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We study the properties of mode-mode interactions for waves propagating in nonlinear disordered one-
dimensional systems. We focus on �i� the localization volume of a mode which defines the number of inter-
acting partner modes, �ii� the overlap integrals which determine the interaction strength, �iii� the average
spacing between eigenvalues of interacting modes, which sets a scale for the nonlinearity strength, and �iv�
resonance probabilities of interacting modes. Our results are discussed in the light of recent studies on spread-
ing of wave packets in disordered nonlinear systems and are related to the quantum many-body problem in a
random chain.
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I. INTRODUCTION

In the absence of nonlinearity �or many-body interactions
in quantum systems� all eigenstates in one-dimensional ran-
dom lattices with disorder are spatially localized. This is the
Anderson localization �1�, which was discovered 50 years
ago in disordered crystals as a localization of electronic wave
function. It can be interpreted as an interference effect be-
tween multiple scatterings of the electron on random defects
of the potential. Recent experiments on the observation of
the Anderson localization were performed with light propa-
gation in spatially random optical media �2,3�, with the non-
interacting Bose-Einstein condensates expanding in random
optical potentials �4,5�, and with wave localization in a mi-
crowave cavity filled with randomly distributed scatterers
�6�.

In many situations nonlinear terms in the wave equations
�respectively, many-body interaction terms in quantum sys-
tems� have to be included. Thus, a fundamental question
which has attracted the attention of many researchers is what
happens to an initial excitation of arbitrary shape in a non-
linear disordered lattice. Nonlinearity renormalizes excita-
tion frequencies, thereby inducing interaction between nor-
mal modes �NMs�. Numerical studies show that wave
packets spread subdiffusively and the Anderson localization
is destroyed �7–10�. In the regime of strong nonlinearity, far
from where it can be treated perturbatively, new localization
effects of self-trapping occur �11�. A theoretical explanation
of the subdiffusive spreading was offered in Refs. �7,9,12�. It
is based on the fact that the considered models are, in gen-
eral, nonintegrable. Therefore, deterministic chaos will lead
to an incoherent spreading. Estimates of the excitation trans-
fer rate across the packet tail are obtained by calculating
probabilities of mode-mode resonances inside the packet.
Some predictions of this approach include the effect of dif-
ferent degrees of nonlinearity and were successfully tested in
�13�.

In this work we study the statistical properties of mode-
mode interactions. We focus on �i� the localization volume of
a mode which defines the number of interacting partner
modes, �ii� the overlap integrals which determine the inter-
action strength, �iii� the average spacing between eigenval-
ues of interacting modes which sets a scale for the nonlin-

earity strength, and �iv� resonance probabilities of interacting
modes. We discuss the results in the light of recent studies
�7–9,11–13� on spreading of wave packets in disordered non-
linear systems and relate our findings to the quantum two
interacting particle problem in a random chain.

II. NONLINEAR SCHRÖDINGER CHAIN

We consider the disordered discrete nonlinear
Schrödinger equation with the Hamiltonian

HD = �
l

�l��l�2 +
�

2
��l�4 − ��l+1�l

� + �l+1
� �l� . �1�

Here, �l are complex variables, l are lattice site indices, and
��0 is the nonlinearity strength. The random on-site ener-
gies �l are chosen uniformly from the interval �− W

2 , W
2 �, with

W denoting the disorder strength. The equations of motion

are generated by �̇l=�HD /��i�l
��,

i�̇l = �l�l + ���l�2�l − �l+1 − �l−1. �2�

Equation �2� conserves energy �1� and the norm S=�l��l�2.
Varying the norm of an initial wave packet is strictly equiva-
lent to varying �, therefore, we choose S=1. Note that Eq.
�2� is used to qualitatively describe the evolution of a dilute
Bose-Einstein condensate trapped into a deep periodic poten-
tial �4� and also the evolution of a light wave in disordered
one-dimensional waveguide lattices with the cubic Kerr-type
nonlinearity �under the paraxial approximation� �3�.

For �=0, Eq. �1� with �l=Al exp�−i�t� reduces to the
eigenvalue problem

�Al = �lAl − �Al+1 + Al−1� . �3�

The width of the eigenfrequency spectrum �� of Eq. �3� is
�=W+4 with ��� �−2− W

2 ,2+ W
2 �. The normalized eigenvec-

tors A�,l ��lA�,l
2 =1� are the NMs and the eigenvalues �� are

the frequencies of the NMs. We order the NMs in space by
increasing value of the center-of-norm coordinate X�

=�llA�,l
2 .

The equations of motion of Eq. �1� in normal mode space
read
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i	̇� = ��	� + � �
�1,�2,�3

I�,�1,�2,�3
	�1

� 	�2
	�3

, �4�

with the overlap integrals

I�,�1,�2,�3
= �

l

A�,lA�1,lA�2,lA�3,l. �5�

The variables 	� determine the complex time-dependent am-
plitudes of the NMs.

III. PROPERTIES OF NORMAL MODES

A. Localization length, volume, and participation number

The asymptotic spatial decay of an eigenvector is given
by A�,l�e−l/
�, where 
� is the localization length of a mode
� with the eigenvalue ��. We calculate the average 
� at a
given energy using the standard transfer-matrix approach
�14� and show the results in Fig. 1. As expected, the most
extended modes correspond to the bandwidth center with

��=0,W��100 /W2 for W�4 �14� �see Fig. 2�. In what
follows we refer only to the localization length near the
bandwidth center. We also observe a small peak at �=0 for

W�1. The smaller the disorder strength, the more pro-
nounced the peak is. For instance, for W=0.5, the additional
peak height is about 8% of the total value. Its magnitude will
not exceed roughly 10% for W→0 as first discussed in Ref.
�15�. The origin of this anomaly is the deviation from single
parameter scaling due to the symmetry Al���= �−1�lAl�−�� at
W=0 �16�.

Next, we estimate the number of NMs which interact with
a chosen mode �. This is assumed to be equivalent to esti-
mating the number of sites, where the norm density �A�,l�2 of
the eigenvector is not exponentially small. This number is
coined localization volume, V�. V� is related to the localiza-
tion length 
�, though quantitatively the two quantities might
differ. We consider two ways of estimating this number. A
widely used quantity is the participation number p�

=1 /�lA�,l
4 . It is a measure of the inhomogeneity of the dis-

tribution of eigenvector amplitudes in real space. Another
quantity is the effective distance between the exponential
tails of the eigenvector, which is given by 	12m2

���+1, where
m2

���=�l�X�− l�2�A�,l�2 is the second moment of the norm den-
sity distribution. Both quantities yield the exact width of a
flat and compactly distributed norm density distribution.
However, when fluctuations are included, p� will be reduced
and underestimates the correct volume, while the effective
distance does not. Therefore, we use V�=	12m2

���+1 as a
measure of the localization volume.

We calculate numerically the average localization volume

V= V̄� and participation number p= p̄� of NMs as a function
of W �see Fig. 2�. For this purpose we fix the strength of
disorder W and take a chain which is much longer than 
�W�.
We calculate V and p, taking into account only those modes
whose eigenvalues are located near the bandwidth center and
which are not close to the boundaries of a lattice. Then, we
take another realization and repeat the procedure. Finally, we
perform the averaging with respect to different disorder re-
alizations. We find that the localization volume V scales on
average as 3.3
 for weak disorder �see the dashed lines on
Fig. 2� and tends to V=1 in the limit of strong disorder. We
also note that the participation number is almost identical to
the localization length for weak disorder and therefore
misses the localization volume by a factor of 3.

Our numerical results indicate that multihumped NMs are
rare and do not affect the statistical results on V. These mul-
tihumped NMs are localized over a number of lattice sites
which can be at far distance from each other in real space
�see, e.g., �17��. If they were statistically relevant, the second
moments would be overestimated. However, we find that in
the limit of strong disorder W→� the localization volume
V→1, therefore multihumped states do not significantly con-
tribute �although we admit that there might be a measurable
contribution in this limit of strong disorder�. In the limit of
weak disorder we observe that V , P ,
 scale in the same way
with the disorder strength; therefore, we can exclude any
significant statistical relevance of multihumped NMs in this
regime.

B. Overlap integrals

We study statistical properties of the absolute values of
the overlap integrals �Eq. �5�� perturbatively for weak disor-
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FIG. 1. �Color online� Localization length 
 versus normalized
eigenvalue for W=0.5,1 ,2 ,4 �from top to bottom�. Inset: zoom for
W=0.5 around the bandwidth center.
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FIG. 2. �Color online� Average localization volume V ��r�ed�,
participation number P ��g�reen��, and localization length 
 ��b�lue�
of NMs with eigenvalues near the bandwidth center versus strength
of disorder W. Dashed lines are estimated asymptotics for V and 

at small disorder strengths 330 /W2 and 100 /W2, respectively.
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der and numerically using two different methods. In particu-
lar, we aim at estimating the average absolute value of these
overlap integrals for NMs which are interacting with each
other within the range of one localization volume in order to
exclude statistically irrelevant exponentially weak interac-
tions of distant NMs. Note, that in following notations, the
absolute value is omitted for the sake of simplicity. In order
to avoid multiple repetitions in Eq. �5� we use �3��2��1
��.

Perturbative calculations. Let us consider a chain with
finite size N and fixed boundary conditions,

�Al = W�̃lAl − Al+1 − Al−1, �6�

where l=1, . . . ,N, �0=�N+1=0, and �̃ are random uncorre-
lated numbers evenly distributed over the interval �−1 /2,
+1 /2�. For W=0 the canonical transformation to standing
waves

Al =	 2

N + 1�
q=1

N

Qqsql,sql = sin
 ql

N + 1
� �7�

yields eigenvectors Aq,l=	 2
N+1sql. Equation �6� transforms to

�Qq = �qQq + ��
p=1

N

KpqQp,� =
2W

	N + 1
, �8�

with the coupling

Kpq =
1

	N + 1
�
l=1

N

�̃lsqlspl, �9�

which mixes standing waves with the eigenvalues �q=
−2 cos�q / �N+1�� in the presence of disorder.

The overlap integral

Iq1,q2,q3,q4
= �

l=1

N

Aq1,lAq2,lAq3,lAq4,l �10�

at W=0 will be zero for all combinations of indices except if
a selection rule is satisfied �18�. It is enough to replace this
rule by q̄4= �q1�q2�q3. In short, we will denote by q̄4 a
mode number which satisfies the selection rule for a given
triplet of mode numbers �q1 ,q2 ,q3�. The selection rule ap-
plies to N3 overlap integrals I0�1 /N. The other N4 integrals
I1=0. Therefore, the average overlap integral becomes
�I�W=0��1 /N2.

Let us estimate the corrections to this average when dis-
order is added. We first consider integrals I1 which were
strictly zero at the limit W=0. We perform a perturbation
calculation �W small� for a mode q4 such that Qq=Qq

�0�

+�Qq
�1�+¯, with Qq4

�0�=1 and Qq�q4

�0� =0. Straightforward cal-
culation gives �see also �19��

Qq�q4

�1� =
Kq,q4

�q4
− �q

. �11�

Assuming now a triplet of modes �q1 ,q2 ,q3� is given and
that q4� q̄4, the first-order nonzero correction to the corre-
sponding overlap integral reads

Iq1,q2,q3,q4
=

�

�N + 1�2�
l=1

N

sq1lsq2lsq3l �
q�q4

Kq,q4

sql

�q4
− �q

.

�12�

We started with q4� q̄4, but in the presence of disorder the
mode with number q= q̄4 will become excited. Therefore,
after summation over l in Eq. �12� we find

Iq1,q2,q3,q4
=

�

�N + 1�

Kq̄4,q4

�q4
− �q̄4

. �13�

Note that the indices �q1 ,q2 ,q3� are implicitly hidden in the
quantity q̄4. In order to estimate the average, we have to take
the absolute value of Eq. �13� to sum over each index qi, i
=1,2 ,3 ,4, and each time to divide by N. Let us perform the
averaging over q4. The denominator �q4

−�q̄4
will become on

the order of 1 /N when q4 is close to q̄4. Replacing the sum
by an integral, we estimate

1

N
�

q4�q̄4

�Iq1,q2,q3,q4
� �

�

N + 1
ln�N�

�Kq̄4,q̄4
�

�sin�q̄4/N��
. �14�

Since the disorder average �Kp,q=0 and its variance is finite
�i.e., not depending on N� the final averaging over q1 ,q2 ,q3
yields

�I1 � � ln�N�/N . �15�

The overlap integrals I0 for q4= q̄4 were on the order of 1 /N
for W=0. It is straightforward to obtain that the disorder
induced correction will be of the same order as in Eq. �15�,
which is still smaller than the unperturbed value.

Thus, the average value of �I up to the first order of
perturbation in W is given by �remember that �= 2W

	N+1
�

�I � 1/N2 + aW ln�N�/N3/2, �16�

where a is some constant independent of the system’s param-
eters. One can conclude from Eq. �16� that for small enough
W such that W� �	N ln�N��−1, the first term prevails and the
total average integral is �I�1 /N2. In the opposite case,
when W� �	N ln�N��−1, the second term in Eq. �16� domi-
nates and, as a result, we get �I�WN−3/2 ln�N�.

Note that the perturbed eigenvectors Aql=Aql
�0�+�Aql

�1�+¯,
given by Aql

�1�=�p�qKq,psql / ��q−�p�, do not yield logarithmic
divergence since, at variance to the overlap integrals, no ab-
solute values are taken, and the two logarithms obtained
from integrating to the left and right of q are canceling each
other due to opposite signs.

For W→� the NM eigenvectors become single-site pro-
file, and the overlap integrals tend to zero. Therefore, for a
given size N, the average overlap integral will start to in-
crease with W for W� �	N ln�N��−1, reach a maximum at
Wmax, and decay down to zero for infinitely strong disorder.
It is reasonable to assume that the localization volume

�Wmax��N. In that case for small values of W we obtain
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�I �
ln�V�

V2 � − W4 ln�W� , �17�

which is an estimate of the interaction strength of NMs
within the spatial range of one localization volume.

Let us discuss which corrections can be expected from
higher order terms in the above perturbation approach. Every
next order yields summations �q�q3

��q3
−�q�−1 which give

small numbers due to different signs in the sum. In addition
in the nth perturbation order we have a prefactor �n corre-
sponding to a prefactor N−n in the above maximum. We
tested numerically that indeed higher order corrections are
weak. Another argument is that the first-order perturbation
approach already gives a nonzero correction to the average
overlap integral, i.e., ��I /�W�0. Since with increasing
strength of disorder the function �I�W� has to pass through a
maximum, the height of the maximum is overestimated by
taking the linear approximation to the function around the
origin. Therefore, the above estimate is an upper bound to
the average overlap integral.

Numerical calculations. Method I. We fix a chain size N
and calculate the average value of the overlap integrals tak-
ing into account all integrals �Eq. �5��. Then, we take another
realization and repeat the procedure. Finally, we perform the
averaging with respect to different disorder realizations.
Each averaged integral �I is a function of W. As derived in
the above perturbation approach, it has a maximum value
�I�Wmax� at a certain Wmax, as is shown in the inset of Fig. 3
for N=40. Now we vary the chain size N and repeat the
procedure. In Fig. 3 we plot the maximum values of
�I�Wmax� as a function of Wmax �red curve�. We find that

�Wmax� /N�8 /3 as expected in the above perturbation ap-
proach. We also find that for large N the data can be fitted
with the power law �I�0.0034W�, with �=3.40�0.02 �see
Fig. 3�. The fit was done using different numbers of numeri-
cal points �from 3 to 14� starting from the smallest W. In all
cases the rms relative error was better than 10−3. We expect
that this method will overestimate the corresponding prefac-
tors. This is due to the fact that N�0.38
�Wmax� and there-
fore states overlap more strongly than in an extended system,
as seen in the next method.

Method II. We fix the strength of disorder W and choose a

chain size N�
�W�. We select a middle part of a smaller size
�core� of the width L and do not consider the edges in order
to avoid boundary effects. We use only modes within the
core ��=1, . . . ,L�. For each mode � we calculate its local-
ization volume V�. Now we consider only NMs which hap-
pen to reside in a corresponding neighborhood; i.e., we select
V� /2 modes from the right and left �in case V� is odd, one
mode is randomly taken from left or right in addition�.
Therefore, we have defined a subset of NMs which interact
with the �th NM. We calculate all overlap integrals for this
subset. Then, we move on to the next reference mode from
the core. This procedure is performed for all NMs from the
core for many realizations. For small W the data can be fitted
with the power law �I�3.84�10−5W3.4 �see Fig. 3�. Note
that both methods yield the same exponents. Note also that
we lack more data to distinguish between the numerically
found law W3.4 and the perturbation result −W4 ln�W�.

IV. FREQUENCY SCALES

There are two frequency scales set by the linear equation
�Eq. �3��: the average spacing d of NMs within the range of
a localization volume and the width of the spectrum �
�7,9,12�. The two scales d�� determine the packet evolu-
tion details in the presence of nonlinearity. In order to calcu-
late the average spacing and its distributions numerically, we
fix the strength of disorder W and take a chain which is much
longer than V�W�. We select a middle part of a smaller size
�core� and do not consider the edges. For each mode � within
a core we form its subspace which consists of those modes
which live in its localization volume V� �see Secs. III A and
III B for details�. We take the eigenvalues of these modes
�including the eigenvalue of �th mode�, sort them, and com-
pute absolute values of spacings between them. Then, we
proceed to the next reference mode from the core. This pro-
cedure is performed for all NMs from the core and for many
realizations, such that we end up with a large number of
spacings �usually on the order of 106� �20�.

Typical probability density functions �PDFs� of the spac-
ings s are shown in Fig. 4. For strong disorder W�1 the
relative contribution of small spacings to the PDF becomes
smaller. The reason is that the localization volume tends to
one and for each reference mode � we take into account only
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FIG. 3. �Color online� Average integrals �I versus strength of
disorder W using method I ��r�ed� and method II ��b�lue�. Dashed
fitting lines are 3.4�10−3W3.4 �upper line� and 3.84�10−5W3.4

�lower line�. Inset: �I versus W for N=40. For the averaging, 400
disorder realizations were used.
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FIG. 4. �Color online� PDFs of eigenvalue spacings s for W
=4,10,20 ��r�ed, �g�reen, and �b�lue�. �o�range curve: PDF for W
=4 and a short chain with N=10. Dashed curve: the Wigner-Dyson
distribution with the average spacing d�0.59 �see Eq. �18��.
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a single neighboring mode. As a result, spacings between
eigenvalues increase.

We also note that the computed PDFs are far from follow-
ing a Wigner-Dyson distribution,

P�s� =
s

2d2e−�s2/4d2�. �18�

Especially for small W, such a distribution could be expected
due to large localization lengths. However, we find system-
atic deviations toward a Poisson distribution with an en-
hancement of the probability density at small spacings. This
is due to the fact that NMs overlap, in general, only partially
in real space. The Wigner-Dyson distribution is recovered
only for very short chains when N�
�W� �see Fig. 4�. In this
case, all eigenmodes occupy the same volume, and level re-
pulsion is recovered as expected. Interestingly, similar level
repulsion occurs in short resonators in one-dimensional ran-
dom lasers. In that case the PDF of spacings between fre-
quencies of the neighboring lasing modes tends also to the
Wigner-Dyson distribution �21�.

In Fig. 5 we plot the result for the average spacing d. In
the limit of small W we estimate the average spacing as d
=� /V�W2. For large disorder strength W�1 the localiza-
tion volume tends to 1. Thus, only two modes form a sub-
space of each reference mode � �one of which is the mode �
itself�. Therefore, the spacing can be calculated by consider-
ing two numbers �emulating two corresponding eigenvalues�
which are randomly distributed within the width of the spec-
trum �. The average distance between these numbers x and
y, assuming that x�y, is

d =
1

N
�

0

�

dx�
0

x

�x − y�dy,N = �
0

�

dx�
0

x

dy . �19�

It follows that d=� /3. In Fig. 5 the two theoretical estimates
are shown to be close to the numerical data.

V. RESONANCES

When a wave packet spreads, its size grows, and the norm
density inside the packet drops. Previous studies indicate that
this process of spreading is due to resonances in mode-mode
interactions. These resonances lead to chaotic dynamics in-
side the packet and to a subsequent incoherent spreading. Let
us estimate the number of resonant modes in the packet.
Excluding secular interactions, the amplitude of a NM with
�	��2=n� is modified by a set of three other modes ��
���1 ,�2 ,�3� in the first order in � as in Eq. �4� �see �9��,

�	�
�1�� = �	n�1

n�2
n�3

R�,��
−1 , �20�

R�,�� � ��� + ��1
− ��2

− ��3

I�,�1,�2,�3

� . �21�

The perturbation approach breaks down and resonances set
in when 	n�� �	�

�1��. Since all considered NMs belong to the
packet, we assume their norms to be equal to n.

We perform a statistical numerical analysis by computing
the PDF of R�,�� . For a given NM � we obtain R�,�� 0
=min�� R�,�� . Collecting R�,�� 0

for many � and many disorder
realizations, we find the probability density distribution
W�R�,�� 0

�. We also analyze separate contributions from three
different types of interactions from, namely, quadruplets �all
four modes are different�, triplets �only three of four modes
are different�, and pairs �only two different modes participate
in the interaction�. For quadruplets all indices in Eq. �21�
should be different, i.e., �1�� ,�2�� ,�3�� ,�1��2 ,�1
��3 ,�2��3. For triplets either �1=� such that

R�,�� � ���2
− 2�� + ��3

I�,�,�2,�3

� �22�

or �2=�3 with

R�,�� � ��� − 2��2
+ ��1

I�,�1,�2,�2

� . �23�

The remaining cases form the subset of pairs.
The probability densities W�R�,�� 0

� of NMs being resonant
when taking into account all contributions are shown in Fig.
6. The main result is that W�R�,�� 0

→0�→C�W��0. The
constant C drops with increasing disorder strength W �see
Fig. 7�. We also calculate C by taking into account only
quadruplets and triplets �see Fig. 7�. We find that for weak
disorder the quadruplet contributions are the dominant ones,
while for strong disorder their contribution diminishes as
compared to the triplet contribution.

For small R the probability densities W�R� can be ap-
proximated as

W�R� � C�W�e−C�W�R. �24�

The probability P for a mode, which is excited to a norm n,
to be resonant at a given value of the interaction parameter �
is given by

P = �
0

�n

W�R�dR � 1 − e−C�n. �25�
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FIG. 5. �Color online� Orange �light gray� curve: numerically
calculated average spacing d versus strength of disorder W �see Sec.
IV�. Red �dark gray� curve: width of the spectrum �. Dashed curve:
the fit of d in the limit of W→0 by d=W2 /37. Dashed-dotted curve:
the fit of d in the limit of W→� by d=W /3−2.
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VI. DISCUSSION

We have studied statistical properties of eigenvalues and
eigenvectors of waves in disordered one-dimensional sys-
tems as a function of the disorder strength. We estimated the
localization volume of a mode which defines the number of
interacting partner modes. We obtained the dependence on
the disorder strength of the overlap integrals which deter-
mine the interaction strength. We analyzed the statistics of
level spacings of normal modes within one localization vol-
ume. Finally, we obtained distribution functions for reso-
nance probabilities of normal modes interacting in the pres-
ence of nonlinearity. Let us discuss some of the
consequences of our findings.

A. Overlap integrals

In order to estimate the absolute value of the overlap in-
tegral �Eq. �5�� for modes within one localization volume for
weak disorder, Shepelyansky �22� and Imry �23� assumed
that the sum extends roughly over the localization volume V,
with each term in the sum A�,lA�1,lA�2,lA�3,l having a random
sign. The absolute value of the eigenvector is on the order of
1 /V1/2 due to normalization. Then, Eq. �5� can be evaluated
using the central limit theorem for which the average abso-

lute total value �Irp�V−3/2�W3. Our numerical finding �I
�W3.4 clearly rules out the random sign result W3. As shown
in the perturbation calculation in Sec. III, the reason for the
random sign failure is that NMs are similar to plane waves
with definite phases on each lattice site �inside the localiza-
tion volume�. These phases enforce selection rules, which
become strict in the very limit W=0.

While we can now exclude the random sign result W3, we
cannot tell whether the numerical estimate �I�W3.4 is cor-
rect or the perturbation result �I�−W4 ln�W� will set in for
small enough W. Ponomarev and Silvestrov �24� also
stressed the importance of phase correlations in Eq. �5�. A
numerical calculation of the average of the squared overlap
integral was performed by Frahm et al. �25� for 1.4�W
�4 yielding �I�W3.3, in good agreement with our numeri-
cal data.

The random sign estimate W3 was taken to predict a
strong increase of the localization length of two interacting
particles in a one-dimensional random quantum chain
�22,23�. The two-particle localization volume V2, within a
renormalization-group approach, is given by V2 /V��I2V4,
where V is the single-particle localization volume. For the
random-phase result, this yields V2�V2 �22,23,26�. We can
clearly rule out such an outcome. Instead, we expect either
V2�V1.6 �numerical data� or V2�V ln2 V �perturbation ap-
proach� which give a much weaker effect. These controver-
sies call for more detailed investigations.

B. Asymptotic spreading of wave packets in nonlinear chains

According to a recent analysis of the spreading scenario
of wave packets �12�, the only scale which separates differ-
ent dynamical spreading regimes is the average spacing d.
Therefore, the constant C from Sec. VI A is inversely pro-
portional to the mean level spacing,

C �
1

d
. �26�

Following the theory developed in �7,9,12� for the
asymptotic spreading, an exterior mode 	� which is heated
up by the packet obeys the following evolution equation in
accordance with Eq. �4�:

i	̇� � ��	� + ��IV3P��n�n3/2f�t� , �27�

where �f�t�f�t��=��t− t�� ensures that f�t� has a continuous
frequency spectrum. Note that here we also introduce the
contribution of the overlap integrals estimated as �IV3. Re-
peating the previous derivations �7,9,12�, we finally get the
following expression for the asymptotic growth of the sec-
ond moment of spreading wave packets in nonlinear chains:

m2 � �4/3V8/3�I2/3t1/3. �28�

From our numerical data for weak disorder it follows that
m2�W−3.07�4/3t1/3, while the perturbation approach yields
m2�W−8/3�−ln W�2/3�4/3t1/3. The prefactor dependence of W
is another intriguing test which awaits numerical verification.
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VII. CONCLUSION

In conclusion, we performed a statistical analysis and cal-
culated the average localization volume occupied by an
eigenmode as a function of disorder strength which deter-
mines the average number of a nonexponentially interacting
eigenmodes. Then, we calculated the frequency spacings of
the normal modes which happen to interact in a nonexponen-
tially weak way and their distributions and the average nu-
merically. This result is very important for the classification
of different regimes of wave packet spreading in the pres-
ence of nonlinearity. We also studied statistical properties of
the overlap integrals which determine the coupling strength

between the interacting modes and, thus, influence properties
of spreading. Finally, we estimated the number of resonant
modes in the packet and proved that the most significant
contribution to the spreading comes from the quadruplet and
triplet resonances for small to moderate values of disorder
strengths and from triplets for the case of large disorder.
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