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Abstract – We observe a crossover from strong to weak chaos in the spatiotemporal evolution
of multiple-site excitations within disordered chains with cubic nonlinearity. Recent studies have
shown that Anderson localization is destroyed, and the wave packet spreading is characterized by
an asymptotic divergence of the second moment m2 in time (as t

1/3), due to weak chaos. In the
present paper, we observe the existence of a qualitatively new dynamical regime of strong chaos,
in which the second moment spreads even faster (as t1/2), with a crossover to the asymptotic
law of weak chaos at larger times. We analyze the pecularities of these spreading regimes and
perform extensive numerical simulations over large times with ensemble averaging. A technique
of local derivatives on logarithmic scales is developed in order to quantitatively visualize the slow
crossover processes.

Copyright c© EPLA, 2010

Wave propagation within random potentials is an
interdisciplinary research field applicable to many diverse
systems; regardless of their classical or quantum nature,
the overall wave behavior provides common ground for
understanding transport properties. One such property
—theoretically predicted by Anderson [1] and since
labeled “Anderson localization” (AL)— is a halt of
wave propagation due to exponentially localized normal
modes (NMs) of the random potential. The significance
of AL has been evidenced in the past decades by a
bevy of experimental observation; including optics [2],
acoustics [3], microwaves [4], and matter waves [5].
In many experimental situations, AL can be strongly

altered by the appearance of nonlinearity within the
potential. These nonlinearities can be induced via the
nonlinear Kerr effect in disordered photonic lattices [6], or
atomic Bose-Einstein condensate interactions (controlled
by Feshbach resonances) in optical lattices [7].
The question of the interplay between disorder and

nonlinearity —how the two complement, frustrate, or
reinforce each other— is thus of strong importance. The
theoretical study of AL in random nonlinear lattices has
been advanced using several approaches including the
studies of transmission [8] and stationary solutions [9].

(a)E-mail: bodyfelt@pks.mpg.de

Recent research in dynamics of wave spreading within
nonlinear disordered media focuses on the spatiotemporal
evolution of wave packets, debating the asymptotic
spreading law against an eventual blockage [10–15]. Previ-
ous numerical studies show that the second moment of a
wave packet starting from a single-site excitation grows
as t1/3 [14,15]. However when starting from a distributed
single normal mode state, faster growth is reported,
though not quantitatively assessed [14–16]. Theoretical
expectations range from spreading without limits to
a slowdown and restoration of AL. Different spreading
characteristics are also claimed to be t2/5 [11], t1/3 [14,15],
and a two-regime case with t1/2 and asymptotic t1/3 [17].
This letter aims to clarify some of these controversies.
We first show that using estimates for average

spacings and nonlinear frequency shifts, three different
evolution regimes can be identified. In particular, in
contrast to previous results we obtain a new regime of
strong chaos which is accessible by initial multiple-site
excitations, but not by single-site excitations. Contrary
to previous studies, we perform extensive ensemble aver-
aging over 1000 disorder realizations. As a result, smooth
functional dependencies of wave packet characteristics
on time are obtained. Using a technique of smoothing
and local differentiation on logarithmic scales, we are
able to observe the fast spreading regime of strong
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chaos, proceeded by the predicted crossover into the
asymptotic regime of weak chaos, as argued in ref. [17].
No further saturation and slowing-down of the asymptotic
spreading process is observed on the longest time scales
of observation.
We study two different Hamiltonian models. The first

is the one-dimensional disordered nonlinear Schrödinger
(DNLS) equation

HD =
∑
l

εl|ψl|2+ β

2
|ψl|4− (ψl+1ψ�l +c.c.) (1)

in which the sum is over lattice sites and εl is the onsite
energy chosen uniformly from a [−W/2,W/2] random
distribution. By ∂tψl = ∂HD/∂(iψ�l ), the equations of
motion are generated:

iψ̇l = εlψl+β|ψl|2ψl−ψl+1−ψl−1. (2)

The second model considered is oscillators on a quartic
Klein-Gordon (KG) lattice, given as

HK =
∑
l

p2l
2
+
ε̃l

2
u2l +

1

4
u4l +

1

2W
(ul+1−ul)2, (3)

where ul and pl are, respectively, the generalized coordi-
nate/momentum on the site l with an energy of El, and ε̃l
are the disordered potential strengths chosen uniformly
in [1/2, 3/2]. Likewise, ∂2t ul =−∂HK/∂ul generates the
equations of motion

ül =−ε̃lul−u3l +
1

W
(ul+1+ul−1− 2ul). (4)

The two models have only onsite cubic nonlinearity, but
the specific methods discussed here can also be generally
applied to other nonlinear models with other powers of
nonlinearity or long range nonlinear dependencies.
Similar to β in the DNLS case, the nonlinear control

parameter for the KG model is the total energy, E =∑
l El � 0. Both models conserve the total energy; the

DNLS model also conserves the total norm S =∑l |ψl|2.
As a practical note between the two models: the KG model
is much more computationally friendly, with numerical
integration speeds of two orders of magnitude faster. For
small amplitudes an approximate mapping, βS ≈ 3WE,
from the KG model to the DNLS model exists [18].
Further analytics will, in general, be discussed in terms
of the DNLS model, since it now straightforward to adapt
similar results for the KG model using the aforementioned
mapping.
By neglecting the nonlinear terms, the DNLS model (1)

reduces to the linear eigenvalue problem λAl = εlAl−
(Al+1+Al−1). This leads to a set of NM amplitudes,
Aν,l, with NM frequencies of λν ∈ [−W/2− 2,W/2+2] in
a spectrum width of ∆= 4+W . The coefficient choice of
1/(2W ) in the KG model (3) allows a linear reduction
to the same eigenvalue problem as for the DNLS, but
with the values of εl =W (ε̃l− 1) and λν =Wω2ν −W − 2;

in this case, ∆= 1+4/W is the width of the squared
eigenfrequency spectrum, ω2ν ∈ [1/2, 3/2+4/W ].
The NM asymptotic spatial decay is given by Aν,l ∼

e−l/ξ(λν) where ξ(λν) is the localization length. It is
approximated [19] in the limit of weak disorder (W � 1)
as ξ(λν)� ξ(0)≈ 96W−2. The NM participation number
Pν = 1/

∑
lA
4
ν,l characterizes the NM spatial extent. An

average measure of this extent is the localization volume
V , which is on the order of 3.3ξ(0) for weak disorder and
unity in the limit of strong disorder [20]. The average
frequency spacing of NMs within a localization volume
is then d≈∆/V . The two frequency scales d <∆ are thus
expected to determine the packet evolution details in the
presence of nonlinearity.
Nonlinearity induces an interaction between NMs. The

variables φν =
∑
lAν,lψl determine the complex time-

dependent amplitudes of the NMs, changing (2) into

iφ̇ν = λνφν +β
∑

ν,ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
�
ν1
φν2φν3 , (5)

where the NM overlap integral is defined as

Iν,ν1,ν2,ν3 =
∑
l

Aν,lAν1,lAν2,lAν3,l. (6)

Since all NMs are exponentially localized in space, each
effectively couples to a finite number of neighbor modes.
Hence, the nonlinear interactions are finite. However, the
strength of this coupling is proportional to the norm
density. If the packet spreads far enough, we can generally
define two norm densities: one in real space, nl = |ψl|2 and
the other in NM space, nν = |φν |2. Averaging over real-
izations, no strong difference is seen between the two, and
therefore, we treat it generally as some characteristic norm
density, n. The frequency shift due to the nonlinearity
is then δ∼ βn.
We track the normalized forms of the NM norm densi-

ties, zν ≡ |φν |2/
∑
µ |φµ|2, for DNLS. The KG counter-

part is normalized energy density distributions. These
densities are sorted on the center-of-norm coordinateXν =∑
l lA

2
l,ν , and two measures in NM space used: the partic-

ipation number P = 1/
∑
ν z
2
ν which queries the quantity

of strongest excited sites, and the second moment m2 =∑
ν(ν− ν̄)2zν (where ν̄ =

∑
ν zν) which probes distances

between a distribution’s tail and center. The ratio of the
two measures ζ = P 2/m2 (the compactness index [15])
quantifies the sparsity of a packet —thermalized distribu-
tions have ζ ≈ 3, while ζ� 3 indicates either very sparse
packets, or self-trapping.
We consider compact wave packets at t= 0 spanning a

width L centered in the lattice, such that within L there
is a constant initial norm density of nin and a random
phase at each site (outside the volume L the norm density
is zero). In the KG case, this equates to exciting each site
in the width L with the same energy density, E =E/L,
i.e. initial momenta of pl =±

√
2E with randomly assigned

signs.
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In such an initial packet, if δ >∆, the previously
mentioned nonlinear frequency shifts will completely tune
excited sites out of resonance with the nonexcited portion
of the finite-width linear spectrum. The wave packet will
exhibit “self-trapping” [13,15], whereby structures will
be formed that are similar to discrete breathers, which
can persist for immensely long times. In fact, the onset
of self-trapping already occurs for δ > 2, since at least
temporarily, a minimum of sites in the packet may be
tuned out of resonance.
If now δ < 2, any self-trapping is avoided, and the packet

can spread. For β = 0 and L<V , the packet will extend
over the localization volume V during the time τlin ∼
2π/d. After that, AL stops further spreading, and the
packet has a lowered norm density n(τlin)≈ (ninL)/V . For
L� V , the norm density will not change appreciably up to
τlin, so n(τlin)≈ nin. For β > 0, the nonlinear frequency
shift should be compared with the average spacing d. If
βn(τlin)< d, most of the NMs are weakly interacting with
each other; hence, this regime is dubbed “weak chaos”.
Once δ= d, the NM frequency renormalization begins to
allow some NMs to interact resonantly, i.e. strongly, with
each other. If βn(τlin)>d, almost all NMs in the packet
are resonantly interacting. This regime will be coined
“strong chaos”. For a single-site excitation L= 1 the
strong-chaos regime shrinks to zero width and one is left
only with either weak chaos or self-trapping [11,12,14,15].
The key distinction of the multiple-site excitations is that
they can spread in the strong-chaos regime. For L� V , let
us briefly summarize the expected spreading regimes

δ > 2 : onset of self-trapping;

d< δ < 2 : strong chaos;

δ < d : weak chaos.

Figure 1 illustrates these predicted regimes in a para-
metric space for the case L= V , in which lines repre-
sent the regime boundaries δ= d and δ= 2. The lower
boundary is analytically found, via d=∆/(3.3ξ(0)) with
ξ(0) = 96W−2 being the weak-disorder estimate. More
sophisticated numerical estimates of d [20] yield only slight
corrections for W > 6. It should be noted that the regime
boundaries in fig. 1 are NOT sharp, rather there is some
transitional width between the regimes. The weaker the
strength of disorder, the larger the window of strong chaos.
Inversely, forW � 8 the strong-chaos window closes almost
completely. Ideally, we should utilize the smallest possi-
ble value of W . Computational limits restrict this, so we
choose a reference of W = 4.
It is important to note that δ will be reduced in

time, since a spreading wave packet increases in size and
drops its norm (energy) density. This gives the following
interpretation of fig. 1: given an initial norm density, the
packet is in one of the three regimes (for example, the
three circles in fig. 1). A packet launched in the weak-
chaos regime stays in this regime. A packet launched in the
strong-chaos regime spreads to the point that it eventually

2 4 6 8W
10-2

10-1

100

101

δ

Weak Chaos

Self-Trapping

Strong Chaos

Fig. 1: (Color online) Parametric space of disorder, W , vs. the
frequency shift induced by nonlinearity, δ, for the DNLS model.
The KG analog is obtained by the small-amplitude mapping
E ∼ δ/(3W ) (see inset of fig. 3). Three spreading regimes are
shown for dynamics dictated by: i) weak chaos (pale blue),
ii) strong chaos (green), and iii) onset of self-trapping (pale
red). The three circles show the initial numerical values used
in fig. 2.

crosses over into the asymptotic regime of weak chaos at
later times.
A packet launched in the self-trapped regime will have

a portion remaining trapped, but will also have a portion
spreading [13]. The two portions of the packet continue to
interact, therefore the ratio between them remains an open
question; however, the spreading portion will see its norm
reducing, and an asymptotic crossover is also expected at
later times.
In order to observe the crossover, we use L= 21 (which

is approximately equal to V for W = 4) in system sizes
of 1000–2000 sites. For DNLS, an initial norm density
of nin = 1 is used, so that initially δ∼ β. Nonlinearities
(E for KG) are chosen within the three spreading
regimes (see fig. 1), respectively β ∈ {0.04, 0.72, 3.6}
and E ∈ {0.01, 0.2, 0.75}. Equations (2), (4) are time
evolved using SABA-class split-step symplectic integra-
tion schemes [15,21], with time-steps of dt∼ 10−2–10−1
up to a maximum t∼ 107–109. Energy conservations are
accurate to < 0.1% (for discussion of numerical accuracy
in symplectic integrators, please see ref. [15]).
Ensemble averages over disorder were calculated for

1000 realizations and are shown in fig. 2 (upper row). In
the regime of weak chaos we find a subdiffusive growth
of m2 at large times according to m2 ∼ tα, α� 1, with
a compactness index ζ ≈ 3. Note that the subdiffusive
growth is difficult to see initially in fig. 2 for two reasons.
Firstly, the logarithmic scaling hides any small initial
growth, and secondly, there is a characteristic time scale
for the packet to spread from its initial preparation. In
the regime of strong chaos we observe a faster subdiffusive
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Fig. 2: (Color online) Upper row: average log of second
moments (inset: average compactness index) vs. log time
for the DNLS (KG) on the left (right), for W = 4, L= 21.
Colors/letters correspond the three different regimes: i) weak
chaos —(b)lue, β = 0.04 (E = 0.01); ii) strong chaos —(g)reen,
β = 0.72 (E = 0.2); iii) onset of self-trapping —(r)ed, β =
3.6 (E = 0.75). The respective lighter surrounding areas show
one standard deviation error. Dashed lines are to guide the eye
to ∼ t1/3, while dot-dashed lines are guides for ∼ t1/2. Lower
row: finite-difference derivatives for the smoothed m2 data,
respectively, from above curves.

growth of m2, with an additional slowing-down at larger
times, as expected from the predicted crossover. The
compactness index is also ζ ≈ 3, as in the weak-chaos
regime. Finally, at the onset of self-trapping,m2 grows but
the compactness index ζ decreases in time substantially.
This indicates that a part of the wave packet is arrested,
and another part is spreading.
In order to quantify our findings, we smooth 〈logm2〉

with a locally weighted regression algorithm [22], and
then apply a central finite difference to calculate the local
derivative

α(log t) =
d〈logm2〉
d log t

. (7)

The outcome is plotted in the lower row in fig. 2.
In the weak-chaos regime the exponent α(t) increases

up to 1/3 and stays at this value for later times. In the
strong-chaos regime α(t) first rises up to 1/2, keeps this
value for one decade, and then drops down, as predicted.
Finally, in the self-trapping onset regime we observe an
even larger rise of α(t). Additionally, we also performed
numerics for W ∈ {1, 2, 6} with respective initial packet
widths of L= V ∈ {361, 91, 11}. Results are qualitatively
similar to those shown in fig. 2, and thus omitted for
graphical clarity.

Interior modes of the packet interact in a nonintegrable
way, leading to chaotic dynamics [14,15]. Exterior modes
close to a wave packet may also be heated —from (5) it is
conjectured [17] that an exterior mode is excited according
to

iφ̇µ ≈ λµφµ+βn3/2P(βn)f(t), (8)

where P(βn)≈ 1− e−βn/d is the probability of a mode
resonance [17,20], and f(t) is a stochastic force. Under
such conjecture, the time-dependent norm is |φ(t)|2 ∼
β2n3(P(βn))2t. It will reach the level of the wave packet
norm density n at a time T ∼ β−2n−2(P(βn))−2. At
this time it becomes a part of the wave packet. There-
fore its inverse D= T−1 ∼ β2n2(P(βn))2 characterizes
the rate of norm (energy) diffusion, which still depends
on time, since n is decreasing with further spreading.
Thus, it is the resonance probability that largely dictates
whether the chaos is strong or weak. From m2 ∼ 1/n2 and
the diffusion equation m2 ∼Dt, one obtains an equation
1/n2 ∼ β(1− e−βn/d)t1/2, which further determines the
subdiffusive spreading crossover from the regime of strong
chaos to that of weak chaos

m2 ∼
{
βt1/2, βn/d > 1 (strong chaos)

d−2/3β4/3t1/3, βn/d < 1 (weak chaos)
(9)

It is important to note that within prior studies discussing
t2/5 spreading [11], several assumptions are made
—the strongest being that all phases are randomized and
all modes are chaotically excited. This is equivalent to
assuming strong chaos, regardless of the actual packet
dynamics, i.e. P = 1 in the above equations. However, the
diffusion rate was estimated in ref. [11] by using the equa-

tion of heating the external mode as D̃∼ β2n3. Repeating
the rest of the above steps leads to the exponent 2/5.
Doing so fails to obtain the correct diffusion rate, and
to recover the diffusive limit in their scaling arguments;
however in the above arguments the diffusive case is fully
recoverable.
The impact of the strong-chaos regime is seen in the

resonance probability; P ≈ 1 if βn is sufficiently larger
than d. Such a situation can be generated for packets
with large enough βn (or energy density E for KG)
in which every mode in the packet resonates, and the
condition for strong chaos yields faster spreading, m2 ∼
t1/2. These predictions for strong chaos are then observed
at t∼ 103–104 (KG: 104–105) in fig. 2; time averages
in these regions over the green curves yield α≈ 0.49±
0.01 (KG: 0.51± 0.02).
With spreading continuing in the strong-chaos regime,

the norm density in the packet will decrease, and even-
tually βn� d. Then a dynamical crossover occurs to the
slower weak-chaos subdiffusive spreading. This crossover
spans logarithmic time scales. Nevertheless, in the green
curves of fig. 2 clear decay in α to values below 1/2
is observed. Fits of the decay further suggest α≈ 1/3
at t∼ 1010–1011. The challenge remains to directly
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Fig. 3: (Color online) Spreading behavior in the strong-chaos
regime for the KG model, with an initial energy density of
E = 0.1. The four curves are for the disorder strengths ofW = 1
—(r)ed, W = 2 —(g)reen, W = 4 —(o)range, W = 6 —(b)lue.
Inset: the KG analog of the DNLS parametric space, fig. 1.
The four points correspond to the disorder strengths used in
the main portion of the figure.

observe saturation at times accessible in computational
experiments.
The duration of α= 1/2 (and thus when the crossover

occurs) is largely dependent on how deep in the strong-
chaos regime the state is initially. Since the boundaries
between different regimes are NOT sharp, but rather have
some characteristic width, ideally one should utilize the
smallest possible value of W . This is shown in fig. 3 for
the KG model. ForW ∈ {1, 2}, a long plateau at α= 1/2 is
clearly observed. ForW ∈ {4, 6}, the initial energy density
approaches one of the boundary lines and likely crosses
into a boundary window, in which α< 1/2.
In the self-trapping onset regime, a good portion of the

excitation remains highly localized, while the remainder
spreads (red curves in fig. 2). Therefore, P does not
grow significantly, but the second moment does. Conse-
quently, ζ drops and is a good indicator of the degree
of self-trapping. The time evolution of ζ for excitations
in different regimes is shown in the insets of fig. 2. In
the regimes of weak and strong chaos, if self-trapping
is avoided, the compactness index at largest computa-
tional times is ζ ≈ 2.85± 0.79 (KG: 2.74± 0.83), as seen in
the blue and green curves of fig. 2. This means that the
wave packet spreads, but remains thermalized (ζ ≈ 3). For
the self-trapping onset regime (red curves), the compact-
ness index asymptotically decreases to very small values.
Note in fig. 2 at intermediate times, there is transient
growth where α> 1/2; nonetheless it remains subdiffu-
sive (α< 1). At larger times, this overshoot decreases.
This is presumably due to some self-trapped states which
interact strongly with the spreading part of the packet

and release their norm (energy) into the thermal cloud at
some time. These more complicated scenaria are not yet
quantitatively understood, and certainly remain for future
exploration.
This crossover can be expected to show up in

measurements of the heat conductivity κ at finite norm
(energy) densities. According to the heat equation
∂T (x, t)/∂t= (κ/c)∂2 T/∂x2 where T is the temperature
and c the specific heat. Therefore the heat conductivity is
proportional to the diffusion rate κ= cD. For small norm
(energy) densities, heat is proportional to the densities.
Therefore we expect that for βn> d, i.e. in the regime
of strong chaos, κ∼ T 2 (here T is the temperature).
For small enough temperatures one crosses over into
the regime of weak chaos, and consequently we expect
κ∼ T 4.
Let us summarize. In the presence of nonlinearity within

one-dimensional disordered systems, Anderson localiza-
tion is destroyed. In this letter, we use a technique
of ensemble averaging and local derivatives on logarith-
mic scales. In contrast to previous results for single-site
excitations, we find that multiple-site excitations can
evolve either in the asymptotic regime of weak chaos,
or in an intermediate regime of strong chaos (excluding
self-trapping for strong nonlinearities). In the weak-chaos
regime the second momentm2 grows subdiffusively as t

1/3.
In the strong-chaos regime subdiffusion is faster, yielding
m2 ∼ t1/2, with a subsequently slow (on logarithmic time
scale) crossover to an asymptotic weak-chaos law.
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