reaches an equilibrium statewhich
is recovered by means of the transfer operator method. The curvature of log p(A) (i.e., −β) tends to zero when h = a2 (the
cut-off at high amplitudes is due to finite size effects). In this domain of parameter space, high amplitude excitations are
highly improbable and can be considered as rare fluctuations.

The scenario is very different when the energy and norm densities are above the β = 0 line. A rapid creation of breather
excitations due to modulational instability is observed. It is accompanied by a thermalization of the rest of the lattice. Once
created, these localized excitations remain mostly pinned. This introduces new time scales in the thermalization process.

Typical distribution functions of the amplitudes are shown in the left panel in Fig. 34. The system size does influence
the amplitude of the breathers with largest amplitude. The positive curvature of the PDF at small amplitudes indicates that
the system evolves in a regime of negative temperature. A number of numerical simulations give further support to that
surprising behaviour [62,328,327,186].

A very similar analysis of the anisotropic Heisenberg spin chain in classical formulation was performed by Rumpf and
Newell [340]. There the z-component of the total spin for the Heisenberg chain is the analogous quantity to the conserved
norm of the DNLS model. The authors also provided an argument using entropies of different states. They assume that the
system tends to decompose the excitations into few large amplitude localized excitations and a delocalized background. The
conclusion is that the formation of strongly localized excitations does not contradict entropic reasoning, since one has to
compute the total entropy balance. The assumption of a binary mixture of localized and delocalized excitations allows one
to conclude that decrease of the entropy due to the formation of localized excitations can be counterbalanced well by the
increase in the entropy of the delocalized background. In the right panel of Fig. 34 the results of another study of Rumpf [338]
are shown, where the negative or positive temperature situations are achieved by initial conditions of extended waves with
different wave numbers. The formation of the binary mixture is clearly observed for the former one (see also [339]).

6.1.2. Getting the essential, and generalization to other systems
Assuming a Gibbs distribution for the DNLS, we have to fix the values for the inverse temperature β and the chemical

potential µ. For each pair of these values we can compute the average energy and norm densities h and a. The Gibbs
distribution generates a map of the control parameter space {β,µ} onto {h, a}. It follows, that a part of the accessible {h, a}
space is reachable only for formally negative inverse temperatures β < 0. That is a hallmark of a phase transition, and
simulations of the DNLS with {h, a} values from that region show the formation of extremely long-lived breathers on a cold
background of delocalized waves.

In fact this had to be expected, for the following simple reasons. Let us take a large but finite DNLS system in the
anomalous parameter region. Let us fix for convenience the norm density a, and continue to increase the energy density h.
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Fig. 34. Left panel: Distribution of A = |ψ |
2 for parameters (h, a) above the transition line (triangles and stars in Fig. 33). Figure from [329]. Right panel:

Numerical integration of the DNLS with 4096 oscillators. The initial conditions are waves with the wavenumber k = 0 (a), (b), and with k = π/2 (c),
(d) for |φ| = 0.3. (a), (c): Spatiotemporal pattern of high-amplitude states (dark gray) in a small sector of the chain for the first 2000 time steps. (b), (d):
Distribution of ψn (coined φ in the plot) after 2 × 105 time steps. Figure from [338].

That can be done up to a limiting value of h, when all the norm is initially concentrated on a single site. Of course we are free
to choose the site at which that happens, so there is N-fold degeneracy of such states, where N is the total number of sites.
This happens because of the nonlinearity, which allows one to increase the energy by concentrating the available norm in
a small volume of the system. Thus in that very limit there is no other way but to violate the translational invariance of the
dynamical evolution of the system for all times. And that of course contradicts the results for a Gibbs distribution which
treats all sites equally. That means that we have to introduce a new phase of condensed norm (or particles) which evolves
in a mostly coherent and spatially localized manner, and may coexist with the old phase of spatial regions where all sites
are equally sharing the energy and the norm. In other words, we are facing here the fact of the condensation of particles into
lumps (or breathers) upon increase of the energy (or temperature).

We can give further evidence of why this condensation should happen. First, there is a simple energy balance argument.
Assume again that all the norm is concentrated on a single site. Can this state decay into delocalized waves? The energy of
the initial state is A2

2 , but the energy of a delocalized statewould be bounded from above by 2A+
A2

2N . For large enough initial
norm A the initial state has too large an energy and can not be distributed homogeneously over the lattice. The reason is
very simple — the lattice itself imposes an upper limit on the energy of delocalized waves, and decay is thus prevented. This
effect is well known in quantum physics, where two particles which repel each other strongly, form a bound state which
can not decay because the kinetic energy of each particle is bounded by the lattice itself.6 Second, the condensation effect is
already observed for the simplest case of a DNLS dimer as discussed at the beginning of this review in chapter 1.1. Indeed
let us fix the norm to be B > 2C/v4 in that dimer. Then there will be an allowed parameter range for the energy, bounded
from below and above. The second restriction follows from the fact that we can not realize an infinitely large energy state
with a finite norm at hand. Now it is a simple task to understand, that for all energies larger than some value in that range,
all states are not invariant under permutation of the two sites. Vice versa all states with energies less than that intermediate
value are invariant under permutation. Consequently we are faced again with the fact that given a norm and a large enough
energy, the dimer allows only for strongly asymmetric states, when more norm is concentrated on one site as compared to
the other one. Moreover, we can fix the energy and vary the norm instead. Again we find, that the norm can vary in a certain
interval bounded from above and below. All states with norm less than some intermediate value are not invariant under
permutation, while those with norm larger than this intermediate value are invariant. So we can as well expect another
unusual condensation scenario — fixing the energy density and decreasing the norm density should lead to a transition into
a condensate in a large system. Note that large energies are replaced by low energies, if the sign of the nonlinear term in the
equations of motion is inverted.

6 A beautiful experimental verification of this result has been conducted with cold atoms in optical lattices [401], see chapter 10.3.
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Let us return to the case of a large lattice. The additional conservation of the norm can be considered as a global constraint,
whichmay lead to long range correlations. This argument has been used to justify the presence of a phase transition in a one-
dimensional system with otherwise short range interactions. Note also that apart from the extreme case of largest energy
(or smallest norm) the condensed DB fraction of the system may still fluctuate in time. But these time scales must be very
large, since they evidently tend to infinity in the case of extremal energy or norm. Away from them, a given large amplitude
DB can not completely dissolve in the bath of extended waves in order to form again at another site. It can only give away
a small fraction of its own to another site, and wait until other DBs are contributing to that site some excitation fraction
as well. So the process of DB diffusion along the lattice is hindered, and solely based on the collective diffusion of many DB
excitations. That is why the observed DB configurations appear to be frozen on the time scales of the numerical experiments.

What happens ifwe consider a systemwhich does not conserve that normor a similar quantity? Strictly speaking nothing
forbids individual DBs from relaxing into delocalized waves anymore. Yet it is tempting to search for almost conserved
quantities, which change in time perhaps adiabatically slowly. Indeed Johansson and Rasmussen [186] have shown how
to derive a DNLS type model by perturbative expansion of a lattice of interacting anharmonic oscillators, and Johansson
extended that approach to other models as well [181]. These papers show how to derive a map from an original model
to a DNLS one. The norm conservation comes in through an additional constraint on the ratio between the harmonic and
anharmonic potential energy parts. In fact that ratio will be not fixed, but will fluctuate in the original model, leading to a
fluctuation of the norm in the DNLS model. Thus we will smear out the transition line in Fig. 33, and visit different parts
of that region with a certain probability. If the smeared-out region shows considerable overlap with the non-Gibbs part in
Fig. 33, considerable and long-lasting generation of discrete breathers in thermal equilibrium could be expected.

Let us finish by adding another related pathway of understanding the generation of DBs in thermal equilibrium for many
other models. If a DB is excited somewhere in the system due to fluctuations, that process and the persisting nature of the
DB cannot be related to the dynamics of the lattice at too distant points. Roughly speaking we could expect that the effective
size of the system which is relevant for a given DB is determined by its lifetime and the largest distance a plane wave can
cover during that time. And even that will serve as an upper bound in distance. But the idea of additional conservation laws
which make a DB a generic fluctuation in thermal equilibrium, is very tempting. A trace of that idea is found in the study of
reduced problems, which are defined by allowing only a small fraction of sites to be excited, and by fixing all other sites to
their classical groundstate. Then it was shown [133] that these few degree of freedom problems have a mixed phase space.
A part of that phase space is filled by chaotic trajectories, which cannot penetrate certain islands with regular trajectories.
Some of these islands correspond to DB excitations in the full system. Each island contains a central periodic orbit — the DB
itself, which may be characterized by an action J1. Quasiperiodic perturbations of this orbit constitute excitations which
strictly speaking cannot live forever in the full system, but may persist for a long time due to weak resonances. These
quasiperiodic perturbations correspond to additional actions J2, J3, . . . . And these actions imply the existence of locally
conserved quantities. They are simply constants of motion for the reduced problem, and change only adiabatically slowly in
the full lattice. Their presence and number is directly related to the number of localized Floquet eigenstates of the DB itself.
The size of the regular islandmeasures the statistical weight or possibility of ending up in such a state. Thus it is tempting to
say that in a general lattice the localized Floquet eigenstates of a DB and the maximum amplitude of their excitation while
preserving a DB-like evolution are a measure for the statistical relevance of such a DB.

6.1.3. Computational measurement tools for distribution functions
Computational studies of DBs in thermal equilibrium are essential in order to observe and compare the findings to

analytical results. The code should be able to distinguish a DB from a delocalized state or simply from a accidental fluctuation
which may happen in otherwise almost harmonic lattices. In order to do so we can follow different approaches. The first
one needs the definition of an energy (amplitude, norm) scale and a time scale. We may define a DB as an object which
exceeds the given energy scale, and persists for longer times than the given time scale. The time scale may be reasonably
chosen as at least ten times the characteristic oscillation periods. The energy scale is much harder to chose, since the only
other scale at hand is the average energy density. So the energy scale should be chosen to be suitably larger than the average
energy density. But how much larger? And is the choice of the time scale reasonable? There is clearly a lot of ambiguity in
answering these questions ([169] and references therein).

Other approaches try to separate localized from delocalized excitations dynamically. A second approach is suitable for
lattice dimensions d ≥ 2 and for DB excitationswhich are pinned to their lattice points. Then the simple trick is to thermalize
the system (let it evolve for sufficiently long in time so that we can expect it to have good thermal equilibrium, and start
measuring correlation functions in a reproducible way, independent of the initial conditions). Then we switch on radiative
boundaries (for details see e.g. [388,169]). After some transient in time all delocalized excitations will eventually hit the
boundary and be dissipated away. DBs will remain in the system. Then their distribution properties can be measured [93].
This approach cannot be used for one-dimensional systems, because DBs strongly scatter waves there, and efficiently trap
delocalized excitations [169]. That is not the case for higher dimensions, where DBs still scatter waves, but as point defects.

A third approach attaches to each lattice site an auxiliary chainlet of particles. Each chainlet is a purely linear system, and
has a frequency spectrumwhich resonates with the linearmode spectrum of our system under study. Thenwe add damping
at the ends of these chainlets. As a result we will efficiently damp out excitations in the original system which resonate in
frequency with the normal mode spectrum. DB excitations are off resonance, do not leak into the chainlets, and will not be
dissipated away.
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Finally a fourth method consists of taking the evolution of the original system in time, making a Fourier decomposition
of its evolution at each site, and cutting out the frequency part of the linear spectrum. The rest is backtransformed into real
time, giving the evolution of DB like objects [148].

All thesemethods have their advantages and disadvantages, which still have to be studied inmore detail. But it is already
clear, that a combination of all methods will give more confidence from the computational side, and should be further
developed in order to study statistical properties of DBs.

6.2. Discrete breathers in transient processes

Discrete breathers can also form during transient processes, independent of whether the corresponding thermal
equilibrium supports them or not. The most prominent example is the modulational instability of plane waves [308],
discussed in Section 4.3. In some cases it leads to the formation of one large amplitude DB, on the background of cold
delocalized waves (also coined ‘chaotic’ breather), see e.g. [70,228,279,227]. Cooling at the boundaries (see previous
chapter), kicking the system with strong local kicks, and perhaps other nonstationary lattice evolutions can be used to
generate discrete breathers along such transients. We will not focus on the growing amount of numerical data available in
the literature [388,38,390,313,330,241,318]. The interested reader may check a collection of results on all these aspects in
Ref. [169], and the reference list therein. We mention a very recent theoretical proposal by Hennig et al. [165,162], where
a self-organized escape of harmonically coupled oscillators from a metastable state over a potential barrier is discussed.
Modulational instability (see Section 4.3) is used to form spontaneously emerging localizedmodes,which grow into a critical
nucleus. After passing the transition state, the nonlinear chain performs a collective escape event. The average escape times
are much shorter than those assisted by a continuously impacting thermal noise.

We close the section on statistical properties of discrete breathers by first stating, that we intentionally did not try to
review thequite large amount of literature on various numerical studies, since a coherent picture is stillmissing.We secondly
think, that the issue of statistics and discrete breathers has still to be explored, and a few of the above ideas might help to
guide future efforts, which hopefully will give us a more systematic picture of this intriguing subject [383].

7. Discrete vortices

So farwe discussed discrete breather solutionswhich are invariant under time reversal. However, as explained in chapter
1.1, nonlinearity permits us to search also for solutions which are not invariant under symmetry operations, but leave the
equations of motion (and the Hamiltonian) untouched. Violating time-reversal symmetry is equivalent to generating an
energy current or flow. In one-dimensional chains it follows, that a localized DB solution must be time-reversal invariant,
since the energy flow can be directed only along the chain, and due to energy conservation it thusmust be one and the same
in the core and the tails of the DB. In the tails of a DB the amplitudes tend to zero, so that the energy flow should do so as
well. Therefore only zero energy flow is allowed, thus the DB is invariant under time reversal.

In higher dimensional lattices we may think of energy flowing in ring currents, so that spatial localization and energy
conservation no longer forbid the existence of a local nonzero energy flow. A DB solution which carries such a nonzero ring
flow of energy, is also coined a discrete vortex. Two- and higher-dimensional lattices can support discrete breather solutions
carrying a nonzero angular momentum— discrete vortices. Due to the discreteness, the angular momentum is generally not
a conserved quantity. It manifests itself as a screw dislocation of the phase on a closed contour encircling the discrete vortex
excitation [71,72,230], see Fig. 35. Similar to vortices in various continuummodels, discrete vortices can be characterized by
the corresponding angular momentum number S (topological charge, also known as vorticity), i.e. the number of complete
2π twists of the phase along the contour. In two-dimensional lattices we consider a contour at large distances from the
core of the discrete vortex. In the 2D DNLS model, see e.g. Eqs. (1.19) and (4.6), the simplest example of a stationary S = 1
discrete vortex is given by four neighboring sites excited with different phases (in the anti-continuous limit):

Ψn0,m0 = −Ψn0+1,m0+1 = a, Ψn0,m0+1 = −Ψn0+1,m0 = ia, (7.1)

where a is the amplitude. In the anti-continuous limit one can design more complicated structures with different contours
and different topological charges and then continue these solutions to non-zero values of the coupling constant using
e.g. numerical methods discussed in Section 3.2.

The existence of discrete breather solutions carrying a nonzero angular momentum has been suggested in Refs. [249,
18], and later some examples of discrete vortices have been numerically obtained for Klein–Gordon [71,72] and DNLS [187]
lattices. As mentioned in Refs. [71,72,187], and later confirmed in Ref. [252], S = 1 discrete vortices can be linearly stable
for small enough values of the coupling constant. The instability occurring at higher values of the coupling constant and
leading to the vortex breakup into two single localized excitations has been explicitly illustrated in Ref. [252], see Fig. 36.
Later the existence of stable S = 3 discrete vortices in the DNLS model has been confirmed [202]. Recently a more rigorous
study of persistence and stability of various discrete vortices in the DNLS model has been performed [303]. As indicated
in Ref. [303], super-symmetric vortices with topological charges S ≥ 2 can be stabilized by modifications of the discrete
contour. An important update has been reported by Öster and Johansson [297], who studied discrete vortices with various
contours in the DNLS model and explicitly demonstrated an example of a stable S = 2 vortex.
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Fig. 35. A small and a large S = 1 vortex in the 2D Klein–Gordon lattice with quartic anharmonicity. Circles indicate lattice sites, the orientation of each
arrow corresponds to the phase of the site. Figure from Ref. [71].

Fig. 36. Time evolution of the unstable S = 1 discrete vortex in the 2D DNLS model. Grayscale contour plots indicate snapshots of absolute values of
amplitudes of lattice sites at four consecutive time instants. The initial vortex breaks up into two localized excitations with S = 0, bottom left panel, with
subsequent symmetry breaking eventually evolving into a single localized excitation, bottom right panel. Figure from Ref. [252].

Recently Ferrando and co-workers discussed restrictions on the topological charge of discrete vortices imposed by the
lattice symmetry [104,103,198]. It was argued, that lattices with a discrete point symmetry of order n (n = 4 for square
lattices), cannot support vortices of charge larger than n/2. However, as indicated in Ref. [297], this statement is related
to the phase twist belonging solely to the plane-wave part of the Bloch mode associated with the vortex, and does not
contradict earlier findings in Refs. [202,303], where overall phase twists have been considered.

Discrete vorticeswith the unity charge S = 1 have been successfully observed in experimentswith photonic lattices [289,
137,29], see also Section 10.2. Observation of higher order discrete vortices still remains to be the open issue.
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8. Discrete breathers in classical spin lattices

An interesting extension of the breather concept happens when considering a lattice of interacting spins. Spin waves in
magnetically ordered media have been used to analyze nonlinear phenomena and soliton dynamics in condensed matter
already for several decades [225]. Both interactions between spins, and spin anisotropy, are intrinsically nonlinear, allowing
all possible types of nonlinearities in the corresponding macroscopic phenomenological models. Quasi one-dimensional
magnetic crystals, such as layered ferro- and antiferromagnetics, have attracted attention recently. In this section we will
briefly discuss some examples of magnetic discrete breathers, among which there are excitations existing solely due to the
discreteness of the underlying model.

8.1. Heisenberg interaction Hamiltonian and equations of motion

A standard approach to describe spin excitations in ordered magnetic materials is to consider classical interacting spins
with the Heisenberg XYZ interaction Hamiltonian

H = −
1
2

∑
n6=m

∑
α=(x,y,z)

J (nm)α Sαn S
α
m − D

∑
n

(
Szn
)2
, (8.1)

where Sαn are the components of the nth spin vector for the classical spin(
Sxn
)2

+
(
Syn
)2

+
(
Szn
)2

= S2. (8.2)

The total spin is normalized to unity: S = 1, n labels the lattice site (in 1, 2 or 3 dimensions), J (nm)α are the exchange integrals,
J (nm)α > 0 (J (nm)α < 0) corresponds to ferromagnetic (antiferromagnetic) interaction, D is the single-ion anisotropy constant,
and the dipolar interaction between spins is neglected for simplicity.

The equation of motion for the nth spin is the well-known Landau-Lifshitz equation [242,225]:

dESn
dt

= −ESn × EHeff
n − εESn ×

(
ESn × EHeff

n

)
, (8.3)

where EHeff
n = −δH/δESn+ EHn is the effectivemagnetic fieldwhich describes the interactionwith other spins and the external

field EHn. The last term in the r.h.s. of Eq. (8.3) corresponds to the Landau-Gilbert damping which preserves the magnitude
of individual spins, ε is a small parameter which controls the strength of dissipation, and the gyromagnetic ratio is scaled to
unity.Wewill discuss only the case of a homogeneous external field applied along the single-ion anisotropy axis z: EHn ≡ EzH0,
where Ez is the unit vector along the z axis.

Neglecting the dissipation and considering only nearest neighbours interactions and a one-dimensional lattice, Eqs. (8.3)
reduce to

Ṡxn =
1
2

[
JySzn

(
Syn−1 + Syn+1

)
− JzSyn

(
Szn−1 + Szn+1

)]
−
(
2DSzn + H0

)
Syn, (8.4)

Ṡyn =
1
2

[
JzSxn

(
Szn−1 + Szn+1

)
− JxSzn

(
Sxn−1 + Sxn+1

)]
+
(
2DSzn + H0

)
Sxn, (8.5)

Ṡzn =
1
2

[
JxSyn

(
Sxn−1 + Sxn+1

)
− JySxn

(
Syn−1 + Syn+1

)]
. (8.6)

The generalization to higher lattice dimensions is straightforward.

8.2. Easy-axis anisotropy

In the case of easy-axis anisotropy the ground state corresponds to all spins directed along a given axis, which is assumed
to be the z axis. This can be achieved by introducing either a strong exchange anisotropy (Jz, Jy � Jz), or by the on-site
anisotropy term 2D + H0 > 0.

In the case of ferromagnetic interaction (Jx, Jy, Jz > 0) the two ground states are given by Szn = ±1, Sxn = Syn = 0.
Linearizing Eqs. (8.4)–(8.6) around one of these groundstates and taking Sxn = δx sin(qn − ωt), Syn = δy cos(qn − ωt), the
dispersion law for linear spin waves is obtained [410]:

ω2
L (q) = (Jz − Jx cos q)(Jz − Jy cos q)+ 2(2D + H0)

(
Jz −

Jx + Jy
2

cos q
)

+ (2D + H0)
2. (8.7)

Due to the anisotropy, it has a gap, i.e. frequencies are limited not only from above by ωπ ≡ ωL(π) but also from below by
ω0 ≡ ωL(0) > 0, see Fig. 37.
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Fig. 37. Dispersion law for the ferromagnetic chain with strong exchange anisotropy. Figure from [410].

In the case of antiferromagnetic interaction (Jx, Jy, Jz < 0) the two ground states are Szn = ±(−1)n, Sxn = Syn = 0. The
dispersion law for linear spinwaves can be obtained by changing Jy → −Jy in Eq. (8.7). It has qualitatively the same structure,
as for the case of ferromagnetic lattice shown in Fig. 37.

Spin waves in an easy-axis crystal correspond to precessions of spins around one of the ground states, and discrete
breathers can be viewed as localized excitations with the effective radius of precession decreasing to zero as n → ±∞.

8.2.1. The case of XY isotropic exchange interaction
When the exchange interaction in the xy plane is isotropic (Jx = Jy = J), one can search for solutions where the z-

component of each spin is conserved. For such states, it is convenient to introduce new variables S+
n = Sxn + iSyn which

satisfy [396]

iṠ+

n =
J
2
Szn
(
S+

n−1 + S+

n+1

)
−

Jz
2
S+

n

(
Szn−1 + Szn+1

)
− (2DSzn + H0)S+

n , (8.8)

with Szn = (−1)k
√
1 − |Sn|+, k = 2n (k = n) for the case of ferromagnetic (antiferromagnetic) interactions. Eq. (8.8) allows

separation of time and space variables: S+
n = An exp(iωt) (note that the structure of the equations is similar to the ones of

the DNLS model discussed in Section 1.5) [410].
The anharmonicity due to spin interactions is intrinsically soft [10,243], so that for D = 0 one needs to have a gap

in the linear wave spectrum for localized excitations to exist: Ωb < ω0 for DBs. This gap is generated by the anisotropy
Jz 6= Jx, Jy, see Eq. (8.7). When D > 0, the anharmonicity due to single-ion anisotropy is also soft, so the situation remains
qualitatively similar. In this case the gap is present even for the completely isotropic interaction Jz = Jx = Jy, which is the
most studied case in literature, partially due to its relative simplicity. For the case of an antiferromagnetic lattice, by using
lattice Green’s function techniques, Takeno and Kawasaki have shown that even and odd parity localized states exist in the
gap, supported by soft anharmonicity of the system [381,377,382]. A more detailed study of these localized states based on
path-integral formulation has been performed in Ref. [294]. Various localized excitations have been analyzed for the case of
small amplitude spin deviations by using the continuumapproximation [225,167,65].Within the continuumapproximation,
the localized states correspond to envelope solitons—magnetic gap solitons.With the appearance of publications ondiscrete
breathers, the one-dimensional Heisenberg antiferromagnetic chainwas re-considered by Lai, Kiselev and Sievers [232,233],
who numerically found site-centered and bond-centered discrete breathers and studied stability and mobility properties of
these solutions. A rigorous proof of existence of such stationary discrete breathers has been performed by Zolotaryuk et al.
[410], and Speight and Sutcliffe [372]. Several experiments aimed to detect discrete breathers in layered antiferromagnetic
crystals have been performed. We discuss these results in more detail in Section 10.5.

One can see from Eq. (8.8), that the external field can be removed by transforming into a rotating frame of reference
S+
n → S+

n exp(−iH0t). Thus, if Eq. (8.8) does not have localized solutions for H0 = 0, nothing changes for the case of a
nonzero H0. However, a large enough magnetic field can change the ground state, and that will call for a new dispersion
relation of small amplitude waves, may destroy the preservation of the z-component of each spin on certain solutions, etc.
E.g. for negative single-ion isotropy, D < 0, the external field can be used to make the frequency space above the linear
dispersion accessible for DBs. For H0 = 0 and negative D the z axis will be the hard axis of the ferromagnetic crystal, so that
the system becomes of the easy-plane type. However, by applying a strong magnetic field along the z axis (H0 > 2|D|), one
can enforce the ground state to be aligned again along the z axis (similar to easy-axis anisotropy). Negative D implies hard
anharmonicity which starts to dominate over the soft anharmonicity due to spin–spin interactions in the limit of a strongly
localized excitation. Then, stationary discrete breathers can be found above the linear spectrum,Ωb > ωπ [396,326].

8.2.2. The case of anisotropy in the XY plane
Breaking the isotropy in the xy plane, Jx 6= Jy, the z component of each spin will be no longer conserved for periodic DB

solutions, and the separation of time and space variables is not valid. It is still possible to find discrete breather solutionswith
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Fig. 38. Left panel—Discrete breather profile at a fixed instant of time, Jx = 0.1, Jy = 0.23, Jz = 1, D = 0. The Sxn component is not shown, but it a structure
similar to the Syn component. Right panel — Dynamics of the central spin for the DB shown in the left panel. Figures from [410].

themain frequency located inside the gap, however they involve an infinite number of higher harmonics. A rigorous proof of
existence of such DB solutions has been performed by Zolotaryuk et al. [410] for the case of strong anisotropy, and later was
extended to a larger range of parameters, including the case of easy-plane anisotropy discussed below, by Noble [293]. The
precessions of spins around the z axis are no longer symmetric, each spin draws an ‘‘elliptic’’ trajectory on the unit sphere,
elongated towards the larger component of Jx or Jy, see Fig. 38. The lattice is crucial for the existence of such solutions, so
that one can avoid resonances of higher harmonics with the linear wave spectrum, see Section 1.3. Linear stability analysis
yields that site-centered DBs are stable at least in the limit of small exchange constants (i.e. close to the anticontinuous
limit), while their bond-centered counterparts are unstable [410]. This generalizes earlier results for stationary DBs [233].

8.3. Easy-plane anisotropy

Consider the simplest example of easy-plane anisotropy given by Jx = Jy = Jz = J and D < 0. Without loss of generality,
the ground state of the system can be assumed to be Sxn = 1, Syn = Szn = 0. It is degenerated, so that the spins can be oriented
arbitrarily in the xy plane, but they must stay parallel to each other (ferromagnetic case). The linear dispersion law is now
given by [410]

ω2(q) = J2(1 − cos q)2 + 2J|D|(1 − cos q). (8.9)

It is acoustic-like (i.e. it has no gap), but negative D implies hard anharmonicity, so that strongly localized discrete breathers
(for which anharmonicity due to single-ion anisotropy dominates over that due to spin interactions) can be excited above
the linear band, ω > ωπ [410,293]. A discrete breather in this case corresponds to a few spins performing out-of-plane
precessions around the hard z axis, while the rest are precessing around the ground state (directed along the x axis)
with decreasing radius of precession as n → ±∞, see Fig. 39. Two examples of highly localized (narrow) and weakly
localized (wide) discrete breathers are illustrated in Fig. 40. Approaching the edge of the linear band, DBs become more
delocalized, simultaneously the amplitude of precession of the central spin becomes larger. Hence, even when very close to
the linear band, such DBs have a structure that has no analog in the continuum case and do not asymptotically approach the
band-edge spin wave. This topological difference is the reason for the appearance of nonzero energy thresholds for these
DBs [410].

Linear stability analysis yields that the site-centered DB is unstable close to the anticontinuous limit, while its bond-
centered counterpart with two out-of-plane spins is stable [410]. This result is typical for FPU-type lattices with an acoustic
spectrum, see Section 4.2.1. Modulational instability of extended spin waves was studied in [292].
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Fig. 39. Schematic representation of a discrete breather with one ‘out-of-plane’ spin in the easy-plane magnet. Figure from [410].

Fig. 40. Left panel— Discrete breather profile for J = 0.1, D = −1, ωnarrow = 1.1967 (diamonds) and ωwide = 0.6649 (crosses). The inset shows the linear
dispersion law and the location of breather frequencies. Right panel — Dynamics of the central spin for the two DBs shown in the left panel. The lower
latitude orbit corresponds to the lower frequency DB. Figures from [410].

8.4. Discrete breathers in higher-dimensional spin lattices

Finally, we mention the existence of discrete breathers in higher dimensional spin lattices, some examples of which
have been discussed in Refs. [410,204] for the case of a two-dimensional ferromagnetic lattice with easy-plane anisotropy.
Apparently, no stable DB with a single out-of-pane precessing spin can be found, similar to the one-dimensional case. Also
different two and three out-of-plane precessing spins configurations are unstable at least close to the anticontinuous limit.
Thus the simplest stable configurations found so far involve four spins [410].

9. Quantum breathers

A natural question is what remains of discrete breathers if the corresponding quantum problem is considered [247,
139]. The many-body Schrödinger equation is linear and translationally invariant, therefore all eigenstates must obey the
Bloch theorem. Thus we cannot expect eigenstates of the Hamiltonian to be spatially localized (on the lattice). What is the
correspondence between the quantum eigenvalue problem and the classical dynamical evolution?
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The concept of tunneling is a possible answer to this puzzle. Naively speaking we quantize the family of periodic orbits
associatedwith a discrete breather located somewhere on the lattice. Notice that there are asmany such families as there are
lattice sites. The quantization (e.g., Bohr–Sommerfeld) yields some eigenvalues. Since we can perform the same procedure
with any family of discrete breather periodic orbits which differ only in their location on the lattice, we obtain N-fold
degeneracy for every thus obtained eigenvalue, where N stands for the number of lattice sites. Unless we consider the
trivial case of uncoupled lattice sites, these degeneracies will be lifted. Consequently, we will instead obtain bands of states
with finite band width. These bands will be called quantum breather bands. The inverse tunneling time of a semiclassical
breather from one site to a neighboring one is a measure of the bandwidth.

We can then formulate the following expectation: if a classical nonlinearHamiltonian lattice possesses discrete breathers,
its quantum counterpart should show up with nearly degenerate bands of eigenstates, if the classical limit is considered.
The number of states in such a band is N , and the eigenfunctions are given by Bloch-like superpositions of the semiclassical
eigenfunctions obtained using the mentioned Bohr–Sommerfeld quantization of the classical periodic orbits. By nearly
degenerate we mean that the bandwidth of a quantum breather band is much smaller than the spacing between different
breather bands and the average level spacing in the given energy domain, and the classical limit implies large eigenvalues.

Another property of a quantum breather state is that such a state shows up with exponential localization in appropriate
correlation functions [398]. This approach selects all many-particle bound states, nomatter how deep one is in the quantum
regime. In this sense quantum breather states belong to the class of many-particle bound states.

For large energies and N the density of states becomes large too. What will happen to the expected quantum breather
bands then?Will the hybridization with other non-breather states destroy the particle-like nature of the quantum breather,
or not? What is the impact of the nonintegrability of most systems allowing for classical breather solutions? Since the
quantum case corresponds to a quantization of the classical phase space, we could expect that chaotic trajectories lying
nearby classical breather solutions might affect the corresponding quantum eigenstates.

From a computational point of view we are very much restricted in our abilities to study quantum breathers. Ideally
we would like to study quantum properties of a lattice problem in the high energy domain (to make contact with classical
states) and for large lattices. This is typically impossible, since solving the quantum problem amounts to diagonalizing the
Hamiltonian matrix with rank bN where b is the number of states per site, which should be large to make contact with
classical dynamics. Thus typically quantumbreather states have been so far obtained numerically for small one-dimensional
systems [398,358,276].

9.1. The Bose–Hubbard chain and related models

One of the few exceptions is the quantum discrete nonlinear Schrödinger equation (also called Bose–Hubbard model)
with the Hamiltonian [364]

H = −

N∑
l=1

[
1
2
aĎl a

Ď
l alal + C(aĎl al+1 + h.c.)

]
(9.1)

and the commutation relations

alaĎm − aĎmal = δlm (9.2)

with δlm being the standard Kronecker symbol. This Hamiltonian conserves the total number of particles

B =

∑
l

nl, nl = aĎl al. (9.3)

For b particles and N sites the number of basis states is

(b + N − 1)!
b!(N − 1)!

. (9.4)

For b = 0 there is just one trivial state of an empty lattice. For b = 1 there are N states which correspond to one-boson
excitations. These states are similar to classical extendedwave states. For b = 2 the problem is still exactly solvable, because
it corresponds to a two-body problem on a lattice. A corresponding numerical solution is sketched in Fig. 41. Note the wide
two-particle continuum, and a single band located below. This single band corresponds to quasiparticle states characterized
by one single quantum number (related to the wavenumber q). These states are two-particle bound states. The dispersion
of this band is given [364] by

E = −

√
1 + 16C2 cos2

( q
2

)
. (9.5)

Any eigenstate from this two-particle bound state band is characterized by exponential localization of correlations, i.e. when
represented in some set of basis states, the amplitude or overlap with a basis state where the two particles are separated
by some number of sites is exponentially decreasing with increasing separation distance. Note that a compact bound state
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Fig. 41. Spectrum of the quantum DNLS with b = 2 and N = 101. The energy eigenvalues are plotted versus the wavenumber of the eigenstate. Figure
from [364].

is obtained for q = ±π , i.e. for these wave numbers basis states with nonzero separation distance do not contribute to the
eigenstate at all [88].

Increasing the number of particles to b = 3 or larger calls for computational tools. Eilbeck [88] has recently provided
updated codes inMaple in order to deal with systemswith up to b = 4 andN = 14 [78], implying a Hilbert space dimension
of 2380 (there are

(N+b−1
b

)
ways to distribute b identical particles on N sites). Extensions to higher-dimensional lattices are

also possible [88].
Further progress was achieved by using efficient number state representations for systems without conservation of

number of quanta [323,321,322,324], for systems where the effective phonon–phonon interaction comes through an
electron–phonon interaction [397], for various models of molecular lattices [320,319,97], and for broken translational
symmetry [90].

While these studies revealed a lot of new structures of the corresponding spectra,we still have towait formore systematic
studies. Since the classical limit is still not easily reachable for these large systems,wewillmainly discuss in the next sections
systematic studies of small systems, which allow one to boost the energies into the semiclassical domain.

9.2. The dimer

A series of paperswas devoted to the properties of the quantumdimer [35,36,22,191]. This systemdescribes the dynamics
of bosons fluctuating between two sites. The number of bosons is conserved, and together with the conservation of energy
the system appears to be integrable. Of course, one cannot consider spatial localization in such a model. However, a
reduced form of the discrete translational symmetry — namely the permutational symmetry of the two sites — can be
imposed. Together with the addition of nonlinear terms in the classical equations of motion the dimer allows for classical
trajectories which are not invariant under permutation. The phase space can be completely analyzed, all isolated periodic
orbits can be found. There appears exactly one bifurcation on one family of isolated periodic orbits, which leads to the
appearance of a separatrix in phase space. The separatrix separates three regions — one invariant and two non-invariant
under permutations. The subsequent analysis of the quantum dimer demonstrated the existence of pairs of eigenstates
with nearly equal eigenenergies [35]. The separatrix and the bifurcation in the classical phase space can be traced in the
spectrum of the quantum dimer [22].

The classical Hamiltonian may be written as

H = Ψ ∗

1 Ψ1 + Ψ ∗

2 Ψ2 +
1
2

(
(Ψ ∗

1 Ψ1)
2
+ (Ψ ∗

2 Ψ2)
2)

+ C
(
Ψ ∗

1 Ψ2 + Ψ ∗

2 Ψ1
)

(9.6)

with the equations of motion Ψ̇1,2 = i∂H/∂Ψ ∗

1,2. The model conserves the norm (or number of particles) B = |Ψ1|
2
+ |Ψ2|

2.
Let us parameterize the phase space of (9.6) with Ψ1,2 = A1,2eiφ1,2 , A1,2 ≥ 0. It follows that A1,2 is time independent and

φ1 = φ2 +∆with∆ = 0, π and φ̇1,2 = ω being also time independent. Solving the algebraic equations for the amplitudes
of the IPOs we obtain

I : A2
1,2 =

1
2
B, ∆ = 0, ω = 1 + C +

1
2
B, (9.7)

II : A2
1,2 =

1
2
B, ∆ = π, ω = 1 − C +

1
2
B, (9.8)
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III : A2
1 =

1
2
B
(
1 ±

√
1 − 4C2/B2

)
, ∆ = 0, ω = 1 + B. (9.9)

IPO III corresponds to two elliptic solutions which break the permutational symmetry. IPO III exists for B ≥ Bb with Bb = 2C
and occurs through a bifurcation from IPO I. The corresponding separatrixmanifold is uniquely defined by the energy of IPO I
at a given value of B ≥ Bb. Thismanifold separates three regions in phase space— twowith symmetry broken solutions, each
one containing one of the IPOs III, and one with symmetry conserving solutions containing the elliptic IPO II. The separatrix
manifold itself contains the hyperbolic IPO I. For B ≤ Bb only two IPOs exist — IPO I and II, with both of them being of elliptic
character. Remarkably there exist no other IPOs, and the mentioned bifurcation and separatrix manifolds are the only ones
present in the classical phase space of (9.6).

To conclude the analysis of the classical part, we list the energy properties of the different phase space parts separated
by the separatrix manifold. First it is straightforward to show that the IPOs (9.7)–(9.9) correspond to maxima, minima or
saddle points of the energy in the allowed energy interval for a given value of B, with no other extrema or saddle points
present. It follows

E1 = H(IPO I) = B +
1
4
B2

+ CB, (9.10)

E2 = H(IPO II) = B +
1
4
B2

− CB, (9.11)

E3 = H(IPO III) = B +
1
2
B2

+ C2. (9.12)

For B < Bb we have E1 > E2 (IPO I — maximum, IPO II — minimum). For B ≥ Bb it follows E3 > E1 > E2 (IPO III — maxima,
IPO I — saddle, IPO II — minimum). If B < Bb, then all trajectories are symmetry conserving. If B ≥ Bb, then trajectories with
energies E1 < E ≤ E3 are symmetry breaking, and trajectories with E2 ≤ E ≤ E1 are symmetry conserving.

The quantum eigenvalue problem amounts to replacing the complex functions Ψ ,Ψ ∗ in (9.6) by the boson annihilation
and creation operators a, aĎ with the standard commutation relations (to enforce the invariance under the exchange
Ψ ⇔ Ψ ∗ the substitution has to be done on rewriting ΨΨ ∗

= 1/2(ΨΨ ∗
+ Ψ ∗Ψ )):

H =
5
4

+
3
2

(
aĎ1a1 + aĎ2a2

)
+

1
2

(
(aĎ1a1)

2
+ (aĎ2a2)

2
)

+ C
(
aĎ1a2 + aĎ2a1

)
. (9.13)

Note that h̄ = 1 here, and the eigenvalues b of B = aĎ1a1 + aĎ2a2 are integers. Since B commutes with H we can diagonalize
the Hamiltonian in the basis of eigenfunctions of B. Each value of b corresponds to a subspace of the dimension (b+1) in the
space of eigenfunctions of B. These eigenfunctions are products of the number states |n〉 of each degree of freedom and can
be characterized by a symbol |n,m〉 with n bosons in the site 1 and m bosons in the site 2. For a given value of b it follows
m = b − n. So we can actually label each state by just one number n: |n, (b − n)〉 ≡ |n〉. Consequently the eigenvalue
problem at fixed b amounts to diagonalizing the matrix

Hnm =


5
4

+
3
2
b +

1
2

(
n2

+ (b − n)2
)

n = m

C
√
n(b + 1 − n) n = m + 1

C
√
(n + 1)(b − n) n = m − 1

0 else

(9.14)

where n,m = 0, 1, 2, . . . , b. Notice that the matrix Hnm is a symmetric band matrix. The additional symmetry Hnm =

H(b−n),(b−m) is a consequence of the permutational symmetry of H . For C = 0 the matrix Hnm is diagonal, with the property
that each eigenvalue is doubly degenerate (except for the state |b/2 for even values of b). The classical phase space contains
only symmetry broken trajectories, with the exception of IPO II and the separatrix with IPO I (in fact in this limit the
separatrix manifold is nothing but a resonant torus containing both IPOs I and II). With the exception of the separatrix
manifold, all tori break permutational symmetry and come in two groups separated by the separatrix. Then quantizing each
group will lead to pairs of degenerate eigenvalues — one from each group. There is a clear correspondence to the spectrum
of the diagonal (C = 0) matrix Hnm. The eigenvalues H00 = Hbb correspond to the quantized IPOs III. With increasing n the
eigenvalues Hnn = H(b−n),(b−n) correspond to quantized tori further away from the IPO III. Finally the states with n = b/2
for even b or n = (b− 1)/2 for odd b are the tori most close to the separatrix. Switching the side diagonals on by increasing
C will lead to a splitting of all pairs of eigenvalues. In the case of small values of b these splittings have no correspondence to
classical system properties. However, in the limit of large bwe enter the semiclassical regime, and due to the integrability of
the system, eigenfunctions should correspond to tori in the classical phase space which satisfy the Einstein–Brillouin–Keller
quantization rules. Increasing C from zero will lead to a splitting ∆En of the eigenvalue doublets of C = 0. In other words,
we find pairs of eigenvalues, which are related to each other through the symmetry of their eigenvectors and (for small
enough C) through the small value of the splitting. These splittings have been calculated numerically and using perturbation
theory [35,22]. In the limit of large b the splittings are exponentially small for energies above the classical separatrix energy
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Fig. 42. Eigenvalues versus ordered state number ñ for symmetric and antisymmetric states (0 < ñ < b/2 for both types of states). Parameters: b = 600
and C = 50. Inset: Density of states versus energy. Figure from [22].

Fig. 43. Eigenvalue splittings versus ñ for b = 150 and C = 10. Solid line — numerical result, dashed line — perturbation theory. Inset: Same for b = 600
and C = 50. Only numerical results are shown. Figure from [22].

(i.e. for classical trajectorieswhich are not invariant under permutation). If the eigenenergies are lowered below the classical
separatrix energy, the splittings grow rapidly up to the mean level spacing.

In Fig. 42 the results of a diagonalization of a system with 600 particles (b = 600) is shown [22]. The inset shows the
density of states versus energy, which nicely confirms the predicted singularity at the energy of the separatrix of the classical
counterpart. In order to compute the exponentially small splittings, we may use e.g. a Mathematica routine which allows
one to choose arbitrary values for the precision of computations. Here we chose precision 512. In Fig. 43 the numerically
computed splittings are compared to perturbation theory results. As expected, the splittings become extremely small above
the separatrix. Consequently these states will follow for a long time the dynamics of a classical broken symmetry state.

9.3. The trimer

The integrability of the dimer does not allow a study of the influence of chaos (i.e. nonintegrability) on the tunneling
properties of the mentioned pairs of eigenstates. A natural extension of the dimer to a trimer adds a third degree of freedom
without adding a new integral of motion. Consequently the trimer is nonintegrable. A still comparatively simple numerical
quantization of the trimer allows a study of the behavior of many tunneling states in the large-energy domain of the
eigenvalue spectrum [117].
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Fig. 44. A part of the eigenenergy spectrum of the quantum trimer as a function of δ with b = 40 and C = 2. Lines connect data points for a given state.
Solid lines — symmetric eigenstates; thick dashed lines — antisymmetric eigenstates. Figure from [117].

Similarly to the dimer, the quantum trimer Hamiltonian is represented in the form

H =
15
8

+
3
2
(aĎ1a1 + aĎ2a2 + aĎ3a3)+

1
2

[
(aĎ1a1)

2
+ (aĎ2a2)

2
]

+ C(aĎ1a2 + aĎ2a1)+ δ(aĎ1a3 + aĎ3a1 + aĎ2a3 + aĎ3a2). (9.15)

Again B = aĎ1a1 +aĎ2a2 +aĎ3a3 commutes with the Hamiltonian, thus we can diagonalize (9.15) in the basis of eigenfunctions
of B. For any finite eigenvalue b of B the number of states is finite, namely (b + 1)(b + 2)/2. Thus the infinite dimensional
Hilbert space separates into an infinite set of finite dimensional subspaces, each subspace containing only vectors with
a given eigenvalue b. These eigenfunctions are products of the number of states |n〉 of each degree of freedom and can
be characterized by a symbol |n,m, l〉 where we have n bosons on site 1, m bosons on site 2, and l bosons on site 3.
For a given value b it follows that l = b − m − n. So we can actually label each state by just two numbers (n,m):
|n,m, (b − n − m)〉 ≡ |n,m〉. Note that the third site added to the dimer is different from the first two sites. There is
no boson–boson interaction on this site. Thus site 3 serves simply as a boson reservoir for the dimer. Dimer bosonsmay now
fluctuate from the dimer to the reservoir. The trimer has the same permutational symmetry as the dimer.

The matrix elements of (9.15) between states from different b subspaces vanish. Thus for any given b the task amounts
to diagonalizing a finite dimensional matrix. The matrix has a tridiagonal block structure, with each diagonal block being a
dimer matrix (9.14). The nonzero off-diagonal blocks contain interaction terms proportional to δ. We consider symmetric
|Ψ 〉s and antisymmetric |Ψ 〉a states. The structure of the corresponding symmetric and antisymmetric decompositions of
H is similar to H itself. In the following we will present results for b = 40. We will also drop the first two terms of the RHS
in (9.15), because these only lead to a shift of the energy spectrum. Since we evaluate the matrix elements explicitly, we
need only a few seconds to obtain all eigenvalues and eigenvectors with the help of standard Fortran routines. In Fig. 44 we
plot a part of the energy spectrum as a function of δ for C = 2 [117]. As discussed above, the Hamiltonian decomposes into
noninteracting blocks for δ = 0, each block corresponding to a dimer with a boson number between 0 and b. For δ 6= 0
the block–block interaction leads to typical features in the spectrum, like, e.g., avoided crossings. The full quantum energy
spectrum extends roughly over 103, which implies an averaged spacing of order 100. Also the upper third of the spectrum
is diluted compared to the lower two thirds. The correspondence to the classical model is obtained with the use of the
transformation Ecl = Eqm/b2 + 1 and for parameters C/b and δ/b (the classical value for B is B = 1).

The main result of this computation so far is that tunneling pairs of eigenstates of the dimer persist in the nonintegrable
regime δ 6= 0. However at certain pair-dependent values of δ a pair breaks up. From the plot in Fig. 44 we cannot judge how
the pair splittings behave. In Fig. 45 we plot the pair splitting of the pair which has energy ≈ 342 at δ = 0 [120]. Denote
with x, y, z the eigenvalues of the site number operators n1, n2, n3. We may consider the quantum states of the trimer at
δ = 0 when z is a good quantum number and then follow the evolution of these states with increasing δ. The state for δ = 0
can be traced back to C = 0 and be thus characterized in addition by x and y. The chosen pair states are then characterized
by x = 26(0), y = 0(26) and z = 14 for C = δ = 0. Note that this pair survives approximately 30 avoided crossings before
it is finally destroyed at coupling strength δ ≈ 2.67 as seen in Fig. 44.

From Fig. 45 we find that the splitting rapidly increases gaining about eight orders of magnitude when δ changes from 0
to slightly above 0.5. Then this rapid but nevertheless smooth rise is interrupted by very sharp spikes when the splitting∆E
rises by several orders of magnitude with δ changing by mere percents and then abruptly changes in the opposite direction
sometimes even overshooting its pre-spike value. Such spikes, some larger, some smaller, repeat with increasing δ until
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Fig. 45. Level splitting versus δ for a level pair as described in the text. Solid line — numerical result. Dashed line — semiclassical approximation. Filled
circles — location of wave function analysis in Fig. 46. Figure from [120].

the splitting value approaches the mean level spacing (of order one in the figure). Only then one may say that the pair is
destroyed since it can be hardly distinguished among the other trimer levels.

Another observation is presented in Fig. 46 [120]. We plot the intensity distribution of the logarithm of the squared
symmetric wave function of our chosen pair for five different values of δ = 0, 0.3, 0.636, 1.0, 1.8 (their locations are
indicated by filled circles in Fig. 45). We use the eigenstates of B as basis states. They can be represented as |x, y, z >
where x, y, z are the particle numbers on sites 1, 2, 3, respectively. Due to the commutation of Bwith H two site occupation
numbers are enough if the total particle number is fixed. Thus the final encoding of states (for a given value of b) can be
chosen as |x, z. The abscissa in Fig. 46 is x and the ordinate is z. Thus the intensity plots provide us with information about
the order of particle flow in the course the tunneling process. For δ = 0 (Fig. 46(a)) the only possibility for the 26 particles
on site 1 is to directly tunnel to site 2. Site 3 is decoupled with its 14 particles not participating in the process. The squared
wave function takes the form of a compact rim in the (x, z) plane which is parallel to the x axis. Nonzero values of the wave
function are observed only on the rim. This direct tunneling has been described in chapter 9.2. When switching on some
nonzero coupling to the third site, the particle number on the dimer (sites 1, 2) is no longer conserved. The third site serves
as a particle reservoir which is able either to collect particles from or supply particles to the dimer. This coupling will allow
for nonzero values of the wave function away from the rim. But most importantly, it will change the shape of the rim. We
observe that the rim is bent down to smaller z values with increasing δ. That implies that the order of tunneling (when,
e.g., going from large to small x values) is as follows: first, some particles tunnel from site 1 to site 2 and simultaneously
from site 3 to site 2 (Fig. 47(a)). Afterwards particles flow from site 1 to both sites 2 and 3 (Fig. 47(b)). With increasing δ
the structure of the wave function intensity becomes more and more complex, possibly revealing information about the
classical phase space flow structure. Thus we observe three intriguing features. First, the tunneling splitting increases by
eight orders ofmagnitudewhen δ increases from zero to 0.5. This seems to be unexpected, since at those values perturbation
theory in δ should be applicable (at least Fig. 44 indicates that this should be true for the levels themselves). The semiclassical
explanation of this result was obtained in [120].

The second observation is that the tunneling begins with a flow of particles from the bath (site 3) directly to the empty
site which is to be filled (with simultaneous flow from the filled dimer site to the empty one). At the end of the tunneling
process the initially filled dimer site is giving particles back to the bath site. Again this is an unexpected result, since it
implies that the particle number on the dimer is increasing during the tunneling, which seems to decrease the tunneling
probability, according to the results for an isolated dimer. These first two results are closely connected (see [120] for a
detailed explanation).

The third result concerns the resonant structure on top of the smooth variation in Fig. 45. The resonant enhancements
and suppressions of tunneling are related to avoided crossings. Their presence implies that a fine tuning of the system
parameters may strongly suppress or enhance tunneling which may be useful for spectroscopic devices. In Fig. 48 we show
the four various possibilities of avoided crossings between a pair and a single level and between two pairs, and the schematic
outcome for the tunneling splitting [120]. If the interaction to further more distant states in the spectrum is added, the
tunneling splitting can become exactly zero [315] for some specific value of the control parameter. In such a rare situation
the tunneling is suppressed for all times.

9.4. Quantum roto-breathers

When discussing classical breather solutions we have been touching some aspects of roto-breathers, including their
property of being not invariant under time reversal symmetry. In a recent study Dorignac et al. have performed [79] an
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Fig. 46. Contour plot of the logarithm of the symmetric eigenstate of the chosen tunneling pair (cf. Fig. 44) for five different values of δ =

0, 0.3, 0.636, 1.0, 1.8 (their location is indicated by filled circles in Fig. 45). (a): three equidistant grid lines are used; (b)–(e): ten grid lines are used.
Minimum value of squared wave function is 10−30 , maximum value is about 1. Figure from [120].

analysis of the corresponding quantum roto-breather properties in a dimer with the Hamiltonian

H =

2∑
i=1

{
p2i
2

+ α(1 − cos xi)
}

+ ε(1 − cos(x1 − x2)). (9.16)
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Fig. 47. Order of tunneling in the trimer. Filled large circles — sites 1 and 2, filled small circle — site 3. Arrows indicate direction of transfer of particles.
Figure from [120].

Fig. 48. Level splitting variation at avoided crossings. Inset: Variation of individual eigenvalues participating in the avoided crossing. Solid lines —
symmetric eigenstates, dashed lines — antisymmetric eigenstates. Figure from [120].

The classical roto-breather solution consists of one pendulum rotating and the other oscillating with a given period Tb. Since
the model has two symmetries – permutation of the indices and time-reversal symmetry – which may be both broken by
classical trajectories, the irreducible representations of quantum eigenstates contain four symmetry sectors (with possible
combinations of symmetric or antisymmetric stateswith respect to the two symmetry operations). Consequently, a quantum
roto-breather state belongs to a quadruplet of weakly split states rather than to a pair as discussed above. The schematic
representation of the appearance of such a quadruplet is shown in Fig. 49 [79]. The obtained quadruplet has an additional
fine structure as compared to the tunneling pair of the above considered dimer and trimer. The four levels in the quadruplet
define three characteristic tunneling processes. Two of them are energy or momentum transfer from one pendulum to
the other one, while the third one corresponds to total momentum reversal (which restores time reversal symmetry). The
dependence of the corresponding tunneling rates on the coupling ε is shown for a specific quadruplet from [79] in Fig. 50. For
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Fig. 49. Schematic representation of the sumof two pendula spectra. Straight solid arrows indicate the levels to be added and dashed arrows the symmetric
(permutation) operation. The result is indicated in the global spectrum by a curved arrow. The construction of the quantum roto-breather state is explicitly
represented. Figure from [79].

Fig. 50. Dependence of different splittings of a quadruplet on ε. Only three of them have been displayed, each being associated with a given tunneling
process. Figure from [79].

veryweak coupling ε � 1 the fastest tunneling process will bemomentum reversal, since tunneling between the pendula is
blocked. However as soon as the coupling is increased, the momentum reversal becomes the slowest process, with breather
tunneling from one pendulum to the other one being orders of magnitude faster. Note that again resonant features on these
splitting curves are observed, which are related to avoided crossings.

9.5. Large lattices with fluctuating numbers of quanta

A number of publications are devoted to the properties of quantum breathers in chains and two-dimensional lattices of
coupled anharmonic oscillators. For the respective one-dimensional case, the Hamiltonian is given by

H =

∑
n

[
1
2
p2n + V (xn)+ W (xn − xn−1)

]
. (9.17)

Here V (x) =
1
2x

2
+

1
4v4x

4 (or similar) and the nearest neighbour coupling W (x) =
1
2Cx

2. The classical version of such
models conserves only the energy, but not any equivalent of a norm. Therefore, no matter whether one uses creation
and annihilation operators of the harmonic oscillator [321], or similar operators which diagonalize the single anharmonic
oscillator problem [322], the resulting Hamiltonian matrix will not commute with the corresponding number operator.
Calculations will typically be restricted to 4–6 quanta, and lattice sizes of the order of 30 for d = 1, 13× 13 for d = 2 [321].
With these parameters one can calculate properties of quantum breather states, which correspond to typically two quanta
which are bound (with unavoidable states with different number of quanta, contributing as well). For large enough v4 a
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Fig. 51. Eigenspectrum of a chain with 33 sites for parameters (a) C = 0.05, v4 = 0.2, and (b) C = 0.05, v4 = 0.02. The inserts show magnifications
of the fundamental branch (left) and overtone region (right). The quantum breather branch is marked by (2), and the two-phonon band by (11). Figure
from [321].

complete gap opens between the two-quanta continuum and quantum breather states [398,321] (Figs. 51 and 52). When
decreasing the anharmonic constant v4, Proville found, that the gap closes for certain wave numbers, but persists for others,
becoming a pseudogap [323,321] (Fig. 51).

Involved calculations of the dynamical structure factor (e.g. available by neutron scattering in crystals) have shown, that
signatures of quantumbreathers are imprinted in these integral characteristics of the underlying lattice dynamics [398,322],
yet the working out of these differences may become a subtle task (see Fig. 53 for an example).

Finally, Fleurov et al. [140] estimated the influence of the tunnel splitting of a dimer, when embedded in an infinite
chain. This situation is close to the tunneling of a very localized DB, so that the nonlinearity (interaction between bosons)
can be taken into account only on the two sites, which participate in the tunneling, while the nonlinearity can be neglected
on all other sites. Using path integral techniques, the computed tunneling splitting has been shown to become smaller as
compared to the case of an isolated dimer. This is due to the fact, that a DB in an infinite chain has a core and a localized tail.
That tail has to be carried through the tunneling process as well, and in analogy with a single particle tunneling in a double
well, the tail increases the effective mass of such a particle. Consequently the exponential tail of a DB in an infinite chain
tends to decrease its ability to perform quantum tunnelingmotion, yet it never leads to a full suppression of tunneling [140].

9.6. Evolution of quantum localized states

Suppose that we initially excite only one site in the trimer from above. If this initial state has strong enough overlap with
tunneling pair eigenstates, its evolution in time should show distinct properties as compared to the case when the overlap is
vanishing, or when there are simply no tunneling pair states available. Several results have been reported. First, a quantum
echo was observed in [117] by calculating the survival probability of the initial state as a function of time. That quantity
measures the probability to find the system in the initial state at later times. If the initial state has strong overlap with
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Fig. 52. Eigenspectrum of a lattice with 13× 13 sites for parameters (top) C = 0.025, v4 = 0.1, and (bottom) C = 0.025, v4 = 0.025. Left plots — spectra
over the whole Brilloin zone. Right plots — profiles of the spectra along the direction [11]. The insets show the magnifications of the phonon branch (left)
and the quantum breather energy region (right). Figure from [321].

Fig. 53. A 3D plot of the inelastic structure factor S(q, ω) as a function of the dimensionless energy transfer 0 ≤ ω ≤ 3 and the scalar product of the
transfer momentum q and the polarization u. Figure from [322].

many eigenstates, it is expected to quickly decohere into these different states. Yet, if a substantial overlap with quantum
breathers takes place, the survival probability first rapidly decays to zero, but cycles after regular time intervals (Fig. 54, left
plot). If one simply measures the dependence of the number of quanta, then a similar situation will show up with a very
slow beating of the occupation numbers in time, if the overlap of the initial state and a tunneling pair is strong [315,192]
(see Fig. 54, right plot).

Recent studies of Pinto et al. [317,316] deal with quantum breather excitations in two capacitively coupled Josephson
junctions. Such systems are currently under experimental investigation, being candidates for quantum information
processing, and show remarkably long coherence times up to 100 ns for few quanta excitations. The system does not
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Fig. 54. Left plot: Survival probability of the initial state |Ψ0〉 = |20+ν, 0, 20−ν〉. ν = (a)−6, (b) 0, and (c) 6. Insets: spectral intensity of the initial state
|Ψ0〉. Filled circles — symmetric eigenstates; open circles — antisymmetric eigenstates. Right plot: Time evolution of expectation values of the number of
bosons at each site of the trimer for different initial states |Ψ0〉 = |20 + ν, 0, 20 − ν〉. ν = (a)−6, (b) 0, and (c) 6. Figures from [315].

conserve the number of excited quanta, and can be best compared with the above Bose–Hubbard trimer. Quantum breather
signatures are found simultaneously in the spectra (tunneling splittings), correlation functions, entanglement, and quanta
number fluctuations.

Suppose we have a large lattice, and initially put many quanta on one site. Then any tunneling of this packet as a whole
will occur on very long time scales. On much shorter time scales, we may describe the excitation as a classical discrete
breather state plus a small perturbation. Treating that perturbation quantummechanically, one could expect that the time-
periodic DB acts as a constant source of quantum radiation for the quantized phonon field. It turns out to be impossible,
for very much the same reasons as in the purely classical treatment (see [118]). This result implies, that there is almost no
other source of decay for a localized initial state in a quantum lattice, but to slowly tunnel as a whole along the lattice, if
nonlinearities allow for the formation of exact classical DB states [359,360]. Numerical calculations for such a case, but with
few quanta, were performed by Proville [324], and, similar to the above trimer discussion, showed that if quantum breather
states exist in the system, then localized excitations stay localized for times which are much longer than the typical phonon
diffusion times in the absence of anharmonicity.

10. Applications

There is a fast growing amount of experimental and related theoretical work on applying the discrete breather concept
to many different branches in physics, like superconducting materials, Bose–Einstein condensates, antiferromagnetic
structures, crystals and molecules, micromechanical systems, and others. We will discuss some of these at length, while
others will be reviewed more briefly.
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10.1. Josephson junction networks

A Josephson junction is a sandwich consisting of two superconductors separated by a non-superconducting barrier.
An electric current may flow freely within the superconductors, but the barrier prevents the current from flowing freely
between them. However, the supercurrent may tunnel through the barrier, depending on the quantum phase of the
superconductors. The amount of supercurrent that may tunnel through the barrier depends on the thickness of the barrier.
The maximum value the supercurrent may attain is called the critical current of the Josephson junction, and is an important
parameter of a junction.

Josephson junctions have twobasic electrical properties. The first is an inductive reactance,whichdepends on the current.
The second is that a constant voltage across a junctionwill produce an oscillating current through the barrier, and vice versa.
Thus, Josephson junctions convert a dc voltage to an ac current.

There are two main types of Josephson junctions: overdamped and underdamped. In overdamped junctions,
e.g. superconductor-normal metal-superconductor (SNS), the barrier is conducting. An overdamped junction will quickly
reach a unique equilibrium state for any given set of conditions. The barrier of an underdamped junction is an insulator. In
such superconductor-insulator-superconductor (SIS) junctions the effects of the junction’s internal resistance R areminimal.
In the followingwewill discuss the observation and the properties of discrete breathers in arrays of underdamped Josephson
junctions. Most of the results concern junctions in their classical regime. Notably the development of qubits using junction
technology opens the possibility of experimental studies of quantum discrete breathers. The typical length scale (size) of a
junction here will be of the order of microns, while the characteristic frequencies are in the range from GHz to THz.

10.1.1. Basic principles and modelling
The physical origin of the Josephson effect (see e.g. [357]) is based on the quantum nature of the superconducting

state. Electrons form a condensate of Cooper pairs, which obey the Bose statistics. At low temperatures the ground state
is described by one macroscopic wave function — the order parameter Ψ =

√
neiΘ , where n is the electronic density andΘ

is the phase of the order parameter.
For a Josephson junction the two functions of the two weakly linked superconductors overlap and may generate a

tunneling current. The first Josephson equation states, that the current I flowing through the junction is given by

I = Ic sinφ, φ = Θ1 −Θ2. (10.1)

Here Ic is the critical current. The second equation of Josephson states, that a temporal change of φ will lead to a voltage
drop V :

φ̇ =
2eV
h̄
. (10.2)

The resistively shunted junction model takes the two basic electrical properties of a junction into account, and derives
the following equation of state in dimensionless units:

φ̈ + αφ̇ + sinφ = γ . (10.3)

Here the current γ is measured in units of the critical current, and α is a dimensionless damping parameter. Eq. (10.3)
corresponds to the mechanical analogue of a mathematical pendulum with (weak) damping and an external torque (γ ).

If a small external torque is applied to the pendulum, it deflects to an angle and remains in the static equilibrium
φ = arcsin γ . At the critical value γ = 1φ = π/2, and the static equilibrium can no longer be maintained. Further increase
of γ switches the pendulum to the rotating state and for large values of the torque Ohm’s law V = φ̇ = γ /α holds. However
when decreasing the torque below the critical value γc = 1, the pendulum keeps rotating. It will switch back to the static
state at a substantially lower value γr ≈ 4α/π . Thus the pendulum (and junction) supports two stable states – a static one
with zero voltage drop, and a rotating one with a nonzero voltage drop – for the range γr < γ < γc (see Fig. 55). It is this
coexistence, which will be used for obtaining breather solutions.

The basic ladder geometry of a Josephson junction ladder (JJL) supporting discrete breathers is shown in Fig. 56, together
with a corresponding schematic network topology. It was first proposed by Floria et al. [141], but with an ac bias instead of
a dc one — which is technically complicated in the 100 GHz frequency range. Each cell of the ladder harbours one vertical
junction and two (upper and lower) horizontal ones. Note that ladders are in general anisotropic, i.e. the critical currents for
horizontal and vertical junctions may differ. Also each cell of the ladder will be now characterized by some inductance.

The equations of motion were derived first in [157,130], and later refined. Here we follow the notations from [280]:

φ̈vn + αφ̇vn + sinφvn = γ +
1
βL
(4φvn + ∇φh

n−1 − ∇φ̃h
n−1)

φ̈h
n + αφ̇h

n + sinφh
n = −

1
ηβL

(∇φvn + φh
n − φ̃h

n)

¨̃
φ

h

n + α
˙̃
φ

h

n + sin φ̃h
n =

1
ηβL

(∇φvn + φh
n − φ̃h

n),

(10.4)
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Fig. 55. Left plot: States of a driven and weakly damped pendulum. (a) static case; (b) rotating case; (c) dependence of the pendulum rotation frequency
on the driving torque, which is similar to the current–voltage curve of an underdamped Josephson junction (cf. right plot). Right plot: Sketch of the typical
experimentally measured current–voltage curve of an underdamped Josephson junction. Figure from [391].

Fig. 56. Left plot: (a) A photograph of a ladder under amicroscope. (b) The same picturewhich shows by crosses the actual positions of Josephson junctions.
From [391]. Right plot: Josephson junction ladder topology. Crosses mark the individual junctions. Arrows indicate the direction of external current flow
(dc bias γ ). Figure from [280].

where 4fn ≡ fn−1 − 2fn + fn+1 and ∇fn ≡ fn+1 − fn. Note that βL is the normalized cell inductance, and η is the ratio of the
horizontal to the vertical junction critical currents. The static (superconducting) state, φ∗v

n = arcsin γ and φ∗h
n = φ̃∗h

n = 0
is the ground state of the ladder. We are now interested in excitations.

Small deviations from the superconducting ground state will fluctuate and die out exponentially in time due to the
damping α. However, if that time scale is long enough, the frequencies of these underdamped oscillations will form a
spectrum of linear plane-wave like states. Three degrees of freedom per unit cell make three branches of that spectrum.
These have been calculated in [280]. The first is given by

ω2
0 = 1, ∆v = 0, ∆h = ∆̃h. (10.5)

This branch is dispersionless and the waves corresponding to this branch are characterized by nonactive vertical junctions
and in phase (symmetric) librations of the Josephson phases of upper and lower horizontal junctions.

The two other solutions are generalizations of those discussed in [130], namely

ω2
±

= F ±

√
F 2 − G,

F =
1
2

+
1
βLη

+
1
2

√
1 − γ 2 +

1
βL
(1 − cos q),

G =

(
1 +

2
βLη

)√
1 − γ 2 +

2
βL
(1 − cos q).

(10.6)

The branch ω+ is characterized by ∆h = −∆̃h for all wave vectors q, i.e. the upper and lower horizontal phases are
antisymmetric. The frequency range of the branch is above thedegenerate branchω0, i.e.ω+(q) > ω0 and it depends strongly
on βL. As the parameter βL increases, the width of ω+(q) decreases and the branch approaches the dispersionless one, ω0.
In the opposite case of small βL, the frequencies ω+(q) increase as 1/

√
βL. For zero wave number q = 0, the amplitudes of

waves in this branch are characterized by∆v = 0 and∆h = −∆̃h, which means that only horizontal junctions are excited.
The branch ω− becomes dispersionless for the particular case of γ = 0. The frequency range of this branch is located below
ω0 i.e.ω−(q) < ω0(q). For zero wave number q = 0 the horizontal junctions are not active (∆h = ∆̃h = 0) and only vertical
junctions are excited.

Due to the dampingwe can not obtain persistent breather states where the junction phases are only oscillating. However
we may try to make a few junctions resistive (rotating), while the rest of the junctions is oscillating at most. It turns out,
that such states make perfect sense, and can be obtained — both numerically and experimentally.
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Fig. 57. Possible realizations of discrete breathers in a linear ladder. Black spots indicate the positions of resistive junctions. Ladderswith periodic boundary
conditions do not support (c) or (d) states. Figure from [280].

For a finite size ladder with open boundary conditions and N cells, i.e. N + 1 vertical junctions, the spectrum of linear
waves is discrete and characterized by the following choice of allowed wave number values:

ql =
lπ

N + 1
, l = 0, 1, 2, . . . ,N. (10.7)

These plasmonwaves are the cavity modes of the JJL. Odd values of l correspond to antisymmetric eigenvectors (with respect
to reflections at the center of the ladder), whereas even values correspond to symmetric ones.

10.1.2. Rotobreather solutions and their current–voltage dependencies
The rotobreather states correspond to a few junctions being in the resistive state with all other junctions oscillating

around the superconducting state. These oscillations are induced by the coupling to the resistive junctions. All rotations and
oscillations are characterized by a fundamental frequencyΩb.

The first experiments [386,40] (see also [39,41]) have revealed different breather structures, as depicted in Fig. 57: (a)
up–down symmetry, (b) left–right symmetry, (c) inversion symmetry, (d) no symmetry. Each group of breathers can also
have an arbitrary number nr of vertical resistive junctions.

Experimentally, each discrete breather is characterized by its current–voltage dependence [40]. Such a time-averaged
measurement does not resolve the details of the oscillatory dynamics of a state, which is almost impossible due to the
absence of spectroscopical tools at frequencies of the order of 100 GHz. The average voltage drop on the lth vertical junction
equals V = (1/Tb)

∫ Tb
0 φ̇vl dt . For type (a, d) breathers V = 2Ωb and for type (b, c) ones V = Ωb.

Further experiments demonstrated the generation of DBs from extended resonant states, perhaps via modulational
instability [362].

10.1.3. Resonances with cavity modes
Using the approximation φ ∼ t for resistive junctions, one can compute the dependence of the average voltage drop on

the dc bias [280]:

V =
kγ

α[k + (3 −
1
2δ)η]

, (10.8)

where k is the number of vertical rotating junctions and δ denotes the number of resistive horizontal junctions. Note
that δ= 4 for breathers with up–down symmetry, δ= 2 for left–right or inversion symmetry, and δ= 3 for no symmetry.
Numerical calculations of the current–voltage characteristics (Fig. 58) showed very good qualitative agreement with
experiments [361]. In addition numerical studies allow one to directly access the tricky details of the nonlinear dynamics
of the obtained states. Note, that the variation of the parameters allows for breathers with frequencies located both above
the entire plasmon spectrum, as well as in its gaps. The presence of dissipation leads to a temporal decay of plasmon waves,
if excited homogeneously in the ladder. In addition it also leads to a spatial decay of plasmon waves, if a local resonant
source is generating them. Thus a rotobreather in the JJL can be brought into resonance with plasmon waves. The tuning
parameter is simply the dc bias, which is the main control parameter in the experiments. When the breather frequency
is tuned into resonance, the breather starts to generate plasmons, which will localize in space. Their localization length,
though finite, will growwith decreasing dissipation constant α. In a finite ladder one expects to observe a resonant breather
tail, which extends to the end of the ladder, and appears at discrete values of the bias, due to the discrete set of cavity mode
frequencies. That was indeed numerically observed e.g. in the left picture in Fig. 58, where the cavity modes resonate with
the second harmonics of the breather frequency. At the same time almost no indication for that resonance is observable in
the current–voltage characteristics.

In the right picture in Fig. 58 the breather frequency itself resonates with the plasmon waves. Still the breather survives,
due to the presence of dissipation. However the resonant breather–plasmon interaction is now strong, and leads to a strong
change in the current–voltage characteristics. Almost vertical resonant steps are observed, which correspond to a locking of
the breather frequency to a particular cavity mode frequency. These resonances allow one to use the tunable rotobreather
as a spectroscopical tool to study the properties of cavity modes in a JJL.
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Fig. 58. Current–voltage dependence and the edge average power Pac =
1
2 〈φ̇v

2

N 〉 dependence for breathers of type (b) in a ladder with N = 10 vertical
Josephson junctions. Solid lines—numerical results. Dotted lines—approximation (10.8). Vertical dashed lines—band edges of the plasmonwave spectrum.
Left picture — α = 0.1, βL = 0.2, η = 1.15. Right picture — α = 0.1, βL = 1.0, η = 0.5. Figure adapted from Ref. [280].

Fig. 59. Schematic experimental setup for measuring the plasmon scattering by a DB, showing source, scattering, and detector DB. The individual DBs are
controlled using local bias currents. Figure adapted from Ref. [282].

Fig. 60. Direct numerical simulation of the linear wave propagation in a JJL with N = 100 cells, α = 0.05, βL = 0.5, η = 0.35 with a boundary ac bias
γ1 = γac cos(ωt). (a) Oscillation power of vertical junction n = 101 versus excitation frequency ω for an empty system (dotted line), for an A DB at site
n = 50 with frequencyΩb = 2.777 (solid line), andΩb = 3.284 (dashed line). (b) Transmission coefficient τ for an A DB of frequencyΩb = 2.777 (solid
line),Ωb = 3.284 (dashed line), and frequencyΩ = 3.082 (dotted line). Figure from Ref. [282].

The strong interaction of breathers with cavity modes in JJLs leads to the possibility of studying resonant scattering of
cavity modes by rotobreathers [282] (see schematic setup in Fig. 59). Again the dissipation helps in stabilizing the breather
during the scattering process. The transmission for plasmons is strongly dependent on their wavenumber. In addition strong
resonances can be obtained in the scattering, ranging from resonant transmission to resonant reflection. By changing the
DC bias, the rotobreather is changed, and thus the scattering potential as well. Consequently rotobreathers may serve as
tunable frequency filters for plasmon waves in the 100 GHz frequency domain (see Fig. 60).

Another consequence of the presence of dissipation is the possibility of exciting genuine quasiperiodic breathers. This
has been achieved both theoretically and experimentally by using the fact that when driving a breather into a resonance, not
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Fig. 61. The principle of low temperature scanning microscopy. Figure from Ref. [391].

Fig. 62. Experimental and schematic images of rotobreathers driven by a DC current. Left plot: Annular Josephson ladder, (a) a highly excited, spatially
homogeneous resistive state and (b–d) localized states corresponding to several distinct rotobreathers. Right plot: Linear Josephson ladder, (a)–(d)
asymmetric rotobreathers, (e)–(h) symmetric rotobreathers. Figures from Ref. [391].

all resistive junctions have to lock to to the cavitymode [109]. In such a case the breather becomes an object, where different
resistive junctions rotate at different incommensurate frequencies. Due to the interaction the final state is quasiperiodic in
time.

10.1.4. Laser scanning microscopy
The technique of laser scanningmicroscopy allowed the visualization of experimentally obtained breather states [40]. For

that the ladder is prepared in a given state, and the voltage drop across the ladder is monitored. Then the probe is scanned
by a laser beamwith moderate intensity and a diameter of a fewmicrometers (see Fig. 61). The laser beam is locally heating
the probe. If it hits a resistive junction, the local temperature changewill induce a change of the junction characteristics, and
finally a change in the measured voltage drop. Otherwise the voltage drop will show no response. In Fig. 62 the outcome
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of such experiments and the corresponding schematics are shown for the case of annular ladders [41]. Both delocalized
resistive states and rotobreather states are clearly visible. In the schematics, Josephson junctions (each about 3 µm wide)
lie at the midpoints of each green line segment that signifies superconducting leads connecting the junctions. A pure green
ladder in the schematic and a pure green background in the data would signal a superconducting state of all junctions at low
DC current — the linear regime. But a larger DC current switches some of the junctions into a resistive state that supports a
voltage across the junctions; in the schematic, red and yellow dots resistive junctions having different voltages. The resistive
junctions belong to discrete breather excitations localized at various sites of the ladder.

10.1.5. More
Further studies focussed on the theory [30,108] and experiments [314] with single plaquettes of Josephson junctions,

where discrete breathers can be excited, and controlled with the help of external magnetic fields. Recent studies deal with
quantum breather excitations in two capacitively coupled Josephson junctions [317,316]. Such systems are currently under
experimental investigation, being candidates for quantum information processing, and show remarkably long coherence
times up to 100 ns for few quanta excitations. The interested reader could also consult the publications by Ustinov [391,
392], Fistul [107] and Mazo and Orlando [270,269], where a more detailed description of the theoretical and experimental
investigations of breathers in Josephson networks can be found.

10.2. Coupled nonlinear optical waveguides

Coupled optical waveguides form periodical structures in one and two dimensions [64,136,216]. Each individual
waveguide is a narrow channel (typical widths are of the order of several µm) surrounded by a medium with slightly lower
index of refraction. The latter plays the role of an optical insulator due to the total internal reflection of light at an interface
between two optically transparent media [291]. Under certain approximations, light propagation in the waveguide can be
described with an amplitude E(z) of the linear waveguide mode, slowly varying with propagation distance. Its transverse
profile F (x, y) is fixed by the waveguide geometry [216]. The resulting equation for E(z) is similar to a nonlinear oscillator
problem with time being replaced by the propagation distance z. The nonlinearity is due to the dependence of the effective
refractive index of the medium on light intensity (Kerr effect). Placing two waveguides close to each other, light from one of
the waveguides can couple to the neighboring one [178], similar to a quantum particle tunneling in a double well potential.
This happens due to the overlap of evanescent tails of waveguidemodes in neighbouring waveguides. Extending the system
to many coupled waveguides, one can design one- and two-dimensional structures. Their dynamics is similar to that of the
corresponding nonlinear lattices discussed here.

10.2.1. Basic principles and modeling
The standard theoretical approach for studying light propagation in waveguide arrays is based on the concept of coupled

waveguide modes, see Fig. 63(b), which generalizes the nonlinear optical coupler introduced by Jensen [178]. It is similar
to the tight-binding approximation used in solid state theory. Typical propagation distances in waveguide arrays are rather
short, so that usually the effects of light dispersion in each individual waveguide are neglected.7 Under this assumption, the
total field distribution in a one-dimensional waveguide array, see Fig. 63, can be approximated as the superposition of linear
waveguide modes of each individual waveguide

E(x, z) =

∑
n

En(z)ψn(x) exp(−iλ0z), (10.9)

where ψn(x) ≡ ψ0(x − nd), ψ0(x) is the linear waveguide mode with corresponding propagation constant λ0:

d2ψ0

dx2
+ [k20f

2
0 (x)− λ20]ψ0 = 0, (10.10)

k0 is thewavenumber of the optical field in vacuum, f0(x) is the refractive index of a singlewaveguide, and d is the transverse
period of the structure. Each individual waveguide is assumed to support a single mode. The more complicated situation of
multimode waveguides would involve additional indexing in expression (10.9).

Overlapping between modes of adjacent waveguides, together with a nonlinear response of the medium, causes a
variation of amplitudes En(z) with propagation distance z. The corresponding evolution equations are eventually reduced
to the DNLS model [2,216]

i
dEn
dz

+ C(En−1 + En+1)+ γ |En|2En = 0. (10.11)

7 Note that glass and semiconductor based waveguide arrays usually require picosecond and sub-picosecond pulsed lasers in order to achieve high
enough intensities for nonlinear response. This can introduce spatio-temporal effects [60].
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Fig. 63. A one-dimensional AlGaAs waveguide array. It is composed of three layers of AlGaAs material: the substrate and cladding with a lower refractive
index and the guiding layer with the higher refractive index. Periodical etching of the cladding forms coupled waveguides, inducing modulation of the
effective refractive index inside the core layer. (a) A snapshot of the waveguide array. (b) Schematic structure of the waveguide array with illustration of
modal overlap. Figures from [64].

Here the simplest case of the so-called Kerr nonlinearity is considered. C is the coupling coefficient between adjacent
waveguide modes and γ is the nonlinear parameter [63,2,216]. In the simplest approximation only couplings between
nearest neighbours are taken into account, and nonlinear coupling terms are neglected. For waveguide arrays created by
optical induction in photorefractive materials [136] the nonlinear term in Eq. (10.11) is modified to account for saturation
and takes the form γ En/(1 + |En|2) [374]. Generalization to higher dimensional problems is straightforward (see Eq. (4.6)).
The actual evolution coordinate in the above model is the propagation distance z, which plays the role of an effective time.
For that reason we will refer to wave propagation constants along the z-axis as spatial frequencies, in analogy with other
discrete models introduced earlier.

An obvious advantage of the above approximation is the simplicity of the resultingDNLS-likemodels,which is convenient
for further theoretical treatment. Certainly, this approximation has limitations: it is applicable only when overlapping
between adjacent waveguide modes is relatively weak.

A more rigorous approach is based on the consideration of the continuous NLS equation

i
∂E
∂z

+∆xyE + F (x, y; |E|
2)E = 0, (10.12)

where∆xy is the Laplacian in transverse dimensions, andF (x, y; |E|
2) accounts for both nonlinear and periodicmodulations

of the effective refractive index. As the result of transverse periodicity, the eigenstates of the corresponding linear problem
have Floquet–Bloch statesφEk,α(Er)e

−iEkEre−iβαz . Hereφ(Er) is a periodic function in the transverse plane (x, y), Ek is the transverse
component of the wavevector, and βα is the longitudinal component of the wavevector. In full analogy to a quantum
mechanical particle in a periodic potential, the spectrum of βα (corresponding to the particle energy) has one or several
forbidden bandgaps with α denoting different bands. Typical bandgap structures of 1D and 2D setups are shown in Figs. 65
and 66, respectively.

When considering local initial excitations, it is more convenient to work with spatially localized Wannier functions,
instead of extended Floquet–Bloch functions:

wn,α(Er; ER) =

√
(D/2π)l

∫
dEkφEk,α(Er)e

−iEk(Ern−ER). (10.13)

Here n is a one- or two-dimensional index, each Wannier functionwn,α is centered around its position Ern, the set of vectors
Ern spans a periodic lattice (either one- or two-dimensional), l = 1, 2 is the number of transverse dimensions, and ER is an
arbitrary parameter which can be tuned in order to obtain maximum localization ofWannier functions [268,52]. Expanding
solutions of Eq. (10.12) in Wannier functions

E(Er, z) =

∑
n,α

cn,α(z)wn,α(Er), (10.14)

one eventually obtains a set of coupled equations for cn,α . In the simplest case of Kerr nonlinearity F (x, y; |E|
2) =

V (x, y)+ γ |E|
2 these equations read [9]

−i
dcn,α
dz

=

∑
m

cm,αβ̂n−m,α + γ
∑

α1,α2,α3

∑
n1,n2,n3

c∗

n1,α1cn2,α2cn3,α3W
nn1n2n3
αα1α2α3

, (10.15)

where β̂n,α are the spatial Fourier transform coefficients of the corresponding linear bands βn,α and

W nn1n2n3
αα1α2α3

=

∫
wn,αwn1,α1wn2,α2wn3,α3dEr (10.16)
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Fig. 64. (a)Diagramof an experimental setup to observe two-dimensional discrete localized structureswith use of a photorefractive crystal: two interfering
pairs of ordinarily polarized plane waves induce the photonic array, while the extraordinarily polarized probe beam is focused into a single waveguide to
form a discrete soliton. (b) Typical observation of a waveguide array at the exit face of the crystal. Each waveguide is approximately 7 µm in diameter,
with an 11 µm spacing between nearest neighbours. Figures from [138].

are overlap matrix elements. Eq. (10.15) can be viewed as a generalized DNLS model for a multi-component (vector) field
c with long-range interactions. Restricting to a single band α = α0, considering rapidly decaying Fourier coefficients β̂n,α0
and neglecting nonlinear couplings between neighboring Wannier functions, Eq. (10.15) is eventually reduced to the DNLS
equation (10.11). Other reductions can be performed, e.g. in order to consider excitations with propagation constants inside
a finite gap, when only the two corresponding neighboring bands are taken into account, while the other ones are neglected.
Note however, that complications arise for d = 2, 3 due to additional symmetry points in the dispersion relation of the linear
problem [278].

10.2.2. Experiments
There are twomain approaches to experimentally realize coupled waveguide arrays: either by etching fixed waveguides

in nonlinear materials, such as semiconductors [275], or by induction of periodic structures in compliant media, such as
optical induction in photorefractive crystals [136] and periodic voltage biasing in liquid crystals [146]. Figs. 63 and 64
illustrate typical one- and two-dimensionalwaveguide arrays producedby the twomethods, respectively. Etchedwaveguide
arrays are the most stable configurations, but the techniques are so far limited only to one transverse dimension, and the
resulting arrays have fixed geometry. In contrast, optically induced lattices aremore sensitive to external conditions, but they
allow one to produce different, easily reconfigurable, two-dimensional lattices. An additional advantage of using optically
induced lattices is that photorefractive crystals support both focusing (γ > 0) and defocusing (γ < 0) nonlinearities, which
is controlled by the applied voltage [136].

Various types of discrete breathers are observed in experiments by launching a laser beam at the input facet and
monitoring the resulting field distributions at the output facet of the array. The most straightforward method is to excite a
single waveguide at the input facet. At low powers one observes linear diffraction, so thatmanywaveguides become excited
at the output facet. Increasing the power, the light distribution at the output facet becomes more and more localized, so
that eventually most of light stays in the initially excited waveguide, which is the result of localization due to discreteness
and nonlinearity, see Fig. 67. In such experiments one excites discrete breathers with propagation constants β lying above
the first transmission band, i.e. inside the semi-infinite bandgap, cf. Figs. 65 and 66, which are supported by the focusing
Kerr nonlinearity. Other types of DBs have propagation constants inside bandgaps for either type of the nonlinearity. Their
excitation requiresmore accurate control of the input beamphase distribution across the array and the range of propagation
constants β of the input beam, i.e. of a spatial Fourier composition of the beam. The former is done by superimposing two
beams coming at an angle to the input facet [138], see Fig. 67(d), or by imprinting specially designed phase masks [59],
while the latter is achieved by exciting the array from a side [253,254], rather than from the input facet. By imprinting
phase topology on the input beam, different types of discrete vortices have been successfully observed in two-dimensional
optically induced square lattices as well [289,137,29].

One of the advantages of using optical waveguide arrays, is the visual control of the obtained localized states. A snapshot,
taken by a high-resolution camera at the output facet of the array, illustrates the light intensity distribution among the
coupledwaveguides. Information about relative phases in differentwaveguides and the spatial Fourier decomposition of the
output light distribution is obtained by using standard optical techniques. Finally, optical setups allow one to observe the
actual propagation dynamics bymonitoring the light intensity evolution along the propagation distance. This is done e.g. by
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Fig. 65. (a) Bandgap structure of a typical waveguide array, folded into the first Brillouin zone. The Floquet–Bloch propagation constant as a function of the
transverse wavevector k is plotted with solid lines. Shaded areas indicate forbidden gaps. (b) Experimentally obtained images of different Floquet–Bloch
modes φk,α(x) from the first four bands, measured in a AlGaAs waveguide array using a 1.55 µm pump laser. Figures from [253].

Fig. 66. (a) First and second Brillouin zones of a 2D square lattice, high symmetry points Γ , X and M are marked with white dots. (b) The first two
transmission bands of a 2D square lattice. (c) Dispersion curves between the symmetry points of the first two bands. (d) Fourier spectrum of the input
probe beam (broad circle) and lattice-forming beams (four sharp peaks) in the Brillouin zone spectroscopy experiment performed on a 2D optically induced
square lattice, the corresponding setup is shown in Fig. 64. (e) Experimental picture illustrating the Fourier spectrum of the probe beam at the output facet
of the crystal. Figures from [28].

scanning the evanescent light from the top of the waveguide array [244]. As a result, different intriguing aspects of the DB
dynamics have been tested [284,306,307,91], and modulational instability has been observed [272]. Interactions between
highly localized discrete solitons and propagating broad wavepackets have been recently studied in AlGaAs waveguide
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Fig. 67. Experimental observation of discrete diffraction in the linear regime (small input power) and localization in nonlinear regime (high input power).
(a) Experimental images of a Kerr-type AlGaAs one-dimensional waveguide array with waveguide spacing D = 8 µm operated at the wavelength
λ = 1.53 µm. Figures from [92]. (b) The same for periodically poled lithium niobate array with D = 15 µm operated at the wavelength λ = 1.56 µm.
Figures from [64]. (c) and (d) The same for a two-dimensional optically inducedwaveguide array, shown in Fig. 64, with the input beam at normal incidence
and at the angle 0.55◦ to the lattice plane (at the edge of the first Brillouin zone), respectively. The signs of the applied voltage to the photorefractive crystal
in (c) and (d) are different, corresponding to the focusing and defocusing nonlinearities, respectively. Figures from [138].

Fig. 68. (a) Schematic structure of the wave scattering setup. The soliton beam is sent along the z-axis, while the probe beam propagates in the xz-plane
at some angle to the soliton. (b) Transmission coefficient T (kx) for the system without a soliton (dashed line), and with solitons having slightly different
intensities (solid black and gray lines). Figures from Ref. [119].

arrays [273,271]. Also, experimental setups for the direct observation of resonant wave scattering by DBs and associated
spectral hole burning effects have been developed on the basis of optical waveguides [119,156], see next chapter.

10.2.3. Resonant light scattering
Resonant scattering of plane waves by discrete breathers is one of the demanding tasks for experimental investigation.

Not only has the scattering setup to be carefully designed, but one also needs to have proper means for detecting the
reflected and transmitted portions of waves. Coupled optical waveguides seem to be one of the best candidates to perform
such experiments. The coupled modes model (10.11) calls for the use of the results of wave scattering by a DNLS breather
discussed in Section 5.4. However, in the DNLS model the Fano resonance is observed on the background of a very
low transmission (∼10−8), see Fig. 26, which makes it practically impossible to observe in an experiment. One of the
possibilities for enhancing the background transmission is to modify the properties of plane waves far away from the
breather center [119]. The corresponding setup is shown in Fig. 68(a). It consists of a section with a periodically modulated
index of refraction, surrounded by planar waveguide sections. In order to place a Fano resonance within the transmission
band one needs to make the effective refractive index n0 in the surrounding planar waveguide sections higher than the
average index inside the modulated section [119]. The breather (discrete soliton) is excited in the modulated section by
injection of a highly intense beam in one of the embedded waveguides. Since it is well localized in the transverse direction
x, it is enough to have only a few coupled waveguides inside the modulated section. To complete the scattering setup, an
additional probe beam is sent at an angle to the breather. As mentioned above, the actual dynamical variable in Eqs. (10.11)
and (10.12) is the light propagation direction z. Therefore, scanning the transverse wave vector kx of the incident wave is
equivalent to scanning the inclination angle of the probe beam. The resulting transmission curves are shown in Fig. 68(b).
Because of the refractive index contrast at the interface between homogeneous andmodulated sections, incomingwaves are
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Fig. 69. Different setups of coupled optical resonators. Top: coupled semiconductor resonators with applied mirrors at the input and output facets of
waveguides. Figure from [305]. Middle: periodically arranged defect cavities in a photonic crystal, figure from [407]. Bottom: coupledmicroring resonators.
Figure from [404].

strongly reflected at small angles kx < k̂. The resonances in reflection appear precisely in this window, when the breather
is present. For low intensities of the breather, resonant reflection is surrounded by two resonant transmission peaks (see
solid black curve in Fig. 68(b)). Thus the Fano resonance should be detectable experimentally. First attempts to study these
fine effects were reported by Linzon et al. [245], where nonlinear trapping and resonant transmission were observed when
scattering light by light in local photonic structures.

Another possibility to improve the transmission contrast is to detune the frequencies of the breather and the probe
beam. This would involve certain modifications in the corresponding model equations, more details can be found in
Ref. [156].

And finally, a promising way to improve the contrast is to use spatially inhomogeneous nonlinear response, see
chapter 10.3.

10.2.4. Coupled resonators
A closely related and intensively developing subfield of nonlinear optics deals with coupled optical resonators. A

straightforward generalization of the above waveguide array setups is given by a set of coupled resonators [305],
where mirrors are applied to the input and output facets of the array, see Fig. 69(a). Other possible setups include
periodically arranged defect cavities in photonic crystals and coupled microring resonators, see Fig. 69(b) and (c),
respectively.

The corresponding theoretical models include dissipation, which is a principal ingredient of any resonator system. One
of the simplest models is the driven and damped DNLS system [305], in which dissipative terms are taken to be linear in the
field amplitude:(

i
∂

∂τ
+∆+ i + γ |En|2

)
En + C(En+1 + En−1 − 2En) = Ain

n . (10.17)

Here τ is the effective evolution coordinate, En is the field amplitude in the nth resonator, C is the coupling between adjacent
resonators,∆ is the detuning from linear resonance, γ is the nonlinear Kerr coefficient, and the damping term is rescaled to
unity. The amplitudes Ain

n of the input field (pump) can be inhomogeneous across the array.
In the case of a homogeneous pump Ain

n = const. Eq. (10.17) support different types of bright and dark stationary DBs,
see Fig. 70. Due to dissipation, these objects no longer form families of solutions, but correspond to attractors in phase space.
All the parameters of such DBs, including their amplitude and phase, are fully determined by themodel parameters and the
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Fig. 70. Left panel: bifurcation diagram for the bistable homogeneous ground state of Eq. (10.17), gray lines, and different types of bright stationary DBs
(black lines). Solid curves indicate stable solutions, dashed curves — unstable. Parameter values are: γ = 1,∆ = −3, C = 0.25. Right panel: co-existence
of different types of stationary DBs. Parameter values are: γ = −1,∆ = 3, C = 0.25, |Ain

n |
2

= 3.3. Figures from [305].

Fig. 71. Average velocity of a DB (W/h) vs. normalized tilt (V0/h) for various coupling constants. The inset illustrates the position of the center of moving
DBs for various tilts. Figure from [86].

pump (its amplitude and phase). Dissipation can suppress resonances with extended states of the system, which otherwise
do not allow quasiperiodic and moving DBs to exist.

A tilted pump Ain
n = a exp(iφinn), which corresponds e.g. to an inclination of the incidence field in the setup in Fig. 69(a),

induces a transverse force acting on aDB. This, in turn, can cause theDB tomove across the array, see Fig. 71. The discreteness
of the system hinders and, in some cases, prevents such motion [86]. Generally, there exists a critical value of the tilt φ(cr)in ,
below which a given type of DB cannot move, see Fig. 71. This is in contrast to continuous systems, where the resulting
velocity of a cavity soliton is linearly proportional to the tilt [100].

The nonlinear dependence of the DB velocity on the tilt V (φin) in a vicinity of the critical point φ(cr)in , allows for a ratchet
motion of the DB. For that one needs a periodically changing tilt with zero average [154], see Fig. 72. The necessary condition
for the observation of such a DB ratchet effect is the violation of certain symmetries of the system, which can be realized
e.g. by applying a bi-harmonic variation of the tilt, or by a superposition of two pumps with varying tilts at different
frequencies [154]. For adiabatically changing tilt(s) the average velocity of the resulting net motion of a DB can be estimated
as V̄ =

1
T

∫ T
0 V [φin(τ )]dτ , where T is the period of the tilt. The ratchet effect vanishes in the continuous limit, where the

function V (φin) becomes linear.
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Fig. 72. Density plots of |En|2 for DB motion under a periodically changing tilt of the input field. (a) Periodic motion of a DB under the influence of single-
harmonic periodically changing tilt. (b) Ratchet motion of a DB under the influence of superimposed pumps with varying tilts at different frequencies.
Figures from [154].

10.3. Ultracold atoms in optical lattices

In the 1970s it was suggested that the Doppler effect due to thermal motion of atoms could be exploited to make them
absorb laser light at different rate. The net momentum kick could be used to cool a gas of atoms. When implemented in the
1980s, that principle immediately led to cold gases at a few hundreds of micro-Kelvins. The spatial interference patterns
created by the laser beams generates a three-dimensional periodic potential for the atoms.

Further use of magnetic dipole forces allowed the use of evaporative cooling and overcame fundamental limitations
due to photon scattering. Temperatures as low as a few nano-Kelvins were reached, and large enough densities of the gas
satisfied the conditions of Bose–Einstein condensation (BEC).

10.3.1. Light-matter interaction
The interaction between the atoms and the light field is based on the principle of the ac Stark effect. The oscillating

electric field of the light induces an electric dipole moment in the atom. That dipole interacts with the electric field and as
a result an energy shift∆E of an atomic energy level takes place which is given by

∆E = −
1
2
α(ω)〈E2(t)〉 (10.18)

where α is the dynamic polarizability at frequency ω = ωres + δ, ωres is the resonance frequency, and δ is the detuning of
the light field from that resonance. For red-detuned light fields the dipole response will be in phase with the field, and the
resulting optical potential will have minima where the light field amplitude is largest. Thus for a standing wave (generated
by several interfering light beams with wavelength λ) a spatially periodic potential V (x)will be generated for the atoms:

V (x) = V0 cos2(2πx/λ). (10.19)

Note that such potentials can be easily generated in one, two and three spatial dimensions, with various symmetry
properties. An atom in such a potential is absorbing and reemitting photons through virtual transitions. That process is
dissipative by nature and leads to a scattering rate of photons by atoms of the order 1/δ2. However the potential well depth
scales like 1/δ, which means that for large detuning the scattering is negligible, and the atom cloud moves in the optical
potential almost like a conservative system (for more details see Morsch et al. [286]).

10.3.2. Basic principles and modelling
The general way of describing N interacting atoms (bosons) in a periodic potential is to consider the corresponding

Schrödinger equation of the many-body wave function ih̄∂Ψ̂ /∂t = ĤΨ̂ . The interaction results from binary collisions,
which are characterized by the s-wave scattering length as. The Hamiltonian reads

Ĥ =

∫
dxΨ̂ Ď(x)

[
−

h̄2

2m
(∂/∂x)2 + V (x)

]
Ψ̂ (x)+ ash̄ωt

∫
dxΨ̂ Ď(x)Ψ̂ Ď(x)Ψ̂ (x)Ψ̂ (x). (10.20)

Here it is assumed, that atoms are confined in a cylindrically symmetric trap with a transverse trapping frequency ωt . For
low enough temperatures and not too strong interactions, the remaining energy scales are smaller than the energy splitting
of the transverse vibrational states h̄ωt . Then only the lowest transverse (ground)state will be occupied. The trapping along
the x-direction is neglected, assuming that its characteristic length scale is orders of magnitude larger than the laser light
wavelength λ.
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Fig. 73. (a) Top view of the crossed dipole trap geometry. (b) Ramping the periodic potential. (c), (d) Preparation of the band edge state. (e) Dispersion
relation for the two lowest bands of the periodic potential. Figure from [87].

At the experimentally reachable nano-Kelvin temperature range the de-Broglie wavelength of individual atoms becomes
larger than the average distance between pairs of them. In that case, the atoms condense into a macroscopical quantum
state — the Bose–Einstein condensate (BEC). Within a mean field approach one replaces operators by expectation values
and arrives at the Gross–Pitaevskii equation for the mean field ψ(x, t):

ih̄
∂

∂t
ψ =

(
−

h̄2

2m
∂2

∂x2
+ V (x)

)
ψ + 2ash̄ωt |ψ |

2ψ. (10.21)

This equation is the nonlinear Schrödinger equation in the presence of an external space-periodic potential V (x). When
neglecting the nonlinear term, it is reduced to a linear Schrödinger equation in a periodic potential. The spectrum will be a
band structure of eigenvalues, with infinitely many bands. For low enough temperatures only a finite number of bands will
have to be considered. Restriction to a finite number of bands reduces the problem to a lattice. In the extreme limit of just
one (lowest) band, adding nonlinearity back will yield the discrete nonlinear Schrödinger equation.

10.3.3. Gap solitons with repulsive interaction and nonlinear self-trapping
Using about 1000 87Rb atoms, Eiermann et al. [87] prepared a BEC state with Blochmomentum q = 0 in the ground state

of the lowest band (see Fig. 73). After that a ramping, accelerating and moving of the periodic potential allows the Bloch
momentum to be adiabatically changed towards the band gap value q = 2π/λ. The atoms are repulsively interacting with
each other. In a spatially homogeneous case, there would be no reason for the atoms to stay close, as they could lower their
energy by increasing their distance (and thus lowering the density). However the lowest band has a finite width, and thus
each atom can only take a finite amount of kinetic energy, which is given by the width of that band. If that energy is lower
than the interaction energy of an atom with the rest of the atomic cloud, energy conservation forbids the escape of that
atom. It will thus stay inside the cloud. Since this is true for each atom, finally a localized state persists, which is coined a
gap soliton (or discrete soliton, or discrete breather). The experimental observation is shown in Fig. 74. A theoretical study
of that case, as well as of self-trapping in higher dimensional optical lattices, was recently performed by Xue et al. [405].

In a subsequent experiment by Anker et al. [13] the dynamics in the lowest bandwas studied. The initially localized state
would spread (as a usual wave packet) in the linear case. Experimentally this is realized by reducing the number of atoms
(and thus the density). In the presence of interactions the corresponding nonlinear state will radiate a part of the atoms,
while a substantial part will stay trapped in a localized state which is close to an exact discrete breather solution. This effect
was observed by increasing the number of atoms in the BEC [13].

10.3.4. Self-trapping in the dimer
In a further experimental study the 87Rb BEC was loaded onto a lattice containing just two sites, i.e. a double well

potential [8]. Different asymmetries in the populations of the wells for the initial state were prepared by distorting the
potential, giving the BEC time to relax, and finally by nonadiabatically ramping the potential back to its symmetric shape
(Fig. 75).

The observed features are captured by the simple dimer model from chapters 1.1 and 9.2. If the initial state is weakly
asymmetric, oscillations between both wells are observed, which are obtained from linearizing the dimer equations around
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Fig. 74. Observation of a gap soliton. The atomic density is shown for different propagation times. Excessive atoms are radiated and disperse (right peak
at 15 ms). The remaining peak corresponds to an immobile gap soliton. Figure from [87].

Fig. 75. Population imbalance and relative phase of the BEC in the two wells of the double well potential. (a) Initial state is weakly asymmetric, and fast
oscillations of the BEC are observed (note that the oscillation period is an order of magnitude higher than the estimated one for noninteracting atoms; this
is due to the frequency renormalization by nonlinearity, which is proportional to the number of interacting atoms). (b) Initial state is strongly asymmetric,
and self trapping (localization) is observed in the initially populated well. Figure from [8].

a time-periodic state Ψ1 = Ψ2. The experimental realization shows a strong renormalization of the resulting oscillation fre-
quency due to the nonlinearity,which is tuned in the experiment by the number of participating atoms (see Fig. 76). If the ini-
tial state is strongly asymmetric, e.g.Ψ2 = 0, then the time evolutionwill keep the state close to a symmetry broken periodic
orbit (1.6).
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Fig. 76. Observation of the tunneling dynamics of two weakly linked Bose–Einstein condensates in a symmetric double well potential. (a) Fast oscillations
due to weak asymmetry of the initial state. (b) No oscillations due to strong asymmetry of the initial state. Figure from [8].

Recently the ac and dc Josephson effects were explored for a twomode BEC [240]. The quantum analogue of self trapping
(for two interacting atoms) was observed in Ref. [144].

10.3.5. Fano blockade by a BEC
We continue with a recent proposal to utilize a discrete breather state with a BEC for observing Fano resonances in the

scattering of ultracold atoms. To describe the dynamics of the BEC, it is assumed that only the lowest band has to be taken
into account [393]. Without further manipulations, that would correspond to considering the scattering problem by a DNLS
breather discussed in Section 5.4. Note however that the Fano resonance is obtained there on a background of a very small
transmission (of the order of 10−8). The idea then is to manipulate the BEC in the optical lattice, such that the interaction
between the atoms (i.e. the nonlinearity in the Gross–Pitaevskii equation) takes place in a spatially confined region. This is in
principle possible by e.g. applying spatially varyingmagnetic fields,which sensitively tune the s-wave scattering length [393]
(see Fig. 77). The corresponding modified DNLS equation is given by

i
∂Ψn

∂t
= − (Ψn+1 + Ψn−1)− γ |Ψnc |

2Ψnc δn,nc . (10.22)

The localized BEC state is given by Ψn(t) = bn(t) = bnc x
|n−nc | exp(−iEbt), where bnc is the condensate amplitude, |x| < 1,

and Eb is the respective energy:

Eb = −

√
4 + g2 and x = −(Eb + g)/2. (10.23)

The parameter g ≡ γ b2nc (g > 0).
The scattering analysis goes along the lines of the DNLS case from Section 5.4, with a slight change in the outcome for

the transmission:

T (k) =
4 sin2 k

4 sin2 k +

(
2g +

g2√
(Ek−2Eb)2−4−2g

)2 , (10.24)

where Ek = −2 cos k. Resonances occurwhen the denominator diverges orwhen
√
(Ek − 2Eb)2 − 4−2g = 0. The condition

for the resonance is

Ek = EL ⇒ kL ≡ arccos(−EL/2). (10.25)
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Fig. 77. Scattering scheme in the optical lattice. The atoms interact only around n = nc , where the BEC is centered. Figure from [393].

Fig. 78. T versus k for the three values of g . Lines: Eq. (10.24), points: real time numerical simulations of Eq. (10.22) for g1 = 0.36 (boxes), g2 = 0.6
(diamonds), and g3 = 0.9 (triangles). (b)–(d) Evolution of |Ψn(t)|2 in space and time: (b) g2, k = 0.39, (c) g1, k = 1.37, (d) g3, k = 1.37. Figure from [393].

The Fano resonance of zero transmission is now taking place on a background of transmission of the order of 0.5–1
(Fig. 78). The comparison with the scattering of wavepackets shows excellent agreement. Finally, more realistic calculations
demonstrate that the effect is robust with respect to an increase of the size of the spatial region in which the atoms
interact [393].

10.3.6. Repulsively bound atom pairs
Winkler et al. [401] performed experiments with a three-dimensional optical lattice with initially each site being either

not occupied, or being occupied by two Rb atoms bound in a pair due to attractive interaction. A magnetic field sweep
across the Feshbach resonance changes the sign of interaction, turning attraction into repulsion. The dynamics of ultracold
atoms loaded into the lowest band of the optical potential is described by the quantum DNLS model, which is equivalent to
the Bose–Hubbard model (9.1). Lifetime measurements have shown, that repulsive pairs of Rb atoms have larger lifetimes
than pairs of weakly or almost non interacting atoms (Fig. 79). The two-particle bound states discussed in chapter 9.1 —
the simplest versions of a quantum discrete breather — are the obvious explanation of the experimental findings. Indeed,
neglecting Landau–Zener transitions to higher lying bands in the optical potential, the Bose–Hubbardmodel is justified. The
sign of the interaction does not play any role, since it only changes quantum discrete breathers from being low-lying to
being excited states, not affecting their localization properties. The most simple argument of why two quanta (or atoms)
placed initially close to each other, do not separate despite repelling each other, is based on the fact, that if they were to
do so, the (large) interaction energy would be converted into kinetic energy, which is restricted to be less than two times
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Fig. 79. (a) Repulsive interaction between two atoms sharing a lattice site gives rise to an interaction energyU . Breaking up of the pair is suppressed owing
to the lattice band structure and energy conservation. This is the simplest version of a quantumdiscrete breather. (b) The discrete breather can tunnel along
the lattice. (c) Long lifetimes of strongly repulsive atoms. The plot shows the remaining fraction of pairs for strong interaction (open diamonds) and for
almost vanishing interaction (filled circles). Figures from [401].

Fig. 80. (Upper row) Absorption images of the atomic distribution after release from the 3D lattice and a subsequent 15 ms time of flight. The horizontal
and vertical black lines enclose the first Brillouin zone. (upper left) Lattice sites are occupied by single atoms; (upper middle) Repulsively bound atom
pairs; (upper right) Attractively bound atom pairs; (bottom row) Quasi-momentum distribution for pairs in one direction as a function of the lattice depth
after integrating out the other direction. (bottom left) Experiment; (bottom right) Numerical calculations. Figure from [401].

the width of the single particle band. In other words, repulsively bound atom pairs are a straightforward consequence of
quantum discrete breather states with two quanta.

Another sophisticated experimental investigation aimed at measuring the quasi-momentum distribution of atom pairs
in various regimes bymapping it onto a spatial distribution, which was finally measured using standard absorption imaging
(Fig. 80). Therefore predictions of such states, which were made more than 30 years ago by Ovchinnikov [298], were
beautifully confirmed experimentally with ultracold repulsive atoms.
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Fig. 81. Left plot: Fabrication of a micromechanical array. (a) Silicon nitride deposition; (b) photolithography and plasma etching; (c) KOH wet etching;
(d) Microscope image of the top view. Right plot: Experimental setup. (a) a low power laser beam probes the motion of cantilevers, the reflected image
is detected by a CCD camera; (b) complete optical arrangement. An infrared laser diode heats locally few elements to produce movable impurities; (c)
schematic representation of three kinds of laser images. Figures from [348].

Fig. 82. Left plot: Energy density as a function of time. The driving frequency is initially ramped from ωd = 1.14 to ωd = 1.4, and then it remains fixed
(marked by the vertical dashed line). Energy pumping is observed during the ramping. At the end of the ramping process, breathers are created, and one
of them locks to the driving and survives. Right plot: (a) Average energy per oscillator as a function of time (solid line, scaled by a factor of 10 for better
observation) and the energy of the locked oscillator (strongly fluctuating dotted line). (b) The frequency ramping scheme. After the vertical dashed line the
driving frequency remains constant. Figures from [256].

10.4. Driven micromechanical cantilever arrays

Experiments on silicon-nitride cantilever arrays have been successful in providing data on the existence of discrete
breathers [350], as well as on a number of their properties [347,349,353], and are of interest for the design of coupled
nano-electro-mechanical system (NEMS) structures, used for the generation of microinstruments for high-precision
measurements. These silicon micromachines usually involve a dense array of identical meso-scale units on a chip.

10.4.1. Sample preparation
The cantilever arrays are produced using standard optical lithography techniques (see left plot in Fig. 81, where (d) shows

a top view of the resulting structure). The width of the overhang provides a coupling mechanism between the individual
cantilevers, which are excited into oscillating states. Their thickness is about 300 nm,while their length and distance to each
other is of the order of 50 µm.

The length of the cantilevers can be alternating — short, long, short etc, which is seen in the left plot (d) in Fig. 81. In
addition a gold film can be deposited on the cantilevers. Applying a bias voltage between the gold and the conductive silicon
substrate will strongly modify the nonlinear vibrational properties of the cantilevers. For zero voltage the frequency of
the cantilever oscillation increases with its amplitude (hard anharmonicity). For nonzero voltage this dependence can be
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Fig. 83. Cantilever excitations vs time showing the production, interaction and decay of discrete breathers (ILM). (a)–(c): 248 elements, (d)–(f): 152
elements. Only a fraction of the array is shown. The dark regions identify localized excitations. Some of them become trapped during the cw phase. Figure
from [348].

changed such that the frequency decreases with increasing amplitude (soft anharmonicity) [348]. The oscillation frequency
for small amplitudes is of the order of 100 kHz.

10.4.2. Basic principles and modelling
Experiments are performed bymounting the sample in a vacuum chamber to a piezoelectric transducer. A HeNe beam is

focused on the cantilever, reflected from it, and directed to a position sensitive detector CCD camera to measure the linear
vibrational response. The speed of the camera, about 18 kHz, is insufficient tomonitor the actual oscillation of the cantilevers
(with frequencies of the order of 100 kHz); however, it can measure the vibrational envelope. If a cantilever is performing
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Fig. 84. Several kinds of breathers (ILM) produced experimentally with the driver at different frequencies. (a) A stationary bright ILM is recorded as a
thick black horizontal band, (b) a bright traveling ILM as a dark zigzag pattern, (c) a dark traveling ILM zigzag pattern is identified by the arrows. In the
region where the dark ILM travels, the large amplitude standing wave pattern vanishes. Driving frequencies: (a) 138 kHz, (b) 110 kHz, (c) 81 kHz. Figure
from [353].

small amplitude oscillations, more light is detected, than when it is performing large amplitude oscillations. Images show
corresponding light regions (weakly excited cantilevers) and dark regions (strongly excited cantilevers).

The theoreticalmodelling for the oscillation of a single cantilever follows the Euler-Bernoulli beam theory and one arrives
at an anharmonic oscillator equation [348]. The overhang mediates an interaction between cantilevers via damped acoustic
waves. The simplest model of the driven cantilever array accounts for nearest neighbour interaction only, and reads in
dimensionless variables [256]

ẍl + γ ẋl + a2xl + a4x3l − C(xl+1 + xl−1 − 2xl) = A(t). (10.26)

The oscillator displacements xl describe the deflection angle of the lth cantilever from its equilibrium position. The hard-
type anharmonicity tends to increase the oscillation frequencieswith growing amplitudes. Thismodel neglects the influence
of longer than nearest neighbour interaction range, which is not crucial for the understanding of the main qualitative DB
properties. The dimensionless parameters are related to the ones of the experiment in Ref. [348]. Using them and setting
a2 = a4 = 1, the friction and coupling parameters become γ = 1.534 × 10−4 and C = 0.07953. The spatially uniform
ac driving A(t) = A0 cos(ωdt) in (10.26) is generated by a corresponding piezoelectric crystal vibration in the original
experiments. The analysis of the nonlinear response manifold of Eq. (10.26) yields that stable discrete breather states are
not directly connected to the stable branch of extended low-amplitude oscillations [256]. To excite them one has to rely on
fluctuations. That can be done by ramping the driving frequency across the upper band edge of linear oscillations, where
modulational instability is expected [348]. The results are shown in Fig. 82.
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Fig. 85. Laser manipulation of a discrete breather (ILM) in cantilever arrays with different signs of anharmonicities. The dark region in each picture
corresponds to a highly excited breather (ILM). (a) Repulsive interaction with hard anharmonicity. As the laser spot approaches, the breather (ILM) is
repelled and hops away. When the laser spot is far away, the breather (ILM) remains fixed. (b) Attractive interaction with soft anharmonicity. The breather
(ILM) is attracted and captured by the laser spot. As the laser spot moves, so does the captured breather (ILM). When the laser is turned off, the breather
(ILM) remains fixed. Figure from [349].

10.4.3. Detecting stationary and moving discrete breathers
Experimental observations of localized excitations in cantilever arrays are shown in Fig. 83. The plot shows the cantilever

amplitudes versus time for two different arrays. The initial cantilever positions are identified by the horizontal lines to the
left of the t = 0 time marker. The darker region of the pictures beyond 49 ms for (a)–(c) and 72 ms for (d)–(f) indicates that
the cw driver is turned off. Fig. 83(a) shows the cantilever excitation with a high-power PZT driver frequency being fixed
at the top of the small amplitude frequency spectrum (136 kHz). No particular pattern is evident. A breather-like excitation
(ILM) forms after the CW driver is switched off around the cantilever 170, but it decays again quite fast. In Fig. 83(b), (c)
the driver is chirped from slightly lower (99.86%) to slightly higher (101.6%) frequencies over a time interval of 16 ms.
Formation of discrete breathers (ILM) is evident. These two different experimental runs show that breathers (ILM) form at
different sites, which excludes potential randomness in the array as a primary cause. As expected these localized excitations
(ILM) die out, once the driver is switched off. A similar picture is also observed for a different array with fewer cantilevers,
see Fig. 83(d)–(f).

In another experiment [353], the driver frequency is still chirped up, but all its valuesmay be located inside the spectrum
of small amplitude waves. In that case one observes a transition from the generation of stationary locked breathers (ILM) as
seen in Fig. 84(a), to a breather-like excitation which is traveling and reflects at the ends of the array (Fig. 84(b)), down to
the case of a so-called dark ILM, or simply a localized depletion of an overall excited array, which also travels and reflects
(Fig. 84(c)).

10.4.4. Optical manipulation by laser guiding
By adding an electrode to one of the cantilevers in an array, the anharmonicity can be changed locally, and breathers

(ILM) are attracted by the impurity. This concept has been extended by generating an optically-induced real-time impurity.
It has been realized using a fiber-coupled IR diode laser (50–100 mW) which generates a 200 micron hot spot and heats
a few cantilevers in the array. The heating decreases the Young’s modulus and hence the spring constant. Both repulsive
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Fig. 86. Lattice and spin structure of (C2H5NH3)2CuCl4 . Circles denote Cu2+ ions and arrows indicate spin configuration in the antiferromagnetic state.
Only Cu2+ ions are shown in this layered, face centered, orthorhombic compound. The easy, second easy, and hard spin axes are labeled the a, b and c
crystal directions, respectively. Figure from [352].

and attractive interactions between the laser spot impurity and a discrete breather (ILM) have been reported [349], and are
shown in Fig. 85. The arrows on the left identify the breather (ILM) and laser starting points.

10.5. Antiferromagnetic layered structures

Spin waves in magnetic media have already been used to analyze nonlinear phenomena and soliton dynamics in
condensedmatter for several decades [225]. Both interactions between spins and spin anisotropy are intrinsically nonlinear,
giving rise to different types of nonlinearities in the corresponding macroscopic phenomenological models. Dissipation of
spin waves is usually rather weak, as compared e.g. to vibrational modes in crystals. Thus magnetically ordered crystals are
good candidates for experimental studies of various types of nonlinear waves. The underlying lattice structure can lead to
novel localized spin excitations, as discussed in Section 8.

10.5.1. Layered antiferromagnets
Below the Néel temperature of a layered antiferromagnetic crystal (∼10 K for a (C2H5NH3)2CuCl4 crystal) the spin 1/2

ions are oriented along the easy-axis in alternating sheets, as illustrated in Fig. 86. The intralayer ferromagnetic coupling
between the spins is much stronger than the interlayer antiferromagnetic coupling (the antiferromagnetic to ferromagnetic
exchange fields ratio is ∼10−3 for the (C2H5NH3)2CuCl4 crystal at 1.4 K [352]), so that the system is effectively one-
dimensional. The anharmonicity associated with the antiferromagnetic coupling is soft, so that an effective external on-site
potential is needed to create a gap below the small amplitude spin waves spectrum for localized excitations to exist. This
potential is provided by the anisotropic ferromagnetic exchange interaction between spins within a layer [237].

Because of the weak antiferromagnetic coupling between the layers, the total spin in each layer can be represented by a
classical macroscopic spin Sn, for which the one-dimensional spin lattice model, Eqs. (8.1)–(8.3), applies. Different types of
discrete breathers in this model have been discussed in Section 8.

10.5.2. Detection of discrete breathers (ILMs)
Due to the atomic scale of the spin lattice it is experimentally difficult to excite a localized excitation at a given location

inside the crystal. Instead, one can drive the crystal with a continuous microwave. Extended spin waves are excited,
which then break up into localized excitations as a result of modulational instability. Lai and Sievers have performed the
modulational stability analysis of extended waves in easy-axis antiferromagnetic chains and determined that the uniform
excitation (q = 0 mode) is unstable [235]. This has lead to the proposal of experimental investigation of discrete breathers
in antiferromagnetic crystals [234,236]. By using molecular dynamics simulations with realistic parameters computed for
two different crystals and with the account of dissipation, Lai et al. [234], and Schwartz et al. [363] have investigated the
long time evolution of the unstable continuous wave with added noise and observed spontaneous formation of localized
structures accompanied by an asymmetric spectral broadening, with the formation of spectral peaks inside the gap.

The optimal conditions for experimental observation of discrete breathers (ILMs) have been reported for the
(C2H5NH3)2CuCl4 crystal [234]. Rod-shaped samples (directed along the c-axis in Fig. 86) with typical dimensions 3 × 3 ×

0.5 mm3 have been used in experiments. The lowest antiferromagnetic resonance (AFMR) frequency for these samples is
located around 1.5 GHz [234], which allows the use of a laboratory microwave cw field as the driving source. Some tuning
of the AFMR frequency is possible by applying a dc magnetic field along the easy or second-easy axis [95]. The overall
experimental setup is schematically shown in the left panel of Fig. 87. The first oscillator produces a spectrally narrow
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Fig. 87. Left panel: Schematic experimental setup for the measurement. An intense chirped microwave pump pulse is produced by a high power amplifier
driven by a voltage-controlled oscillator. A low power cw microwave probe from a tunable second oscillator is coupled to the single-loop coil through a
circulator. The reflected probe signal is detected by a spectrum analyzer, used as a receiver tuned to the second oscillator, and recorded by an oscilloscope.
The switch before the spectrum analyzer eliminates the pump. All switches, the ramp generator, and the oscilloscope are synchronized by a pulse generator
(not shown). Right panel: Time development of the absorption spectrum after the excitation pulse. The time sequence after the end of the 5 ms pulse is
identified in the figure. The dotted spectrum is a low power trace before the pulse. The pulse chirping from 1.45 to 1.40 GHz is indicated by the arrow. Peak
pulse power: 25 W; width: 5 ms. Figures from [95].

driving field, amplified to a maximum power of 40 W before being applied to the crystal. The second oscillator generates a
weak continuous wave tunable signal (within a wide spectral range below the excitation frequency), used for pump-probe
measurements. After removing the reflected pump pulse by a switch, the reflected probe signal is detected by a receiver and
recorded by an oscilloscope. Spectra are obtained by recording the reflected power as a function of time at fixed frequency
and then incrementing the frequency of the probe oscillator.

While the initial experiments reported in Ref. [234] did not provide sufficient information about formation of discrete
breathers (ILMs) due to long driving pulse lengths used (400 µs) and limited time resolution (20 µs), significant
improvements were reported in the subsequent set of experiments with shorter driving pulses [95]. Typical spectra
measured at different time instants after the initial excitationwith the intense 5µs chirpedpulse are shown in the right panel
of Fig. 87. The linear spectrum (recorded as a low power trace) is shown with the dotted line, and the vertical dash-dotted
line indicates the lowest AFMR frequency. Shortly after the application of the pump pulse the sharp AFMR peak (shifted
from its linear position due to the soft anharmonicity) is replaced with a very broad and flat spectrum due to the emergence
of discrete breathers (ILMs) with different energies (and thus different frequencies). Formation of similar broad asymmetric
spectra due to a statistical distribution of different discrete breathers (ILMs) emerging via modulational instability of the
continuous wave has been observed in molecular dynamics simulations [234], confirming experimental measurements. In
the subsequent time measurements a gradual reappearance and buildup of the uniform mode (q = 0) is observed due to
the gradual decay of discrete breathers (ILMs). According to the spectral data, discrete breathers (ILMs) stay excited for up
to ∼12 µs [95]. After about 20 µs the spectrum contains only a nonlinear uniform mode which then relaxes to its small
amplitude (linear) frequency with the decay time T1 ∼ 3 ms [234,95].

More recent studies [346,96] optimized the sample geometry for excitation of discrete breathers (ILMs) viamodulational
instability of the uniformAFMRmode. It was reported, that the sample shape significantly influences the resulting dynamics
and can lead to the appearance of an amplitude threshold for the modulational instability [96].

10.5.3. Counting discrete emission steps from discrete breathers (ILMs)
A new surprising feature of discrete breathers (ILMs) has been reported from a series of experiments in which discrete

breathers (ILMs) have been locked to the additional continuous wave source [351,352]. The initial excitation of discrete
breathers (ILMs) is realized by driving the modulationally unstable uniform spin mode to a large amplitude by a microwave
pulse (frequency f1), as discussed above. As the result of modulational instability, DBs (ILMs) with different frequencies
emerge. A few of these DBs (ILMs) are then locked by the continuous wave source (frequency f2). The number of locked
DBs (ILMs) strongly depends on the parameters of the f2 locking field and is expected to be too small for these DBs (ILMs)
to be visible in absorption spectra. Instead, a nonlinear energy magnetometer has been developed [351], which relies on
the nonlinear frequency mixing process between a weak probe (frequency f3) and the signal. Because of the third-order
nonlinearity of the antiferromagnet [10], which is similar to χ (3) nonlinearity in optics [216], themixing of a strong signal at
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Fig. 88. (a) Mixing data taken 2 ms after the 3 µs-long, 52 W pulse at f1 = 1.29 GHz. Here f2 = 1.32 GHz at a c.w. power of 240 mW. The weak (approx
1 mW) probe oscillator of variable frequency f3 is scanned. The sample is immersed in 1.2 K liquid helium. (b) Logarithmic plot of the same mixing data
to bring out the weaker spectral features. The peak at 1.362 GHz comes from the resonant four wave mixing signal with the AFMR, and is also observed
without the f1 pulse. Figure from [351].

frequency f2 with a weak probe f3 should produce a signal at frequency fdet = 2f2 − f3. Fig. 88 illustrates the power spectrum
recorded at a particular time instant by scanning the probe signal f3 and fixing the narrow band detector at frequency fdet.
One can see three spectral peaks. The strongest and the second strongest peaks on either side of the driver frequency f2 are
associated with the locked DBs (ILMs) [352], while the third strongest peak is due to emission from the uniform mode, also
observed without the f1 pulse.

The timedependence of themixing signal for different parameters of the f2 field is illustrated in Fig. 89,where the position
of the strongest peak is traced with time. The overall exponential decay is apparently due to dissipation. The important new
features are the step-like decays emerging at different time instants and forming rather similar structures for different
parameters of the locking field f2. A single step could be explained due to the unlocking of an individual DB (ILM). Indeed,
the power emitted by DBs (ILMs) via frequency mixing with the probe, P (3)DB , is a function of the integer number of locked
DBs (ILMs) nDB [352]:√

P (3)DB = nDBfdetχ(fdet)P2
√
P3, (10.27)

where χ(fdet) is an effective nonlinear susceptibility, P2 and P3 are the powers of the driver field f2 and probe field f3,
respectively. The uniformity of these steps and the apparent weak dependence of the step height on time remains puzzling.
The observed multi-step decay is argued to be connected to an interaction between the locked DBs (ILMs) [352], which
should lead to a dispersion of the locked DBs (ILMs) energies and frequencies. Yet, a complete theoretical explanation of the
effect is lacking.

10.5.4. Controlled switching of discrete breathers (ILMs)
While in the above experiments two separate fields f1 and f2 have been used to produce DBs (ILMs) and then lock them,

recently a simplified scheme has been proposed for the generation and controlled switching of DBs (ILMs) which does
not require the pump pulse f1 [403]. The idea is to tune the frequency f2 of the driving field sufficiently close to that of
the uniform mode. Then individual locked DBs (ILMs) can be produced and detected both via AFMR absorption and the
nonlinear emission technique described above. Fig. 90 illustrates the formation of a locked DB (ILM). Here the driving field
at frequency f2 = 1.330 GHz is switched on at t = 0. For small powers of the driving field, such as in Fig. 90(a), one can
observe the narrow AFMR absorption peak, which is pulled to lower frequencies due to the soft anharmonicity. Increasing
the driving field power, one can observe a rapid downshift of the AFMR peak together with a significant spectral broadening,
see Fig. 90(b) and (c) after 9 ms. This spectral broadening is accompanied by a step increase in the nonlinear emission, as
shown in Fig. 90(c), which indicates the formation of a locked DB (ILM). Notably, the step size in emission is quite similar to
the emission steps reported in earlier experiments, see Fig. 89.

The relatively long times needed to produce DBs (ILMs) by this technique allow one to observe the controllable switching
of DBs (ILMs) by changing the sample temperature or modulating the driving field power [403]. Since the AFMR frequency
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Fig. 89. (a) Square root of the time-dependent emission output as a function of the c.w. f2 power level. The 2.3% increments between the curves vary the
f2 power from 34.7 to 87.1 mW. Superimposed on the smooth time-dependent signal are steps in many of the traces. When a DB (ILM) disappears, a step
is recorded. (b) Square root of the time-dependent emission output as a function of the f2 frequency. The frequency is scanned from 1.33 to 1.34 GHz at a
power level of 55 mW so that 0.01/(fAFMR − f2) approximately 33%. Figure from [351].

Fig. 90. AFMR absorption vs time in the presence of a low frequency driver. f2 = 1.330 GHz. Darker density represents stronger absorption. (a) Driver
power= 1.1W and (b) Driver power= 1.4W. At about 9 ms a transition occurs to a broadened resonance. (c) Enhanced view of the broadening transition
at 9ms in (b). The four-wavemixing (emission)1/2 is superimposed. The nonlinear emission step occurs in tandemwith the broadening of the AFMR. Figure
from [403].

depends on the temperature, a gentle manipulation of the frequency detuning∆f of the driving field f2 from the resonance
can be achieved. Fig. 91 illustrates changes in emission due to variation of the sample temperature by a fewmK per second.
Apparent hysteresis loops in emission are observed due to capture and loss of a DB (ILM). A qualitative explanation of
these loops can be done by analogy with a driven nonlinear oscillator near its fundamental frequency. The corresponding
amplitude response as a function of the driving frequency detuning from the resonance is schematically shown in Fig. 91(b),
and is similar to the response function for the case of the driven dissipative DNLS model in Fig. 70(a).

10.5.5. Observation of two-magnon bound states
While the above discussed experiments deal with mesoscopic spin excitations, well described within classical spin

lattice models, see Section 8, recently Zvyagin and co-workers have experimentally detected two-magnon bound states in
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Fig. 91. Step hysteresis in (emission)1/2 vs temperature. (The abscissa also identifies the linear temperature dependence of the AFMR frequency in the
presence of the f2 driver.) (a) f2 = 1.350 GHz with three powers: 50 mW, 47.4 mW, and 45.7 mW. Dotted lines: increasing temperatures; solid lines:
decreasing temperatures. The hysteresis due to capture and loss of a single ILM is evident. (b) Comparison of the 50 mW data with a model. Thick line:
hysteresis characteristic of the amplitude response for a driven nonlinear oscillator. Figure from [403].

strongly anisotropic antiferromagnetic crystals [295,411]. Similar to two-particle bound states in the Bose–Hubbard chain,
see Section 9.1, bound magnon states can be considered as the quantum counterparts of magnetic discrete breathers. The
experiments in Refs. [295,411] have been performedwith strongly anisotropic easy-plane antiferromagnetics. By applying a
sufficiently strong external magnetic field along the hard axis, the spins are flipped into the direction of the field, forming a
ferromagnetic ground state. A one-magnon excited state is obtained by decreasing the azimuthal spin value by one unit at a
given site, while two-magnon states are constructed either by decreasing azimuthal spin values by one unit at two different
sites, or by two units at a given site. The latter corresponds to the two-magnon bound state. Using electron spin resonance
measurements, and comparing resulting transmission spectra with theoretically obtained frequency-field dependencies for
different one- and two-magnon states, transitions from the ground state and from single-magnon excited states to two-
magnon bound states have been detected.

10.6. Localized atomic vibrations in molecules and solids

10.6.1. Molecules
Intramolecular vibrational energy redistribution (IVR) has been a central issue in the field of chemical physics for many

decades. In particular, pathways and rates are of importance there, since understanding them allows one to describe e.g. the
dynamics of various chemical reactions, and dissociation processes [188]. Spectroscopical studies, where single vibrational
quanta are excited, allow the measurement of the frequencies of the normal vibrational modes, i.e. to characterize the
dynamics of amolecule for small amplitude vibrations. These normal modes consist of coherent combinations of vibrational
excitations of several bonds (or rotational groups) in a molecule. However, in order e.g. to dissociate a molecule, a multi
quanta excitation is needed, and nonlinearities will certainly become important. It was realized then, that strong vibrational
excitations of molecules are much better described by so-called local modes, i.e. basically one or few bond vibrational
excitations. That transition from normal to local modes presented a puzzle for a long time. A practically complete modern
theoretical account on these issues can be found in a recent monograph by Ovchinnikov, Erikhman and Pronin [299] (see
also [105]). On its most abstract level, the transition from normal to local modes is identical with the bifurcation in the
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Fig. 92. (a) Absorption spectra of PBLG in chloroform at 293 K (red line, helical conformation) and at 260 K (blue line, random coil). (b) Pump-probe spectra
600 fs after excitation under the same conditions. Inset: Decay of negative and both positive bands at 293 K. Figure from [85].

dimermodel discussed in chapters 1.1 and 9.2. Thus, local modes are essentially discrete breathers or slight perturbations of
them. Note, that the connection between local modes, breathers and periodic orbits has been recently studied by Farantos
in the context of large biological molecules [99]. Discrete breathers (ILMs) have been theoretically predicted to exist in
ionic crystals [211], ways of optical excitation of DBs (ILMs) have been proposed [335–337], and their possible presence in
hydrocarbon structures has been discussed [222].

Exciting local modes in molecules with discrete symmetries leads to small tunneling splittings of excitation levels [299],
and goes back to the work of Child and Lawton [61], see also a recent comprehensive review by Keshavamurthy [201] and
references therein. On its most abstract level, this effect is identical with the tunneling splitting in the permutationally
symmetric dimer model discussed in chapter 9.2.

An early example of experimental evidence of discrete breather excitations in molecules comes from spectroscopical
studies of visible red absorption spectra of benzene, naphtalene, and anthracene by Swofford et al. [376]. The C–H stretching
vibrations have been excited to the sixth quantum level, and red shifts of the lines show, that instead of a delocalized
excitation of six bonds to the first level (yielding six quanta), the excitation resides on just one of the six available bonds.
While it can tunnel (as a quantum discrete breather) to the other bonds, this tunneling time is a new large time scale in the
problem, strongly affecting e.g. dissociation rates.

A recent study of femtosecond infrared pump-probe spectroscopy of the N–H mode of a stable α-helix (poly-γ -benzyl-
L-glutamate (PBLG)) revealed two excited-state absorption bands, which disappear upon unfolding of the helix [85]. PBLG
forms extremely stable, long α-helices in both helicogenic solvents and films grown from these solvents. The monomeric
unit of PBLG is a non-natural amino-acid with a long side chain that stabilizes the helix. PBLG has served as the standard
model helix since the very early days of structural investigations of proteins. Fig. 92(a) (red line) shows the absorption
spectrum of the helix at 293 K, which is dominated by the strong N–H stretching band at 3290 cm−1. Fig. 92(b) (red line)
shows the pump-probe response 600 fs after excitation with an ultrashort broadband pulse. One negative (3280 cm−1)
and two positive bands (3160 and 3005 cm−1) are observed. If the N-H stretching modes were isolated, a negative band
associated with bleach and stimulated emission, and a positive band associated with excited-state absorption, would be
expected. This is indeed observed here for the unfolded molecule. In contrast, the observation of two positive bands for
the intact helix rather than just one, is exceptional. Edler et al. [85] argue, that these features can not be explained due
to intensity dependencies, or Fermi resonances. A consistent explanation is reached by assuming that two vibron states
are excited, and these vibrons may form two different types of bound states, self trapped either on the same site, or on
neighbouring ones (see Fig. 93). The latter states originate from the acoustic phonons of the helix, which correlate adjacent
sites (see also [159]).

10.6.2. Crystal surfaces
Depositing atoms or molecules on crystal surfaces can be controlled experimentally, and as a result a planar regular

two-dimensional lattice structure of the deposited material can be obtained. Guyot-Sionnest [158] used Hydrogen to be
deposited on Si(111) surfaces. The Si–H bonds can be excited using pump-probe techniques with infrared dye lasers. There
is substantial interaction between the Si–H bonds on the Si(111) surface. The pump excites one phonon (quantum), while
the tunable probe frequency finds a substantial red shift of the two-phonon excitation, and allows one to conclude that
two-phonon bound states are observed.
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Fig. 93. Simulated pump-probe spectrum for 293 K (red line) and 18 K (blue line). Inset: schematic of the energy levels. Figure from [85].

Fig. 94. (a) Infrared absorption spectra of the C–O stretching mode at 30 K. The corresponding mode of naturally abundant 13 C16O is displayed in an
enlarged vertical scale; (b) the overtone band observed at less than twice the frequency of the fundamental mode. Figure from [171].

Another set of experimentswas performed by Jakob [171–173]. Carbonmonoxide (CO)was deposited on a Ru(001) single
crystal surface. The C–O stretching modes constitute a two-dimensional array of weakly interacting anharmonic oscillators
with 4.7 Å intermolecular distance. Intermolecular coupling is provided by means of the electric field of the oscillating
dipoles. Experimental spectra at 30 K are shown in Fig. 94. The one phonon mode frequency is at 2031 cm−1. This has to be
compared to the naturally abundant 13 C16O frequency at 1941 cm−1. The corresponding blue shift for the adsorbate is thus
due to additional stiffness provided by the Ru surface coupling. Excitation of two uncorrelated phonons would yield a two
phonon continuum at about 4062 cm−1. The narrow line observed at 3940 cm−1 can be thus attributed to a two-phonon
bound state, or a discrete breather excitation.

The temperature dependence of the line positions also clearly shows, that the two-phonon bound state line softensmuch
slower than the line of the one-phonon delocalized state (Fig. 95). This is, among other facts, a strong indication that the
observed red shift of the overtone line is due to the formation of a localized two-phonon bound state, or a (quantum) discrete
breather.

10.6.3. In the bulk of solids
Vibrational spectra in the overtone or combination region ofmolecular crystals have been studied intensively in the 1970s

and 1980s. A pioneering theoretical proposal was due to Agranovich, who predicted the existence of two-exciton bound
states in various molecular crystal materials [4]. Experimental studies of infrared absorption spectra for CO2 crystals were



S. Flach, A.V. Gorbach / Physics Reports 467 (2008) 1–116 105

Fig. 95. Frequency shifts of the vibrational bands with temperature: crosses — overtone band, dots — fundamental of naturally abundant 13 C16O, open
circles — delocalized fundamental of 12 C16O. Figure from [171].

conducted by Dows et al. [81] and gave evidence of two-phonon bound states. Dressler et al. studied the slow vibrational
relaxation of N2, which also indicates the presence of many-phonon bound states [82]. In a remarkable theoretical paper,
Bogani calculated the spectrum of two phonon excitations inmolecular crystals [44], to some extent one of the first accurate
calculations of quantum discrete breathers. More recently Bini et al. reconsidered the theory of three-phonon bound states
in crystal CO2 [42].While there certainly aremany other results worthmentioning, we recommend reading related chapters
in [5,299].

The pioneering studies of Swanson et al. [375] have shown that up to seven phonons can bind and form a localized
state. The system of choice was a PtCl based crystal — a halide-bridged mixed-valence transition metal complex, which is a
model low-dimensional electronic material where the ground states can be systematically tuned (with chemistry, doping,
pressure, and temperature). It is a very strong charge-density wave (CDW) example. The material is a well-formed crystal
with a homogeneous lattice consisting of quasi-1D chains (see Fig. 96). The CDW ground state consists of alternating Pt+2

and Pt+4 siteswith a corresponding distortion of the chloride ions towards the Pt+4 site. Resonance Raman spectrawere used
to probe both ground and photoexcited states. They probe the fundamental Cl–Pt–Cl stretch and the progression of many
overtones. At low temperatures, the fundamental exhibits a fine structure with up to six discrete, well-resolved modes. The
analysis of the evolution of the spectral structure in the overtones was performed for isotopically pure samples, in order to
avoid exciting localized states due to isotopic disorder. The fundamental and overtone spectra for the pure Pt35Cl sample
are shown in Fig. 97. The data are presented in a stack plot in which each successive trace is offset along the horizontal
axis by increasing multiples of the fundamental frequency 312 cm−1. Such plots clearly expose the relation of features in
the overtone spectrum to multiples of the fundamental peak. The lowest energy dominant feature in each trace (marked by
vertical lines) demonstrates a strongly increasing anharmonic redshift. Further, at higher overtones, each of these dominant
peaks recurs, offset by the fundamental frequency, in the next trace above. A simple interpretation is that the lowest-energy
dominant peaks in the overtone spectra correspond to all quanta of vibrational energy localized in approximately one PtCl2
unit, while the higher energy peaks correspond to having all quanta but one in a localized PtCl2 unit combined with one
quanta in the more extended fundamental. The schematic process of the energy transfer is shown in Fig. 98 and has been
analyzed theoretically in [217]. An incoming photon at frequency ν is exciting an electron from a Pt+2 to a Pt+4 site. The
Cl ion between them starts oscillating. Finally the electron relaxes back to its original position, and releases a photon with
frequency ν ′. The energy difference remains in a localized vibration. The effect of isotope disorder was treated by Kalosakas
et al. [193]. The experimentally observed redshifts were also theoretically described by Fehske et al. [101] using Peierls-
Hubbard models, and by Wellein et al. using the Holstein model [400].

Inelastic X-ray and neutron scattering was used byManley et al. [258,259,257] to probe phonon dispersion in α-uranium
single crystals. Variation of temperature showed softening, and the abrupt appearance of a new dynamical mode, without
a typically observed phase transition. The authors argue that this mode is a discrete breather, and forms due to strong
electron–phonon interaction.

Russell and Eilbeck reported evidence for moving breathers in the layered crystal muscovite at 300 K [341]. Breathers
were created by bombardment of the crystal surface with heavy ions. Ejection of atoms at the opposite (shielded) crystal
surface was attributed to breathers, which were able to carry the vibrational energy without dispersing over more than 107

unit cells of the crystal.
Finally Abrasonis et al. [3] reported on anomalous bulk diffusion of interstitial Nitrogen in steel microcrystals. N ions

were deposited in a micron-thick layer, and are trapped by local structures, with a characteristic binding energy. Ar ion
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Fig. 96. Structure of the PtCl crystal. One PtCl chain is shown on the left. Each Pt atom is coordinated by two ethylenediamine units in a near square planar
geometry, while Cl ions connect Pt sites along the chain. The packing arrangement of the 1D chains and their ClO−

4 counterions is shown on the right. Figure
from [375].

Fig. 97. Fundamental and overtone spectra of isotopically pure Pt35Cl. Moving upward in each panel, each x axis is offset by the appropriate integral
multiple of the 312 cm−1 fundamental frequency. All spectra have been scaled vertically to equal peak intensities. Figure from [375].

bombardment increases theNmobility at depths far beyond the ionpenetrationdepth. The authors see evidence for coherent
transfer of vibrational energy deep into the bulk of the material.
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Fig. 98. A simple picture of a resonant Raman scattering event in the localized atomic limit. Large filled circles mark Pt ions, small grey circles mark Cl
ions. Open circles mark the positions of electrons. Figure from [217].

10.7. Macroscopic devices, scales, and predictions

10.7.1. Macroscopic devices
Discrete breathers have been obtained in electrical lattices [266,373]. They essentially represent an electrical

transmission line, where each element of the chain contains a capacitor, and an inductance, with unavoidable loss via a
finite resistance. Such an element is a damped oscillator, which can be easily designed to be nonlinear. Driving the system at
few hundreds of kHz, discrete breathers can be stabilized and observed. A recent twist was taken by Sato et al. [354]. Locked
discrete breathers (ILM) were manipulated by adding static lattice impurities, which are capable of seeding, destroying,
attracting or repelling them.

Discrete breathers have been also obtained in chains of pendula which interact via magnetic dipole–dipole
interaction [342]. These devices are actually simple table experiments, extremely useful for demonstration in classes. Each
pendulum is about 10 cm long, the distance is of the order of a few cm. The typically realizable periods of a discrete breather
vibration are of the order of one second, and achievable lifetimes are of the order of 30 s (in the absence of pumping). Similar
studies are reported in [238].

10.7.2. Time and length scales
The experimental studies listed in the above sections, demonstrate a surprisingly wide variety of time and length scales.

Josephson networks operate on µm length scales and 10−11 s time scales, with some flexibility towards even shorter
l and τ . Lifetimes of rotobreather states are of the order of minutes (due to external dc bias stabilization). Nonlinear
optical waveguides operate on µm length scales (note that there is no time scale involved here, since time is replaced
by the propagation distance of light, with a characteristic scale of the order of the wavelength of the light). Bose–Einstein
condensates in optical lattices operate again on µm length scales, while the time scale is of the order of ms. Lifetimes of
discrete breathers are in the range of 10–100 ms. Micromechanical cantilever arrays operate at 50 µm length scales, and
10−5 s time scales, with lifetimes up to 100 ms. Discrete breather excitations in molecules and solids are characterized by
few Å length scales, and 10−13 s time scales. Since laboratory setups easily mimic such excitations on macroscopic length
scales (5 cm) and time scales of the order of seconds, we may state, that discrete breathers can be excited on virtually any
time and length scale, depending on the system design.

10.7.3. More theoretical predictions
As a consequence, there are many theoretical speculations on the possible observation of discrete breathers in various

other systems. Without claiming completeness, we want to mention a few of them. Peyrard and Bishop formulated a lattice
model which describes the denaturation of DNA [310]. The model was refined by Dauxois et al. [76]. Base pair openings
are related to large amplitude localized excitations (perhaps discrete breathers) [309,311,384,383]. The model is used to
predict various dynamical properties of base pair openings and their relation to DNA transcription processes [195,194,
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15]. Peyrard and Sire speculate about the persistence of breathers in biomolecules [312], and Savin and Manevitch — in
polyethylene chains [356]. Juanico and coworkers argue in favor of the appearance of DBs in nonlinear network models of
proteins [189]. The role of discrete breathers in a targeted energy transfer in complex systems was discussed [24,224,223].
Mingaleev et al. [277] studied the conformational dynamics of biopolymers, and identify localized excitations at bending
sites, which strongly affect the further dynamics of the biopolymer. Kourakis and Shukla [231] study the dynamics of dusty
plasma crystals (see also Koukouloyannis et al. [229]). Vertical dust grain oscillations are predicted to form discrete breather
modes. Localized electromagnetic waves in magnetic metamaterials were proposed [239,94]. Finally, Savin and Kivshar
compute discrete breather states in the lattice vibration of carbon nanotubes [355], which have been further studied by
Kinoshita et al. [209]. Yamayose et al. study intrinsic localized modes in a graphene sheet [406]. While the future has to
show, whether any of these predictions will be correct or not, we may safely say that there is good chance that some of
them will succeed.

11. Conclusions

11.1. Summary

Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are
time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete
breathers are not confined to certain lattice dimensions. We introduced the concept of these localized excitations and
reviewed their basic properties including dynamical and structural stability. We then focused on advances in the theory
of discrete breathers in three directions — scattering of waves by these excitations, persistence of discrete breathers in long
transient processes and thermal equilibrium, and their quantization. The second part of this reviewwas devoted to a detailed
discussion of recent experimental observations and studies of discrete breathers, including theoretical modelling of these
experimental situations on the basis of the general theory of discrete breathers. In particularwe focused on their detection in
Josephson junction networks, arrays of coupled nonlinear optical waveguides, Bose–Einstein condensates loaded on optical
lattices, antiferromagnetic layered structures, PtCl based single crystals and driven micromechanical cantilever arrays.

On the theoretical side, the issues of quantum discrete breathers, and the impact of discrete breathers on statistical
properties, remain as fields which still await a much more thorough and detailed investigation. On the experimental side,
we expect manymore fields of application of the discrete breather concept, and also manymore detailed studies of discrete
breather properties and their impact on other properties of the systems under investigation.

11.2. q-breathers, localization in normal mode space, and the Fermi–Pasta–Ulam problem

The concept of discrete breathers – time-periodic and spatially localized orbits – had a surprising twist recently. It turns
out, that the idea can be extended to localization in normal mode space. Indeed, think about any of the lattices discussed
in this work, assume the lattice to be finite, and remove nonlinearity completely. Then the dynamics of the system can
be completely solved by going into normal mode space. Each normal mode is a harmonic oscillator. The dynamics of
this linear problem is characterized by a set of noninteracting normal mode oscillators. Adding nonlinearity will induce
a network of nonlinear interactions between the normal mode oscillators. It has been shown recently with the help of a
theorem of Lyapunov, that the periodic orbits of the linear system, which correspond to exactly one normal mode being
excited, are continued into the nonlinear regime. The periodic orbits of the nonlinear system are exponentially localized
in normal mode space, and are thus called q-breathers [122,123,287,196,304]. If one normal mode is excited in such a
system, the trajectory will stay close to a q-breather periodic orbit for long times, in close similarity to the observations
of localization in real space being related to nearby located discrete breathers, see Section 3.1. Then we observe localization
in normal mode space. But that is exactly what was observed by Fermi, Pasta and Ulam (FPU) in their seminal work on
the equipartition of a nonlinear atomic chain [102], and what has been considered as one of the big problems in statistical
physics since [145,56]. Since q-breathers are periodic orbits, they are well-defined low-dimensional invariant manifolds in
phase space, and can be rigorously characterized with respect to e.g. their degree of localization, linear stability, etc. That
work has been accomplished [123]. Furthermore itwas shown, that the localization properties of q-breathers depend only on
intensive quantities (energy density and frequency), and they have been shown to persist in arbitrarily large lattices [196].
These properties of q-breathers are directly related to many properties of the trajectory initially studied by FPU, including
recurrence [123], and resonant excitation of tail modes [304]. Certainly this is just the beginning of a systematic study of
the relation between periodic orbits and equipartition routes in nonlinear extended systems. Among others there is the
interesting question, whether and how these periodic orbits are linked to the continuation of standing waves from the
anticontinuous limit [285].

Another intriguing question is the relation between time-periodic and spatially localized solutions in nonlinear
disordered lattices [7,366,219,14,221,220,197] and the diffusion of an initially localized excitation [367,283]. This is
currently an active field of research, and we can expect to receive fresh news in the very near future.
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11.3. Some closing words

The aim of this review was to give the reader an introduction into the fascinating field of localizing energy by nonlinearity
and discreteness, to discuss details of recent achievements, and to review for the first time recent experimental studies.
Most certainly we have not adequately mentioned several results, and for this we sincerely apologize. At this place we
want to thank many colleagues for sharing their views and discussing related problems with us. Especially important were
discussions with G. Abrasonis, B. Altshuler, S. Aubry, A. Benabdallah, A.R. Bishop, T. Bountis, D.K. Campbell, T. Dauxois, S.
Denisov, J. Dorignac, M. Fistul, V. Fleurov, M. Floria, P. Hänggi, M.V. Ivanchenko, M. Johansson, G. Kalosakas, O.I. Kanakov, Yu.
Kivshar, K. Kladko, G. Kopidakis, A. Lichtenberg, R.S. MacKay, P. Maniadis, S. Mingaleev, K. Mishagin, A. Miroshnichenko, A.
A. Ovchinnikov, J. Page, T. Penati, M. Peyrard, R. Pinto, A. Ponno, R. Schilling, L. Schulman, A.J. Sievers, M. Spicci, V. Shalfeev,
G. Tsironis, A. Ustinov, R. Vicencio, C.R. Willis, Y. Zolotaryuk, and many others.
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