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 1. INTRODUCTION

Quantum single particle dynamics in one�dimen�
sional disordered lattices with uncorrelated random
onsite energies exhibits Anderson localization [1]. The
asymptotic spatial decay of an eigenvector is exponen�

tial and given by  ~ , where  is the localiza�
tion length of an eigenmode ν with the eigenvalue λν,
and the integer l counts the lattice site (see also, e.g.,
[2]). The localization length is bounded from above.

In [3] Dorokhov studied one�dimensional contin�
uous model with harmonic attraction between two
particles placed in weak random potential. It was
shown that defects induce transitions between the
internal�quantization states leading to the possible
increase of the two�particle localization length which
is a measure for coherent propagation of two interact�
ing particles. The interplay of disorder and interaction
of two interacting particles, interacting in a random
one�dimensional chain was later considered by
Shepelyansky [4]. The conclusion was that two parti�
cles might propagate coherently over distances ξ2

much larger than the single particle localization length
ξ1, if both particles are launched within a distance of ξ1

from each other. Shepelyansky used an analogy
between the two�particle eigenvalue problem and that
of banded random matrices, and made an assumption
about the scaling properties of overlap integrals which
connect different noninteracting Fock eigenstates in
the presence of interaction. He finally concluded that
in the weak disorder limit ξ1  ∞ the two�particle

localization length ξ2 will scale with ξ1 as ξ2 ∝ U2,
where U is the interaction strength [4]. This result was
further supported by Imry in [5], where a Thouless�
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type scaling argument was replacing the banded ran�
dom matrix analogy. Therefore, two interacting parti�
cles were predicted to explore a much larger space
than noninteracting particles. Numerical calculations
by Frahm et al. [6] concluded that the scaling is prob�

ably weaker, namely ξ2 ∝ , and raised doubts
about the previously assumed scaling properties of
overlap integrals. Using a Green function method
adapted to the problem [7], a new scaling relation at

the center of the band, ξ2 = ξ1/2 + 0.074 /(1 +

), was obtained numerically in [8]. In particular,
this implies that the enhancement effect will set in for
weaker interactions than previously predicted. Later
on, it was argued that the enhancement effect is prob�
ably due to finite�size effects and it should completely
vanish for an infinite system [9]. Simulating the time
dependent Schrödinger equation for two interacting
particles [10], it was argued that the dynamics is char�
acterized by two time scales, t1 and t2, set by, respec�
tively, two localization lengths, ξ1 and ξ2. Recently, two
of us studied statistical properties of the overlap inte�
grals perturbatively and numerically for weak disorder
[11]. These results contradict previous assumptions of
Shepelyansky and Imry [4, 5], and if used within the
previously applied theoretical schemes, predict a
much weaker interaction induced increase of the
localization length than previously discussed. Despite
a number of studies, the problem of two interacting
particles in a random potential remains therefore a
completely open problem. At the same time this seem�
ingly academic case can be both addressed by current
techniques with ultracold interacting atoms [12], and
is of fundamental importance for tackling the much
more complicated case of many interacting particles
in random potentials.
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In the present work we first show that a nonpertur�
bative strong localization length enhancement can be
expected only in a regime of very weak disorder, with
upper bounds on the disorder strength. This regime
was not fully accessed in previous numerical scaling
studies. We obtain upper bounds on the strength of the
expected enhancement effect using correct scaling
properties of overlap integrals. We then perform direct
numerical measurements solving the corresponding
eigenvalue problem and calculating the largest average
localization length ξ2 of exponentially decaying two�
particle probability density function averaged over
many disorder realizations. Finally we formulate a set
of open issues which have to be addressed in the future.

2. MODEL

We consider the Bose–Hubbard Hamiltonian with
disorder

(1)

and use the fixed boundary conditions. Hamiltonian
(1) consists of non�interacting and interacting parts,

 and , where  and  are standard boson
creation and annihilation operators on a lattice site l
and U measures the interaction strength. The random
on�site energies �l are chosen uniformly from the
interval [–W/2, W/2], with W and V denoting the dis�
order and hopping strengths, respectively.

2.1. One Particle

In this case the interaction term does not contrib�

ute. We use the basis  ≡  with l = 1, …, N (N is
the number of lattice sites). The eigenstates (also

called single particle normal modes  = 

are defined through the eigenvectors  ~  with
the eigenvalue problem

(2)

The eigenvalues –2V – W/2 ≤ λν ≤ 2V + W/2 fill a
band with a width Δ1 = 4V + W. The most extended
normal modes correspond to the band center λ = 0
with localization length

(3)

in the limit of weak disorder W/V ≤ 4 [2]. The average
volume L which an eigenstate occupies has been esti�
mated to be about L ≈ 3ξ1 for weak disorder [11].
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2.2. Two Particles

For U = 0 we construct orthonormalized two parti�
cle eigenstates as product states of single particle
eigenstates in a corresponding Fock space

(4)

Then, we expand the eigenstates  of the interacting

particle problem,  = λq , in systems of eigen�
states for the noninteracting problem,  =

, where the coefficients  satisfy

the eigenvalue problem

(5)

Here λμν ≡ λμ + λν and therefore the noninteracting
case U = 0 yields a band with width Δ2 = 2Δ1. The coef�

ficients  are connected with the overlap integrals

(6)

as follows:  = /( ). The
interacting case yields a single band for U < Δ2, but two
bands separated by a gap for U > Δ2. Indeed, in the lat�
ter case two�particle bound states are renormalized
out of the main band, and are mainly consisting of two
particles occupying the same site [13]. Therefore,
remaining band is due to states where the two particles
can be anywhere but not on the same site. This is sim�
ply the limit of two noninteracting spinless fermions.
The localization length of these two noninteracting
fermions is of the same order as the single particle
localization length. The localization length in the
bound state band is even smaller, since the effective
disorder strength in this band becomes 2W, but the
effective hopping is strongly suppressed.

For numerical purposes we expand the two particle
eigenstates  in the local basis  =

,  ≡ /( ),

where  =  are the normalized eigenvec�
tors. They satisfy

(7)
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We will numerically compute the probability den�
sity function of the number of particles in direct space

pl = /2, which is given by

(8)

3. DIFFERENT SCALES 
FOR THE TWO�PARTICLE PROBLEM

Since a single particle eigenstate occupies a volume
L, there are of the order of L2 two particle eigenstates
which are residing in the same volume for U = 0. The
overlap integrals built among these L2 Fock states are
nonzero (more precisely not exponentially weak) and
define the connectivity in the Fock space for nonzero
U. The average eigenenergy spacing d of these con�
nected Fock states is d = Δ2/L2. It therefore defines an
effective energy mismatch, i.e. an effective disorder

strength  ≡ d, in the Fock space. The effective hop�

ping strength follows from (5) and is given by  =
2U . Here  is an average overlap integral among
all connected Fock states [11].

In analogy with Eq. (3) we can therefore obtain a
localization length in Fock space for weak Fock space

disorder  � 4 , which in real space is a measure in
units of the single particle localization length:

(9)

For strong Fock space disorder  �  the volume
L ≈ 1, and two interacting particles are localized in the
same way, therefore ξ2 ≈ ξ1 in this case.

3.1. Bounds on the Weak Fock Space Disorder Regime

Let us now address the question whether we can
enter the weak Fock space disorder regime for strong
single particle disorder W � V. This seems possible at

a first glance since we can increase the value of  by
increasing U. However, in this limit  ~ V 2/W 2.
Therefore the needed interaction strength is U ~
W 3/V 2, since Δ2 ~ W. But an increase of the interac�
tion strength beyond the band width Δ2 leads to the
separation of the energy spectrum into two bands—a
bound state band with strongly localized particle pairs
[13], and a noninteracting spinless fermion band
which has no localization length increase as compared
to the single particle case. The two conditions U � W
and U � W 3/V 2 imply that W � V is needed, which
means that the single particle case must be in the
regime of weak localization. Therefore U � V is an
upper bound for entering the weak Fock space disor�
der regime.
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Lowering U further we will however again leave this
regime and enter the perturbative one, which is again
characterized by strong disorder in Fock space.
Indeed, the energy renormalization of a given Fock
state follows from (5) and is given by 2UI0, where I0 is
an average overlap integral of a Fock state with itself.
Due to orthonormality of the single particle eigen�
functions it follows I0 ≈ 1/L. The perturbative regime
holds as long as UI0 � d. Inside the perturbative regime
a Fock state is still a good approximation to an exact
eigenstate, and therefore the two particle localization
length is of the order of the single particle one. There�
fore, the nonperturbative weak Fock space disorder
regime is accessed for Δ2/L � U � V.

For any practical purposes we seek a strong enough
interaction strength U, and this requires U ≈ V and
W < V. In order to obtain any relevant scaling results
upon variation of W one needs therefore to lower W
significantly further such that W � V.

3.2. Overlap Integrals Revisited

Shepelyansky and Imry estimated the average over�
lap integral  ~ L–3/2 [4, 5] inside the weak Fock
space disorder regime. This result is obtained in the
following way. A single particle eigenstate occupies a

volume L � 1. Due to normalization it follows  ~

L–1/2. The crucial point was to assume that all terms
inside one localization volume in the sum (6) have
uncorrelated signs. This leads to the above estimate.
However, in the limit of weak disorder and large local�
ization length, the single particle eigenvectors inside a
localization volume will appear similar to plane waves,
with appreciable phase correlations between different
sites, and also between different eigenstates. Some
numerical studies by Römer et al. [14] even concluded
that  ~ L–2. This result essentially corresponds to
the assumption that the eigenvectors are exact plane
wave states inside a localization volume. It is this small
difference in the exponent which separates a possible
existing strong enhancement of the localization length
from no effect at all.

In a recent work two of us performed a perturbation
approach at the weak disorder limit and obtained that
strong phase correlations will certainly modify the
prediction of Shepelyansky and Imry. At the same time
corrections to the result of Römer et al. are significant.
As a final result we obtain  ~ ln(L)L–2 [11] that is
logarithmic corrections to the prediction of Römer et
al. It is well�known that logarithmic corrections are
rather resistant to numerical verifications, if no special
trick or technique is used. Therefore, our numerical
tests in a limited interval of W lead only to the clear
result that the prediction of Shepelyansky and Imry is
incorrect, and if  ~ 1/Lz is assumed, then z ≈ 1.7.
They were not sensitive to distinguish between this
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power law and a possible asymptotic  ~ ln(L)L–2

logarithmic law.

3.3. Scaling of the Localization Length

Combining the above predictions on the overlap
integral scaling and the localization length scaling (9)
we arrive at the following results in the weak Fock
space disorder regime. Here, we set Δ2 = 8V, take W <
4V such that (3) holds. Then Shepelyansky and Imry
predict ξ2/ξ1 ~ (U/V)2ξ1 as derived using different
methods in the original papers [4, 5]. According to
Römer et al. the whole effect is simply ξ2/ξ1 ~ (U/V)2,
i.e., no enhancement at all. Finally, our analytical esti�
mate for the overlap integrals yields

(10)

Note that the numerically estimated overlap integral

dependence on L results in ξ2/ξ1 ~ (U/V)2 .

4. NUMERICAL TECHNIQUE

We estimate the largest average localization length

ξ2 of the probability density function pl ~  [see
Eq. (8)] using the following procedure (the prefactor 2
in the exponent takes care of the fact that densities
instead of wave functions are fitted). For a given real�
ization we solve the eigenvalue problem and choose

only those modes  which satisfy to the following
selection rules:

—the center of masses

(11)

satisfy the inequalities  ≤ ξ1,  ≤ ξ1

(ξ1 is of the order of the corresponding average local�
ization length for a single particle problem). Thus, we
take into account only those modes for which the two
particles reside in the same localization volume;

—the eigenvalues are near the bandwidth center.
We assume that similar to the case of a single particle
problem the most extended modes are with λq ≈ 0;

—we project  onto the modes of the one�par�
ticle problem, calculate the amplitudes φμν in accor�
dance with Eq. (7) and find the mode  with the

largest amplitude, . Such a method allows

us to identify the Fock state  which dominates

all others. We then request that the eigenvalues 

and  are close to the bandwidth center. Thus, we

exclude possible cases when λq is close to the band
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center, but  and  are located at the two opposite

band edges.

Having selected the modes , we compute their
probability density functions pl according to Eq. (8)
and shift them such that their new center of mass are
located at the center of a chain, N/2. Then, we com�
pute logarithms of the probability density functions,
ln(pl) and perform a statistical average of the probabil�
ity density functions over many disorder realizations as

 = exp[ ]. Finally, using a local regression
smoothing technique, we obtain smooth functional
dependencies of  and calculate the quantity α =

2 . In the limit of large l, α(l) should
saturate at the average two particle localization
length ξ2.

5. NUMERICAL RESULTS

The dimension of the Hilbert space p grows rapidly
(~N2) with the size of a chain, so that the maximal
reachable size used in numerical computations,
Nmax = 234. Thus, we inevitably face finite size effects
for weak disorder. We start with the noninteracting
case U = 0 for which ξ2 must be exactly equal to ξ1. We
estimate the minimal value for the strength of disorder,
respectively, maximal localization length, ξ2, at which
an error (caused by finite�size effects) is less than 10%
(which is the maximal error we admit). We assume that
this error depends only on the magnitude of ξ2 but not
on the interaction strength U. Thus, the largest tolera�
ble values for ξ2 found for the noninteracting case are
also assumed to be the limiting values for the interact�
ing case. For U = 0 the lower curve in Fig. 1a presents
a smooth dependence of  on l. The corresponding
quantity α (lower curve in Fig. 1b) saturates at large
distances. The obtained localization length ξ2 is finally
shown in Fig. 1c and agrees well with the theoretical
prediction, however systematic deviations accumulate
for weak disorder. A recalculation of the same quanti�
ties for U = 0.2 in Figs. 1a, 1b shows that the method
appears to be applicable to the interacting case as well.
Finite size effects blur our results substantially if
ξ2 > 40.

Let us discuss our results for nonzero interaction.
The ratio ξ2/ξ1 grows with increasing interaction con�
stant U, as shown for different values of W in Fig. 2.
This growth is stronger, the weaker the disorder
strength is. For our data, the ratio did not substantially
exceed the value 2. However, it seems plausible that for
W < 2 (which is not treatable with our current tech�
nique), stronger enhancement effects could be
observed.

The central result is plotted in Fig. 3. Here we plot
ξ2 versus ξ1 on log–log scales. We try to fit data for a

λμ0
λν0

�l m,
q( )

pl〈 〉 pl( )ln〈 〉

pl〈 〉

d pl〈 〉ln( )/dl 1–

pl〈 〉
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fixed value of U and different values of W using power
law estimates. Both ξ1 and ξ2 vary less than an order of
magnitude, while a safe power law fit needs at least two
orders of magnitude variations on each variable. Nev�
ertheless we bound the obtained variations with two

lines ξ2 ~  and ξ2 ~ . Such a scaling is much

weaker than the any of the above predicted power laws.
It is possible that we observe the onset of the logarith�
mic scaling obtained from perturbation theory (10).

Let us compare our benchmark results (obtained
from exact diagonalization, without any finite size fit�
ting, and with a maximum error of 10%) with the
results using a Green’s function approach [7, 8]. This
method is not exact. First, it measures the decay of the
two particle wavefunction along the diagonal (cf.
Fig. 4), instead of the probability density function
used here. As a consequence, at U = 0 Green’s func�
tion measures a length L2 = ξ1/2. Indeed, at U = 0 the
wave function is more elongated along the main axes
and compressed along the diagonal (cf. Fig. 4). How�
ever, at nonzero U and sufficiently weak disorder, the
wavefunction elongates along the diagonal (cf. Fig. 4).
Therefore, in this limit one expects that L2  ξ2. This
nontrivial crossover feature adds to and blurs any
straightforward fitting procedure. Second, the Green’s
function suffers from finite size effects, and the actual
data for L2 are obtained from a finite size fit [8]. We
tested the quality of such fits in our calculations, and
dropped this method since it is way too incorrect in
order to extract scaling features. To give an example,
we take U = 1 and find in our benchmark study ξ2(W =
3) = 16.4 ± 2, ξ2(W = 2.5) = 27 ± 2, and ξ2(W = 2) =
51 ± 4. The corresponding numbers from [8] area
L2(W = 3) = 12.5, L2(W = 2.5) = 20, L2(W = 2) = 41.
Therefore, even at disorder W = 2 and U = 1 the
Green’s function numbers are suffering from the

ξ1
1.3 ξ1

1.4

Fig. 1. (a) Smoothed average probability distribution func�
tion  versus lattice site l in lin–log scale for W = 2, U =

0 (g, green curve in the on�line version) and W = 2, U = 0.2
(o, orange curve). (b) The corresponding quantity α (see
text) versus l, with a zoom of the interval with saturated val�
ues of α (inset). (c) The two�particle localization length ξ2
versus W for the noninteracting case, U = 0 (red circles).
Blue solid line: ξ1 = 100/W2. Dashed lines: maximal
admissible error of 10% from the analytical formula. Gray
area corresponds to the admissible values.

pl〈 〉

Fig. 2. Ratio ξ2/ξ1 versus interaction constant U for differ�
ent values of disorder W = (from top to bottom) 2, 2.5, 3,
and 4.

g

o

o

g

o
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abovementioned crossover. What is left in the Green’s
function analysis [8] is a little window 1 < W < 1.75.
Such a small window is not enough in order to extract
meaningful scaling data.

5.1. Averaged Evolution of Two Particles

In order to visualize the effect of interaction on the
localization of two particles, we solve the time depen�

dent Schrödinger equation  = . We

expand  in terms of the orthonormal states

 (l ≤ m) as  = , where

the coefficients  are cl, m(t) = .

Here, ϕq are the amplitudes of normal modes related
with the initial amplitudes cl, m(0) =  of the

two�particle states as ϕq = . We

launch two particles on the same site, l0 = m0, or adja�
cent sites, l0 = m0 – 1, such that the initial amplitude
cl, m(0) = . We calculate then the averaged in

time square amplitude , which is given by

(12)

We further average  over 5000 disorder real�
izations. In addition we perform an averaging with
respect to initial conditions, by keeping the same dis�
order potential, and taking different neighboring sites
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Fig. 3. Two�particle localization length ξ2 versus one par�
ticle localization length ξ1 for U = (from top to bottom)
1.5, 1.0, 0.5, and 0.2 in log–log scale. Dashed straight lines

are power laws  with the exponents α = (upper line) 1.4

and (lower line) 1.3. The size of a chain is N = 234.

ξ1
α

Fig. 4. log  versus l and m averaged over time and 5000 disorder realizations. For better visualization results are unfolded

from the irreducible triangle shaped state space onto a square with cl, m = cm, l for m ≤ l. The strength of disorder W = 2.5 and the
interaction constants U = (a) 0 and (b) 2. Particles are initially located on the same site at the center of a chain with N = 170 sites. 

cl m,
2

( )

(a) (b)



412

JETP LETTERS  Vol. 94  No. 5  2011

KRIMER et al.

as an initial location of the particles. Finally, we com�
pute the average probability density function 

using pl = . Note that

the averaged in time two�particle wavefunction 
for a single disorder realization has many spots at dif�
ferent locations due to resonances. This feature is
smeared out, once the averaging with respect to disor�
der realizations is performed as is seen in Figs. 4a, 4b.
For the noninteracting case, the obtained distribution
is elongated along the main axes. This happens
because the two particles are not correlated, and it is
much more probable for them to occupy different
space regions. However for U = 2 the distribution is
elongated along the diagonal. This implies that the two
particles are exploring more states when being close to
each other.

6. SUMMARY

In summary, we discussed the possible regimes of
two interacting particles in a random potential. The
most interesting case of a weak Fock space disorder
regime was analyzed, and scaling laws were discussed.
These results, as well as the numerical data presented
as well, show that the localization length enhancement
effect is much weaker than previously assumed. Fur�
ther numerical studies are needed in order to substan�
tiate these results. However the current techniques are
not of use for weaker disorder strength. Therefore, new

computational approaches are needed in order to
reach disorder values as low as W = 0.1, which may be
enough to test the predicted weak logarithmic scaling.

We are grateful to I. Aleiner and B.L. Altshuler for
insightful discussions.
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