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Abstract – We control the thermal conductivity of anharmonic acoustic chains by varying
the strength of disorder in the interaction. It induces mobility edges in the phonon spectrum.
Therefore we limit the amount of extended modes which can ballistically propagate. The rest
of the modes becomes localized and opens a diffusive heat conductivity channel. The localized
modes are sensitively controlling the contact resistances at the edges. Analytical arguments and
numerical results yield several crossovers between dominating heat channels, when varying the
system size and the temperature.

Copyright c© EPLA, 2011

Low-dimensional systems can show deviations from the
Fourier law, resulting in anomalous heat conductivity.
These effects have recently become a matter of experi-
mental and applied interest in the context of nanotube
systems. These issues even inspired research on solid-state
thermal rectifiers and nanotube phonon waveguides [1]. An
anomalous dependence of the thermal conductivity K on
the nanotube length N was observed in pioneering exper-
iments with carbon and boron-nitrid nanotubes, yielding
K∝Nα, α∼ 0.5–0.6 [2]. Similar scaling laws are expected
in nanowires [3]. In both cases phonons were reported to
be the main heat flux carriers. Spatial disorder and anhar-
monic potential terms are the main sources of phonon scat-
tering in these systems. Simulations with realistic models
also indicate that disorder [4] and anharmonicity [5] gener-
ate anomalous thermal conductivity.
One-dimensional momentum-conserving arrays serve as

simple models to study anomalous thermal conduction [6].
Despite intense research, a quantitative understanding
of the main characteristics of anomalous conductivity is
still lacking [7–9]. Mostly harmonic chains with disorder,
or anharmonic ordered chains were studied. However,
harmonic systems do not equilibrate and the conductivity
depends on the boundary conditions and the spectrum
of the thermal noise. On the other hand, for anharmonic

(a)E-mail: ivanchenko@rf.unn.ru

ordered systems one lacks control over the number of
relevant long wavelength modes which are assumed to
contribute to anomalous conductivity. The interplay
between disorder and anharmonicity was touched in
refs. [10,11], where the regime of normal conductivity [10]
was questioned due to finite-size effects [11]. Still, e.g.,
the contribution of the heat transfer through localized
modes was not addressed. Also the experimentally
measured exponent α [2] is larger than the predicted
one [11].
In this letter we uncover and study the intricate impact

of the disorder-induced mobility edge on the thermal
conductivity of the Fermi-Pasta-Ulam (FPU) chain with
fixed boundaries. Upon variation of the temperature and
the chain size we observe transitions between the follow-
ing regimes: i) insulating behavior with α< 0, ii) normal-
like conductivity, α∼ 0, iii) disorder-driven anomalous
conductivity, α∼ 0.52–0.58, iv) nonlinearity-driven anom-
alous conductivity, α∼ 0.38. The crossovers and the scal-
ing of K are explained by analyzing the properties and
interaction of localized and delocalized modes, which are
continued into the nonlinear regime, and by emerging new
heat conductivity channels. We show that anharmonic
disordered systems offer a better way to study the mecha-
nisms of anomalous conductivity, being also more realistic
models for experimental setups.
We consider the FPU-β chain of N equal masses, with

disorder in the harmonic spring constants, and additional
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quartic anharmonicities in the spring potential

H =
1

2

N
∑

n=1

p2n+

N+1
∑

n=1

[

1

2
(1+Dκn)(xn−xn−1)2

+
β

4
(xn−xn−1)4

]

, (1)

where xn(t) is the displacement of the n-th particle from
equilibrium, pn(t) its momentum, κn ∈ [−1/2, 1/2] are
random, uniform, and uncorrelated, 〈κnκm〉= σ2κδn,m. We
apply fixed boundary conditions x0 = xN+1 = 0.
The heat conductivity is measured using a standard

approach, when thermal baths are attached to the
chain ends and generate a temperature gradient and
heat current along the chain [7]. We implement Nosé-
Hoover thermostats by adding the terms −ζ±ẋ1,N to the
respective equations of motion, where ζ̇± = ẋ

2
1,N/T±− 1.

The heat flux along the chain is defined as the time
average of j =− 12

∑

n
(ẋn+1+ ẋn)[(1+Dκn+1)(xn+1−

xn)+β(xn+1−xn)3] [7]. The heat conductivity coeffi-
cient K= jN/(T+−T−). We use the mean temperature
T = (T++T−)/2 as a control parameter corresponding to
the energy density 〈En〉= kBT = T . We set kB = 1 and
(T+−T−)/T = 0.5.
We start with the canonical transformation from the

normal modes of the harmonic lattice in the absence of
disorder: xn(t) =

∑N
q=1Qq(t)zqn which defines the mode

space with N coordinates Qq(t) and eigenvectors zqn =
√

2
N+1 sin

(

πqn
N+1

)

. Here q= 1, . . . , N denotes the mode

number. In the presence of anharmonicity and disorder the
equations of motion in normal mode space are modified:

Q̈q +ω
2
qQq = −ν

N
∑

p,r,s=1

Cq,p,r,sωqωpωrωsQpQrQs

−d
N
∑

p=1

ωqωpKq,pQp. (2)

Here ωq = 2 sin
πq

2(N+1) are the normal mode frequencies.

The coupling coefficients Cq,p,r,s [12] control the selective
anharmonic interaction between modes, and the coeffi-

cientsKq,p =
2
N+1

∑N
n=1 κn cos

πq(n−1)/2
N+1 cos πp(n−1)/2N+1 [13]

describe the mode interaction due to disorder. The non-
linearity and disorder parameters ν = β/(N +1), d=
D/
√
N +1 are small: ν, d≪ 1 for β =D= 1 and large

system size N ≫ 1.
First, we find the linear modes of the disordered system

(d 
= 0, ν = 0) and analyze their properties. We compute
the new eigenvectors ẑqn defined through the transfor-

mation xn(t) =
∑N
q=1Qq(t)ẑqn. We apply a perturbational

approach for the harmonic mode q0 using the small disor-

der parameter d: Qq(t) =Q
(0)
q (t)+ dQ

(1)
q (t)+ . . ., where

Q
(0)
q (t) = 0 for q 
= q0. In first order we obtain from
eq. (2) the equation of a forced oscillator for modes with

q 
= q0: Q̈(1)q +ω2qQ
(1)
q =−ωqωq0Kq,q0Q

(0)
q0 . As a result we

find for the amplitude A of each mode

A(1)q,q0 =−
ωqωq0
ω2q −ω2q0

Kq,q0Aq0 , q 
= q0. (3)

For eq. (3) being valid we request that the time-averaged
mode energies satisfy 〈Eq0+1〉≪Eq0 , which translates into
the condition

q0≪ qc = 2
√
2(N +1)1/2/Dσκ. (4)

Note that this condition coincides with the existence
criterion for q-breathers [13].
It follows that normal modes with mode numbers q0≪
qc approximately keep their plane-wave eigenvector profile

ẑq0n =

√

2

N +1

×

⎛

⎝sin
πq0n

N +1
− d
∑

p�=q0

ωq0ωp
ω2q0 −ω2p

Kq0,p sin
πpn

N +1

⎞

⎠

(5)

in real space in the presence of disorder. Therefore these
metallic modes are still delocalized in real space. On
the other side, disorder leads to Anderson localization
and implies that the eigenmodes of a one-dimensional
disordered chain are localized. Therefore qc sets a mobility
edge: for q0≪ qc the metallic eigenmodes are delocalized
in real space, and for q0 > qc the insulating eigenmodes
are localized. Note, that for finite length chains and for
weak disorder all modes are metallic and delocalized
if qc �N . With eq. (4) such a complete delocalization
in real space takes place for N � 8/D2σ2κ. Note that a
transfer matrix approach [8] yields a lower boundary
qc for spatially localized eigenstates which satisfies the
same scaling qc ∝N1/2. Therefore a disordered harmonic
chain contains a thin layer of

√
N metallic modes with

frequencies 0� ω� ωc ∼N−1/2. The eigenvectors of these
modes are close to the eigenvectors of the unperturbed
modes of the ordered harmonic chain.
Let us add anharmonic terms, and compute the periodic

orbits which correspond to a continuation of the metallic
modes of the disordered harmonic chain. These periodic
orbits are coined q-breathers [12]. We introduce {Q̂q, P̂q}
such that xn(t) =

∑N
q=1 Q̂q(t)ẑqn. It follows that

¨̂
Qq +ω

2
qQ̂q =−

ν

2

N
∑

p,r,s=1

Cq,p,r,sωqωpωrωsQ̂pQ̂rQ̂s
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νd

2

N
∑
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ωqωpωrωsQ̂pQ̂rQ̂s

⎛

⎝

∑
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ω2u

ω2u−ω2q
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ω2u
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⎞

⎠+h.o.t. (6)
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We perform a perturbation expansion using the small
parameter ν. We take ẑq0n as the zeroth-order solution.
Neglecting the higher-order terms O(νd), we obtain a q-
breather state [12], whose energy distribution is exponen-
tially localized in the metallic-mode space part:

E(2n+1)q0 = λ
2nEq0 , λ=

3βEq0(N +1)

8π2q20
. (7)

For λ< 1 the amplitudes of insulating modes are exponen-
tially small and can be neglected.
Extensive calculations yield that O(νd) terms in the

equations of motion lead to order O(ν2d2) energies of the
high-frequency modes q≫ q0:

〈Eq〉
Eq0

≈ 63ν2d2σ2κ, (8)

and can be neglected in the limit N →∞.
We conclude that disordered linear metallic modes with
q0≪ qc continue into the nonlinear regime as q-breathers
exponentially localized in the metallic-mode space part.
High energies lead to delocalization of metallic modes

in the mode space, strong chaos, and nonlinearity-driven
conductivity. In this case one cannot neglect nonlin-
ear interaction between q-breathers and must consider
the whole layer of metallic modes. To determine the
strong stochasticity threshold we construct s-dimensional
q-tori [14] by continuing the s≪ qc lowest-frequency
metallic modes into the nonlinear regime. For small
energies these objects are exponentially localized in the
metallic-mode space part:

Ep/E0 ∝ (λT )2p, λT = βNE0/s, (9)

where E0 and Ep are the average energies of the modes

1, s and (2p− 1)s+1, (2p+1)s [14]. Delocalization of tori
happens when λT > 1. With s∝ qc the strong stochasticity
threshold reads

Nsst ∝ 1/D2σ2κβ2E20 . (10)

Below the strong stochasticity threshold we expect three
basic heat conductivity channels (fig. 1). (I) Metallic
modes carry the heat flux ballistically by direct interac-
tion with the heat baths, as in the linear case. The inter-
action strength, and therefore the mode-specific heat flux,
are proportional to the squared amplitudes of the metal-
lic eigenvectors next to the boundaries jq ∝ ẑ2q,n=1,N [7].
For fixed boundary conditions j =

∑

q<qc
jq ∝N−3/2 and

K∝N−1/2. Therefore, the boundary resistance between
the heat bath and the metallic modes grows with increas-
ing system size. (II) Insulating localized Anderson modes
interact with each other due to anharmonicity, and are
opening a diffusive energy transport channel with a heat
conductivity K(T ) being independent of the system size
N [15,16]. (III) Anharmonicity also opens a third conduc-
tivity channel, by reducing the boundary resistance for

Fig. 1: (Color online) Schematic representation of conductance
channels. Thick black metallic modes and thin black insulat-
ing modes are shown. Blue (b) and green (g) arrows show
the energy fed into insulating and metallic modes channels
by direct interaction with the heat baths. Nonlinearity also
induces a heat flux from the insulating modes into the metallic
ones and back (red (r) arrows).

metallic modes. This happens due to the thermalization
among the insulating modes. Heat is then flowing from
the insulating modes into the metallic modes, carried by
the metallic modes through the system, and ejected again
via an interaction with the insulating modes at the other
end of the system. This third channel therefore eliminates
the otherwise growing boundary resistance due to fixed
boundary conditions.
The first conductivity channel (I) will be dominant when

the average temperature T is low and the system length
N is short enough. Increasing the system size leads to an
increase in the boundary resistance and a reduction of the
heat conductivity. The heat current via the second local-
ized mode channel (II) can be estimated using recent stud-
ies of wave packet evolutions in disordered Klein-Gordon
chains [17] and related heat conductivity studies [16]. For
a given energy density (respectively, finite temperature)
the diffusion rate (and therefore also the heat conduc-
tivity) are predicted to vary as K∼ T 2 for T > Tcr and
K∼ T 4 for T < Tcr. Here the crossover temperature Tcr
is a model-dependent temperature which depends on the
strength of disorder. Note that this heat conductivity value
does not depend on the size of the system. Therefore the
second channel will dominate over the first one if N >
N12(T ) where N12(T ) is some function which increases
with decreasing temperature. The crossover to normal
conductivity will be observed at N ≈N12(T ).
The heat conductivity through the third conductiv-

ity channel is obtained by realizing that the transfer of
heat from insulating modes into metallic modes does not
depend on the system size, but only on the tempera-
ture. It effectively replaces the fixed boundaries by open
ones as concerning the metallic modes, and leads to a
heat conductivity K∝N1/2. Thus, for N >N23(T ) we
expect to observe a crossover from normal conductivity
to anomalous α≈ 0.5. Finally, with further increasing of
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Fig. 2: (Color online) The averaged heat conductivity vs. chain
length for different mean temperatures and β =D= 1. The
values of the estimated exponents α are shown as well. Error
bars quantify the statistical fluctuations.

the system size N , the strong stochasticity threshold (10),
E0 ≡ T , is reached for N >Nsst. Then metallic modes
start to strongly interact with each other, and theoretical
predictions of fully developed turbulence within renormal-
ization group approaches and mode coupling theories [9]
become applicable and yield α∼ 1/3, . . . , 2/5.
To summarize, we expect that heat is carried by:

i) ballistic metallic modes directly coupled to the heat res-
ervoirs for N <N12 with α≈−1/2; ii) insulating localized
modes interacting with each other for N12 <N <N23 with
α≈ 0; iii) ballistic metallic modes which are coupled to the
heat reservoir via insulating localized modes for N23 <
N <Nsst with α≈ 1/2; iv) strongly interacting metallic
modes which are coupled to the heat reservoir via insulat-
ing localized modes for Nsst <N with α≈ 1/3, . . . , 2/5.
We performed numerical simulations with integration

time varying from 106 for the shortest chains to 2 · 107 for
the longest, and with up to 100 disorder realizations. In all
simulations β =D= 1. The observation of the predicted
regimes at a single given temperature was not possible,
since the needed chain sizes and corresponding integra-
tion times exceeded the limits set by our computational
equipment. Therefore we use the temperature as an addi-
tional parameter, which shifts critical system sizes sepa-
rating different regimes to lower values, as temperature
increases. At T = 10−4 we observe the first conductivity
channel I with α< 0 (fig. 2). Heat is transported by the
metallic modes, and the increasing boundary resistance of
the contact between them and the heat bath is respon-
sible for the decrease of the conductivity with increas-
ing system size. For the larger temperature T = 0.001 the
second conductivity channel II starts to dominate. It leads
to a conductivity which practically does not depend on
the system size in the computationally available window.
Here the heat flows predominantly through the insulating
modes which are interacting with each other due to the
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Fig. 3: (Color online) The averaged heat conductivity vs.
chain length with (open symbols) and without (filled symbols)
additional random on-site harmonic potentials for different
mean temperatures and β =D= 1.

anharmonicity of the interaction potential. At the even
larger temperature T = 0.004 we observe the crossover to
the conductivity channel III with the exponent α≈ 0.52
for large N , with even slightly larger α at higher temper-
atures. Now the heat flows from the heat bath into the
insulating modes at the boundaries, and is then trans-
ferred into the metallic modes. This leads to an effective
decrease of the contact resistance between the metallic
modes and the heat bath. The metallic modes then trans-
port the heat ballistically through the chain, and eject it
in the same manner at the opposite end of the chain. To
confirm that in this regime indeed the metallic modes are
transporting the heat through the chain, we add a random
on-site harmonic potential 12

∑N
n=1 Ω

2
nx
2
n, Ωn ∈ [0;ω0] to

(1). This opens a gap in the frequency spectrum of the
harmonic chain at low frequencies. Therefore the total
momentum is not anymore conserved, the mobility edge is
vanishing, and metallic modes turn into insulating modes
as well. Then the third channel III ceases to exist, and heat
should be again transported via channel II. As a result we
expect that the heat conductivity becomes independent of
the system size. Indeed, our numerical results confirm this
prediction (fig. 3).
At the largest studied temperatures, we observe the

fourth conductivity channel IV with exponent α≈ 0.38
(T = 0.2 and T = 4, fig. 2). At variance to the regime III,
the metallic modes are now strongly interacting with each
other while transporting the heat through the chain.
In conclusion, we shed light on the complex interplay

between disorder and nonlinearity that determines the
heat conductivity of anharmonic acoustic chains, reveal-
ing a much more intricate picture than expected before.
We predict and observe four different heat flow chan-
nels: i) ballistic transfer by metallic delocalized modes
coupled directly to the heat baths, ii) diffusive transfer
by the insulating localized modes, iii) ballistic transfer by

46004-p4



Disorder-induced mobility edges and heat flow control

metallic delocalized modes, coupled to the heat baths
via the insulating localized modes, iv) turbulent trans-
fer by metallic delocalized modes due to strong mode-
mode interaction. The corresponding size dependence of
the conductivity coefficient is drastically different: insu-
lating, normal, and two types of anomalous dependence.
The studied system sizes are comparable to the number of
atoms along nanotubes; therefore, the predicted crossovers
may prove to be observable even in the current experimen-
tal systems, if the temperature is varied.
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