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Abstract. We study the time evolution of wave packets in one-dimensional
quasiperiodic lattices which localize linear waves. Nonlinearity (related to two-
body interactions) has a destructive effect on localization, as observed recently
for interacting atomic condensates (Lucioni et al 2011 Phys. Rev. Lett. 106
230403). We extend the analysis of the characteristics of the subdiffusive
dynamics to large temporal and spatial scales. Our results for the second moment
m2 consistently reveal an asymptotic m2 ∼ t1/3 and an intermediate m2 ∼ t1/2

law. At variance with purely random systems (Laptyeva et al 2010 Europhys.
Lett. 91 30001), the fractal gap structure of the linear wave spectrum strongly
favours intermediate self-trapping events. Our findings give a new dimension to
the theory of wave packet spreading in localizing environments.
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1. Introduction

In one dimension, a wave packet of noninteracting particles subject to a random potential
does not diffuse because of Anderson localization, due to the exponential localization of the
eigenstates of the underlying Hamiltonian [1, 2]. Instead, the presence of interactions is expected
to act against localization, although the actual mechanism may be highly nontrivial and may
depend on the type of disorder and interaction. This is a problem of fundamental importance
for many systems in different contexts. From the theoretical side, it has been mostly studied by
using discrete lattices. The interaction is often included by means of mean-field theories, where
it enters in the form of a nonlinear local term in a nonlinear Schrödinger-like equation [3–13].

Numerical simulations of wave packets propagating in a random potential—with the
interaction included via a nonlinear mean-field term—showed that the presence of interaction
indeed destroys localization and leads to a subdiffusive growth of the second moment of the
wave packet in time as tγ [4–8, 10–12]. In particular, it was predicted that at large t , the
coefficient γ should converge to 1/3 in a regime of weak chaos, as opposed to normal diffusion
where γ = 1 and the wave packet width grows as

√
t . A transient regime of strong chaos was

also identified, where γ = 1/2 [9, 11, 12]. The occurrence of these different regimes can be
predicted by comparing the nonlinear frequency shift introduced by the expanding wave packet
to the typical energy scales of linear spectra of random models.

Exponential localization for noninteracting quantum particles (or linear waves) can also
be found in systems that are not truly disordered. An example is provided by quasiperiodic
potentials, which are of great interest by themselves [14, 15]. These systems can be considered
to lie between the two extreme cases of a perfectly periodic system and a pure random potential.
By tuning the parameters of a quasiperiodic system, the localization properties can change
dramatically—from having all extended states to all localized states. In recent years, exponential
localization has been observed with light propagating in quasiperiodic photonic lattices [16], as
well as with ultracold atoms propagating in a bichromatic optical lattice [17]. Notably, in both
cases the inclusion of interaction is experimentally feasible, by using a Kerr medium for light
and tuning the scattering length by means of a suitable magnetic field for atoms.

New Journal of Physics 14 (2012) 103036 (http://www.njp.org/)

http://www.njp.org/


3

Numerical simulations studying nonlinear dynamics of wave packets have also been
performed in the case of quasiperiodic systems [18–21]. In particular, for exponentially
localized linear waves, nonlinearity yields subdiffusive spreading of wave packets as well [20].
However, there are clear indications that the coefficient γ , at least at finite spreading times, is
significantly larger than the one observed in random systems. Nonlinear effects have also been
studied in experiments using ultracold atoms and light propagating in photonic lattices. In both
cases, it has been shown that nonlinearity acts against localization [16, 22].

The purpose of this work is to clarify the details of the spreading mechanism leading
to the destruction of localization in quasiperiodic systems, and to address differences and
similarities between quasiperiodic and purely random potentials. We extend and refine previous
numerical investigations by pushing the simulations to much longer times, thus allowing
for the identification of the strong and weak chaos regimes in quasiperiodic systems and
compare the situation with known properties of purely random systems. For this purpose, we
use two different models: namely, a discrete nonlinear Schrödinger equation (DNLS) and a
quasiperiodic version of the quartic Klein–Gordon (KG) lattice model.

A key result of this work is that a regime of weak chaos is indeed observed in the long-
time spreading of nonlinear wave packets propagating in quasiperiodic systems; in particular,
we find that the asymptotic value of the spreading coefficient γ is 1/3 as in purely random
systems, thus showing that this behaviour is rather general and model independent. Another
similarity with purely random systems is the occurrence of self-trapping: when the nonlinear
interaction is large enough to shift the mode frequencies so strongly that they are tuned out of
resonance with all nonexcited neighbouring modes, a part of the wave packet remains spatially
localized [3, 6, 20]. However, as opposed to the random system, in the quasiperiodic case partial
self-trapping is also possible for weaker nonlinearities. This is due to the complexity of the
linear wave spectrum that exhibits a fractal gap structure of sub-bands. Self-trapping gives rise
to transient spreading regimes characterized by an intermediate large exponent γ ; we call this
effect ‘overshooting’. Finally, we have also observed signatures of strong chaos, but detection
of this regime is difficult in quasiperiodic systems, since it is often masked by overshooting and
partial self-trapping, which occur on the same temporal scales.

2. Models

We consider two different models: the first is the one-dimensional (1D) quasiperiodic DNLS,
defined by the Hamiltonian

HDNLS =

∑
j

[
−ψ j+1ψ

∗

j −ψ∗

j−1ψ j + V j |ψ j |
2 +
β

2
|ψ j |

4

]
, (1)

where j labels the lattice sites and V j = λ cos(2πα j +ϕ). The quantity |ψ j |
2 gives the

probability to find a particle at site j . The first two terms in equation (1) describe the hopping
between nearest-neighbouring sites and the quasiperiodic on-site energy, respectively, while
the third term represents the mean-field interaction energy and introduces the nonlinearity.
The key parameters of this Hamiltonian are the strength of the quasiperiodic potential λ (for
λ= 0 the lattice is periodic with period 1), the strength of the nonlinearity β (for β = 0 the
particles are not interacting) and the irrational number α which causes the underlying potential
to be quasiperiodic. In fact, when α is irrational the cosine adds a second periodicity which
is incommensurate with respect to the underlying periodicity given by the discreteness of the
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system. Let us note that, without any loss of generality, one can always choose −0.5< α 6 0.5
since equation (1) and the subsequent equation (3) are invariant under a shift of α by an
integer number. Choosing the value of α in this interval has the additional advantage that
the wavenumber associated with V j , kα = 2πα, rests in the Brillouin zone of the underlying
discrete lattice. As a convenient choice for this work, we use α = (

√
5 − 3)/2.7 The phase ϕ is

a phase shift between the two lattices. The equations of motion associated with equation (1) are
i∂ψ j/∂t = ∂H/∂ψ∗

j , or

i
∂ψ j

∂t
= −(ψ j+1 +ψ j−1)+ V jψ j +β|ψ j |

2ψ j . (2)

The above set of equations conserve the energy of equation (1), as well as the total norm S =∑
j |ψ j |

2 of the initial wave packet (we always assume S = 1). The set can be used for a wide
range of applications, including ultracold atoms expanding in optical lattices [17, 20, 23, 24]
and light propagating in photonic lattices [16, 25].

The second model is a quasiperiodic version of the quartic KG lattice, given by

HKG =
1

2

∑
j

[
p2

j + Ṽ j u
2
j +

1

2
u4

j +
1

2λ
(u j+1 − u j)

2

]
, (3)

where u j and p j are the generalized coordinates and momenta on the site j and Ṽ j = 1 +
(1/2) cos(2πα j +ϕ). The energy associated with lattice site j is

E j =
p2

j

2
+

Ṽ j u2
j

2
+

u4
j

4
+
(u j+1 − u j)

2

8λ
+
(u j−1 − u j)

2

8λ
. (4)

The equations of motion are generated by ∂2u j/∂t2
= −∂H/∂u j , yielding

∂2u j

∂t2
= −Ṽ j u j − u3

j +
1

2λ
(u j+1 + u j−1 − 2u j). (5)

This set of equations conserves the total energy H=
∑

j E j > 0 only. The KG model has also
been extensively studied, since it can give a simple description of the nondissipative dynamics
of anharmonic optical lattice vibrations in molecular crystals [26].

The total energy of the system H serves as a control parameter of nonlinearity, analogous
to β for the DNLS model. In fact, for small amplitudes the equation of the KG chain can be
approximately mapped onto a DNLS model [27] using βS ≈ 6λH. Further analytics will be
discussed only in terms of the DNLS chain, since it is then straightforward to project to the KG
model.

For the DNLS model, we measure the spreading of the wave packet by tracking the quantity
n j ≡ |ψ j |

2/S, hereafter named norm density consistently with the notation of [6, 7, 9, 11]. The
key quantities that we use to describe the time evolution of the expanding wave packet are
the second moment m2 =

∑
j n j(X − j)2 (X =

∑
j n j j), which quantifies the spatial extent

of the wave packet, and the participation number P = 1/
∑

j n2
j , which measures the number

of significantly populated sites. A combination of these two quantities ξ = P2/m2, called the
compactness index, gives a measure of the sparsity of a wave packet [7]. For the KG, we do
exactly the same, but replacing the norm density n j with its counterpart E j/H, which is the
normalized energy density.

7 We note that our choice of α is equivalent to the more commonly used value of the inverse of the golden mean
(
√

5 − 1)/2.
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3. Relevant energy scales

For β = 0 equation (2) reduces to an eigenvalue problem

−Aν, j+1 − Aν, j−1 + λ cos(2πα j +ϕ)Aν, j = Eν Aν, j . (6)

Here, the index ν labels the different normal modes Aν, j and eigenvalues Eν . The coefficient
1/(2λ) in equation (5) was chosen so that the linear parts of HDNLS and HKG would correspond
to the same eigenvalue problem: the linear KG model can then likewise be identically reduced
to equation (6), under the substitution Eν = 2λ(ω2

ν − 1/λ− 1), where ων are the corresponding
eigenfrequencies.

Equation (6) is also known as the Aubry–Andrè model [15]. The localization properties
of this model are well known and extensively studied both analytically and numerically
[14, 15, 20, 24, 28–30]. A transition occurs from an extended regime to a localized regime
at λ= 2. For λ < 2, all normal modes Aν, j are extended over the entire lattice, at λ= 2 they
are critical, whereas for λ > 2 they are exponentially localized in the form Aν, j ∼ e−| j− jν |/`,
where jν is the localization centre and `= 1/ln(λ/2) is the localization length (note that it is
the same for all the modes) [15]. Since we are interested in the interplay between localization
and nonlinearity, we will focus exclusively on the regime λ > 2.

In order to quantify the spatial extent of a given eigenstate, it is convenient to define a

localization volume Vν = 1 +
√

12m(ν)

2 , where m(ν)

2 =
∑

j(Xν − j)2|Aν, j |
2 is the second moment

of |Aν, j |
2 and Xν =

∑
j j |Aν, j |

2 is its centre of norm [31]. The localization volume is used
to estimate the number of modes which interact with a given mode ν. We show its meaning
schematically in figure 1(a). The modes that interact with a given reference mode ν are those
whose centre of norm lies in an area Vν around it. The average localization volume V is then
found by numerically diagonalizing the linear system, calculating Vν for each eigenmode and
then averaging over all eigenmodes. A plot of this quantity as a function of the potential strength
λ is shown in figure 1(b).

The spectrum for λ > 2 is purely dense-point, characterized by the presence of an infinite
number of gaps and bands. A plot of the Aubry–Andrè model’s spectrum as a function of λ is
shown in figure 1(c). In this figure, one clearly sees the presence of two major gaps dividing
the spectrum into three parts, each of them divided into turn in three smaller parts, and so on8.
We call these portions of the spectrum separated by the largest gaps ‘mini-bands’. For our
purposes, it is enough to consider a division of the spectrum into M = 3 or at most into M = 9
mini-bands. Smaller mini-bands have vanishingly small effects on the time evolution of wave
packets.

Let us introduce two energy scales associated with the linear system [6, 31]. The first one,
1, is the full width of the spectrum, defined as the difference between the largest and the smallest
eigenvalues: 1= max{Eν} − min{Eν}. The second one, d, is the mean spacing of eigenvalues
within a single mini-band and within the range of a localization volume. Let us explain how we
calculate this quantity. We consider a given mini-band and all the eigenstates that lie in it. For
each eigenstate ν, we calculate its localization volume Vν and then we form the subset of the

8 An intuitive understanding of this band structure can be given, following a heuristic argument. The wavelength
of the potential V j is 1/|α| = 2.618 . . .. An effective wavelength equal to an integer number q would correspond
to a separation into exactly q bands. Our value of 1/|α| lies between two and three, so that the band structure has
neither two nor three bands, but three main bands with an internal structure of sub-bands.
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Figure 1. (a) Pictorial interpretation of the localization volume. A given
eigenstate ν (black line in the centre of the box) is assumed to interact only
with those eigenstates (blue lines) that lie in a region of size Vν around its mean
position. The red lines represent the corresponding on-site energies. (b) Average
localization volume of eigenstates V as a function of the potential strength λ. (c)
Eigenenergies Eν of the linear system obtained from numerical diagonalization
of equation (6), as a function of λ.

other eigenstates, {µ}, belonging to the same mini-band and interacting with it, namely those
fulfilling the condition |Xν − Xµ|< Vν/2. The average number of states in the subset can be
estimated as V/M . Then we calculate the energy spacings within this subset. This procedure is
repeated for each eigenstate in the band and the average gives the mean spacing d.

The number of mini-bands M to be used in the calculations of d depends on λ. For a given
λ, we choose M in such a way that the localization volume V satisfies the condition V/M > 2.
This implies that, on average, there are at least two eigenstates within the subset {µ} that we
can use to calculate the average energy spacings. We always consider λ > 2.1; therefore it is
enough to divide the spectrum into at most nine mini-bands. When λ is increased, the average
localization volume of the eigenstates V decreases—therefore at some point we have to consider
the spectral separation into smaller mini-bands. In practice, we consider M = 9 mini-bands for
2.1. λ. 2.2, M = 3 mini-bands for 2.2. λ. 2.75 and just one band (i.e. the full spectrum)
for λ& 2.75. A plot of the energy scales 1 and d as a function of λ is shown in figure 2. The
dashed vertical lines represent the values of λ where the number of mini-bands changes in the
calculation of d.

Similarly to the case of disordered systems [6, 7, 9], the scales 1 and d of the linear
spectrum (which are frequencies in the present setting of nonlinear wave equations) must be
compared to the frequency shift caused by the nonlinearity. Indeed, a single oscillator that
satisfies the equation of motion iψ̇ = Vψ +β|ψ |

2ψ experiences a nonlinear frequency shift
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Figure 2. Energy scales 1 (top blue line) and d (bottom red line) plotted as a
function of the potential strength λ. The empty (downward) and full (upward)
triangles correspond to the values of δ that we have used for the simulations
with the DNLS model and with the KG model, respectively. Comparing the
nonlinear frequency shift δ with the energy scales 1 and d one can predict the
different spreading regimes of weak chaos (δ < d), strong chaos (d < δ <1)
and self-trapping (δ > 1). The separation between the three regimes should not
be interpreted as a sharp boundary, but as a smooth crossover.

δ = β|ψ |
2 away from its linear frequency V . For many oscillators, we can conveniently use the

eigenstates of the linear Aubry–Andrè model as a decomposition basis of the wave function
ψ j : ψ j =

∑
ν φν Aν, j . Equation (2) can then be rewritten for the evolution of the normal mode

amplitudes:

i
∂φν

∂t
= Eνφν +β

∑
ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗

ν1
φν2φν3, (7)

where Iν,ν1,ν2,ν3 is an overlap integral involving four normal modes:

Iν,ν1,ν2,ν3 =

∑
j

Aν, j Aν1, j Aν2, j Aν3, j . (8)

As discussed in [11], one can introduce a norm density also in the normal mode space, nν =

|φν|
2; as the packet spreads and after averaging over many realizations, this quantity becomes

almost identical to the norm density n j = |ψ j |
2 and the frequency shift can be expressed as

δ ∼ βn, where n is a characteristic norm density. In the KG model, δ is proportional to the
energy density E and, within our formalism, can be obtained by the small amplitude mapping.

When δ < d, the mode frequencies in a wave packet are only weakly shifted, and a small
fraction of these modes will resonantly and strongly interact with each other. Following the
terminology of [6, 7, 9], we say that this is a regime of weak chaos. Conversely, when
d < δ <1, the mode frequencies in a packet are strongly shifted and almost all of them will
resonantly and strongly interact with each other. This is labelled a regime of strong chaos. When
finally δ > 1, the mode frequencies are shifted so strongly that they are tuned out of resonance
with all nonexcited neighbouring modes. An excited mode in this condition may stay localized,
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i.e. self-trapped, for long or even infinite times. The meaning of these regimes will be further
clarified in the next section.

4. Expected spreading regimes

As one can see in equation (7), the presence of nonlinearity in the DNLS model introduces a
coupling between eigenstates of the underlying linear spectrum. It has already been observed
numerically and experimentally that this leads to a subdiffusive spreading of wave packets, i.e.
its second moment grows asymptotically as m2 ∼ tγ with γ < 1 [20, 22]. However, a systematic
investigation of the behaviour of the exponent γ in different regimes of strong and weak chaos
and self-trapping, has not been done so far. In this section, we approach this issue by first
comparing the nonlinear frequency shift δ = βn with the energy scales 1 and d, in such a
way as to introduce the different spreading regimes expected to be observed in the subsequent
numerical simulations.

Let us consider an initial wave packet with norm density n and localization volume L
larger than the average localization volume of the eigenstates of the linear spectrum, L > V .
If δ > 1, nonlinearity is so strong that all the participating normal modes within the wave
packet are shifted out of resonance with respect to the non-excited neighbourhood; therefore
spreading is largely suppressed and a significant part of the wave packet remains self-trapped9.
If instead δ < 1, we are no longer in the self-trapping regime and can distinguish two sub-cases:
on the one hand, when δ > d, strong chaos is realized; that is, all the modes in the packet are
resonantly interacting with each other, thus producing an efficient spreading. On the other hand,
when δ < d, weak chaos is obtained: only a fraction of modes interact resonantly—localization
is still destroyed, but spreading is slower.

If L < V , estimation of the self-trapping transition is performed as before, that is, by
comparing δ = βn with the spectrum width 1. If self-trapping is avoided, however, the wave
packet initially spreads also in the absence of nonlinearity, eventually filling the localization
volume V . Consequently, the initial norm density n is reduced to ñ ≈ nL/V , due to linear time
evolution—the relevant nonlinear frequency shift must now be calculated by using this reduced
density ñ. Apart from this detail, which originates from the initial dynamics at short times, the
asymptotic spreading regimes are the same as before.

Studies carried out on random systems have shown that the basic mechanism that destroys
localization is the presence of resonances in mode–mode interaction [6, 7, 9]. This leads to
chaotic dynamics within a part of the wave packet, and to a subsequent subdiffusive spreading.
Here, we apply the same theory to the case of quasiperiodic systems. For the formal details of
the theory, see the previous papers [7, 9].

Let us estimate the number of resonant modes in the packet, which is a key quantity that
determines the type of spreading behaviour. According to equation (7), due to nonlinearity, the
evolution of a given normal mode is affected by any three (triplet) modes. The coupling is
largest if the triplet modes have large amplitudes and if the overlap integrals are large, i.e. if

9 The self-trapping regime for the DNLS case can be understood also in terms of energy and particle conservation
[3, 7, 20]. Due to particle conservation, the particle density decreases during the spreading, which implies a
decreasing of the mean-field interaction energy. If δ > 1, the nonlinearity is so dominant that the linear part of
the Hamiltonian is unable to compensate for the loss of mean-field energy; therefore a part of the wave packet does
not spread and stays localized. The presence of gaps in the linear spectrum is then a necessary condition for the
occurrence of self-trapping.
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Figure 3. Comparison between the probability density function W(Rν, Eµ0) of
the quasiperiodic DNLS model and of the random DNLS model. For the
quasiperiodic case, λ= 2.5, whereas for the random case, we choose a disorder
strength that gives a similar localization length.

the triplet modes are close enough in space to the given normal mode. Some of these triplet
modes may affect the dynamics of the chosen mode ν strongly, some weakly. To distinguish
these triplet groups, we follow [9] and apply perturbation theory to first order in β. It follows
that the amplitude of a normal mode ν inside the wave packet is changed by a given triplet of
other wave packet modes Eµ= {µ1, µ2, µ3} as

|φ(1)ν | = β

√
nµ1nµ2nµ3

Rν,Eµ
, (9)

where

Rν,Eµ ∼

∣∣∣∣ Eν + Eµ1 − Eµ2 − Eµ3

Iν,µ1,µ2,µ3

∣∣∣∣ . (10)

From now on, we assume that all the modes that belong to the packet (i.e. that are located
between the two exponential tails of the wave packet) have the same norm density equal to n.
The perturbation approach breaks down and resonance sets in when

√
n < |φ(1)ν |. Substituting

equation (9) for φ(1)ν , one can rewrite the last inequality as

Rν,Eµ < βn. (11)

This expression tells us that the resonance condition, for a given normal mode ν, is fulfilled if
there is at least one triplet of modes Eµ that satisfies inequality (11).

The probability for the onset of a resonance can therefore be calculated with the following
statistical numerical analysis [6, 31]. For a given normal mode ν, we define Rν, Eµ0 = minEµ{Rν,Eµ}.
Collecting Rν, Eµ0 for many modes and many values of the phase ϕ, we find the probability density
distributionW(Rν, Eµ0). From this quantity, we can calculate the probability P for a mode, with
norm density n, to be resonant with at least one triplet of other modes at a given value of the
interaction parameter β. This is obtained by integratingW(Rν, Eµ0) from zero to βn

P =

∫ βn

0
W(R) dR. (12)
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An example of probability density W(Rν, Eµ0) for λ= 2.5 is shown in figure 3 (red line).
For comparison we also show the same quantity for the random DNLS model (black line),
as discussed in [6, 31]. Except for fine structures, such as small sharp peaks appearing in
the quasiperiodic case, the overall behaviour is qualitatively very similar in the two cases.
In particular, the probability density W tends to a finite constant value C when Rν, Eµ0 → 0. As
a consequence, for small values of βn, a non-zero fraction of modes in the packet is resonant.
The probability to be resonant is given by P ∼ Cβn; thus we are in the weak chaos regime. For
large values of βn, instead all the modes interact resonantly and P = 1; we are then in the strong
chaos regime.

Following the reasoning presented in [9], this implies that also in the quasiperiodic case, as
in disordered systems, we may expect to find m2 ∼ t1/3 in the weak chaos regime and m2 ∼ t1/2

in the strong chaos regime. Note that the strong chaos regime can only exist as a transient
regime: as the wave packet spreads, its norm density n decreases, and eventually will reach a
situation where βn < d. At this point, a crossover from strong to weak chaos is expected to
occur during the time evolution [11].

Let us finally stress that the ‘transition lines’ that we have introduced by comparing the
nonlinear frequency shift with the typical energy scales of the linear spectrum do not define
sharp phase transitions between different spreading regimes. Instead, we may expect to see
a relatively smooth crossover, such that the regimes of self-trapping, strong chaos and weak
chaos should be clearly identified only far from the transition lines.

5. Time evolution

We perform extensive numerical simulations solving equations (2) and (5) for different sets of
parameters {λ, β} and {λ, E}, respectively. For each choice of parameters we average over N
different realizations of the quasiperiodic potential obtained by randomly changing the phase
shift ϕ. For initial conditions, we use compact wave packets that lie in the centre of our
computational box, taking care that during the time evolution the wave packet never reaches
the box boundaries. The number of realizations considered varies between 100 and 500 and
the number of lattice sites between 200 and 2000. To solve the equations of motion, we
use symplectic integration schemes of the SABA family [7, 32] that allow us to reach large
integration times with good accuracy10.

In order to quantify the type of subdiffusive behaviour, we calculate the exponent γ
by considering the logarithm of the second moment log10 m2 for different realizations of the
potential. We compute the average value 〈log10 m2〉 and its statistical error, given by the standard
deviation divided by the square root of the number of realizations N . Then the value of γ at a
given time t is calculated by applying a linear fitting procedure to the curve 〈log10 m2〉 within
a fixed time interval around log10 t . By repeating this procedure at different t , we extract the
behaviour of γ as a function of time and its relative statistical error.

5.1. Results of the discrete nonlinear Schrödinger equation model

Let us first show our results for the DNLS model. For the initial wave packet, we
choose a square-shaped distribution that equally populates L lattice sites with norm density

10 The numerical accuracy of our calculation is controlled by checking the conservation of the energy H and the
norm S of the expanding wave packet. The error is always kept smaller than 10−2.5. For the integration, we used
time steps between 0.1 and 0.05.
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Figure 4. Numerical results obtained by integrating the DNLS equations of
motion (2). The time evolution of 〈log10 m2〉 (left panel, top), γ (right panel,
top), 〈log10 P〉 (left panel, bottom) and 〈ξ〉 (right panel, bottom) is shown versus
log10 t for different values of the nonlinear parameter β = 0.5, 1, 5, 10, 100. The
initial wave packet in all simulations is a square distribution with L = 13 and
the potential strength is λ= 2.5. In the top right panel, the two dashed lines
correspond to the theoretically predicted power laws γ = 1/3 and γ = 1/2. The
width of the lines for the quantities 〈log10 m2〉, 〈log10 P〉 and γ represents the
statistical error, which depends on time and on the number of realizations. In
most cases, the statistical error is smaller than the resolution of the figure. All
quantities are dimensionless.

n j = n = 1/L . In figure 4, we present a representative set of simulations for λ= 2.5. We choose
L = 13, which gives an initial localization volume larger than V . The different panels show the
time evolution of the second moment 〈log10 m2〉, the spreading exponent γ , the participation
ratio 〈log10 P〉 and the compactness index 〈ξ〉. The width of the curves for 〈log10 m2〉, 〈log10 P〉

and γ corresponds to the statistical error. The values of the nonlinear frequency shift δ induced
by the initial wave packets used in these simulations are shown in figure 2 (empty downward
triangles) in order to compare them to the relevant energy scales 1 and d.

In all simulations, we observe that nonlinearity causes the wave packet to spread. The
spreading starts earlier when β is larger. We find that the spreading is always subdiffusive
(γ < 1), confirming the result of previous works [20, 22]. Subdiffusion is seen both in the
second moment m2 and in the participation ratio P , except for the largest value of β (yellow
curves in figure 4). In the latter case, P saturates to a constant value after a transient time—a
clear signature of self-trapping. This observation of self-trapping only for β = 100 is consistent
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with the energy scale arguments schematically represented in figure 2. In the absence of self-
trapping, the compactness index ξ saturates to a constant value, indicating that the wave packet
spreads but does not become more sparse. Conversely, in the presence of self-trapping the
central part of the wave packet remains spatially trapped, while its tails keep expanding, thus
resulting in a wave packet that becomes more sparse during the evolution—nicely quantified by
the compactness index which decreases to zero. We note that the portion of the packet that is
expanding is characterized by a value of γ larger than 1/2. After an initial increase, γ reaches a
maximum and then decreases to smaller values. In this regime, the evolution is rather complex.
Similar behaviour was previously obtained also in random systems [11, 12]. The transient large
values of γ may be due to a nontrivial interacting mechanism that takes place between the
expanding part and the self-trapped portion, resulting in faster spreading—an effect labelled as
‘overshooting’.

For the lowest values of β the energy scale arguments suggest the occurrence of weak
chaos. Indeed, for β = 0.5 and 1, the exponent saturates asymptotically around the theoretical
value γ = 1/3 (red and green curves in figure 4), as expected. It is worth mentioning that this
asymptotic exponent is the same as in random systems [9, 11]; meaning that the mechanism
leading to destruction of exponential localization is rather universal.

In contrast to the random case, here during the time evolution, the value of γ temporarily
increases above 1/3, eventually reaching its asymptote only at longer times. This is an
overshooting similar to the one that we have discussed above for the self-trapping regime, but
occurring also for weaker nonlinearity. This effect is unique to the quasiperiodic system and is
probably due to the presence of an infinite number of mini-bands and gaps in the linear spectrum
of the Hamiltonian, which causes a temporary self-trapping of portions of the expanding wave
packet in one or more energy gaps between mini-bands. This partial self-trapping is different
from the self-trapping that occurs when δ > 1, where all the packet modes are simultaneously
shifted out of resonance. For this reason, partial self-trapping is not detectable as a saturation
of the participation number P and can only be seen indirectly as an overshooting in the
exponent γ .

The two simulations for β = 5 and 10 lie in a range of energy where we expect to see strong
chaos (blue and magenta curves in figure 4). As already mentioned in the previous section, the
strong chaos regime is transient: one should find a value of γ around 1/2 for a few decades of
time, eventually decreasing towards the asymptotic value 1/3. The two corresponding curves
in figure 4 indeed exhibit behaviour which qualitatively agrees with this expectation. The value
of γ first rises to 1/2, oscillates around this value and then starts to decrease as predicted.
However, especially for large β, we also observe values of γ larger than 1/2. As in the weak
chaos regime, this overshooting again is evidence of partial self-trapping. Its mechanism is also
transient and occurs in the same time intervals where strong chaos is expected. For this reason,
while weak chaos is clearly observed in our simulations, strong chaos and partial self-trapping
tend to overlap, thus producing a more complex evolution of the wave packet in quasiperiodic
systems than in random systems.

In figure 5, we show the results of simulations for λ= 2.2 and λ= 3.5; the corresponding
values of nonlinear frequency shift are reported as triangles in figure 2. The values of L are L =

31 for λ= 2.2 and L = 5 for λ= 3.5, both larger than V . For {λ, β} = {2.2, 0.18} and {λ, β} =

{3.5, 5.5} energy scale arguments predict weak chaos. We indeed find a spreading exponent
which approaches asymptotically the value 1/3. For {λ, β} = {2.2, 1}, {λ, β} = {2.2, 6.5} and
{λ, β} = {3.5, 15} the predicted behaviour is either strong chaos or a regime in between strong
and weak chaos. What we observe numerically is a growth of the spreading exponent γ up to 1/2
New Journal of Physics 14 (2012) 103036 (http://www.njp.org/)
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Figure 5. Average logarithm of the second moment of the expanding wave
packet, 〈log10 m2〉, and spreading exponent, γ , for λ= 2.2 (left plots) and
λ= 3.5 (right plots). For λ= 2.2, the initial wave packet has width L = 31
and we consider β = 0.18 (lower red curves), 1 (middle green curves) and 6.5
(upper blue curves). For λ= 3.5, the initial wave packet has width L = 5 and
we consider β = 5.5 (lower red curves), 15 (middle green curves) and 50 (upper
blue curves). The width of the lines represents the statistical error as in figure 4.
Insets: average compactness index of the expanding wave packet 〈ξ〉 for the same
sets of simulations.

and even to larger values, followed by a decrease towards 1/3. In most cases, our simulations
show a significant overshooting due to partial self-trapping. It is worth mentioning that this
effect is larger for weaker disorder strength λ, consistent with the fact the linear spectrum
exhibits larger mini-gaps in this regime (see figure 1). Finally, for {λ, β} = {3.5, 50}, we observe
self-trapping, as expected.

In conclusion, from the analysis of the results of the DNLS model for different values of λ,
we find that the energy scale arguments and the model discussed in section 4 correctly explain
the overall trend of the numerical simulations and the separation between different spreading
regimes in the parameter space.

5.2. Results of the Klein–Gordon model

Due to the existence of a mapping between KG and DNLS, we expect to observe the
same spreading regimes in the two models. This has already been proven in purely random

New Journal of Physics 14 (2012) 103036 (http://www.njp.org/)

http://www.njp.org/


14

systems where the two models reveal similar qualitative results in a wide range of parameters
[6, 7, 9, 11, 12]. Despite this similarity, the study of the KG model remains interesting for
at least two reasons. On the one hand, it allows for testing the generality of the result in the
case where there is just one conserved quantity. This is highly nontrivial—especially for self-
trapping—for which rigorous results have recently been derived only in the case of Hamiltonians
conserving both energy and norm [3]. On the other hand, the KG model is advantageous from a
numerical point of view. The fact that there is just one conserved quantity results in two orders
of magnitude faster integration speed within the same integration error.

Similarly to what was done for the DNLS model, we initially set the compact wave packets
to span a width L = 13 (unless otherwise stated) centred in the lattice, such that each site has
equal energy E j = E =H/L . This is implemented by setting initial momenta of p = ±

√
2E

with randomly assigned signs and zero coordinates. The values of initial energy densities E are
chosen to give expected spreading regimes of asymptotic weak chaos, intermediate strong chaos
and dynamical crossover from strong chaos to the slower weak chaos subdiffusive spreading [9].

The results of the time simulations are shown in figure 6, while the expected spreading
regimes are given in figure 2 (full upward triangles)11. As one can see by comparing figure 6 with
figure 4, the qualitative behaviour of the two models is rather similar. After initial transients,
which increase with decreasing nonlinearity, all KG simulations reveal subdiffusive growth of
the second moment m2 according to power law m2 ∼ tγ with γ < 1. If self-trapping is avoided,
all simulations show similar subdiffusive behaviour for the participation numbers; moreover,
the wave packets remain compact as they spread, since compactness indices at the largest
computational times saturate around a constant 〈ξ〉 ≈ 3.5 ± 0.25. For the two smallest values
of initial energy density E = 0.05 and E = 0.01, the characteristics of the weak chaos regime
are observed, namely the exponent γ saturates around 1/3 (red and green curves in figure 6)
after a transient time. We stress that the only difference from the purely random systems is the
overshooting phenomenon at transient times. This effect is an inherent property of quasiperiodic
systems, which inevitably manifests itself in all spreading regimes, while in the disordered case
it was shown to occur only in the regime of self-trapping [11, 12].

For the two energy densities E = 0.055 and 0.075, we expect strong chaos, with
characteristics similar to the DNLS case. The simulation with E = 0.055 (blue curves in figure 6)
indeed exhibits the typical behaviour of the strong chaos scenario: the characteristic exponent
γ increases up to the predicted value 1/2 and remains so for about two time decades, followed
by a crossover with γ decreasing to the weak chaos dynamics. There is also another possibility
for larger E = 0.075, when intermediate strong chaos is masked due to partial self-trapping
(magenta curves in figure 6). Thus, γ shows values larger then 1/2 but still with subsequent
decay to slower subdiffusion. Here, we would like to strongly emphasize that none of the
simulations exhibit pronounced deviations from strong or weak chaos regimes of spreading,
i.e. long-lasting overshooting with γ > 1/2, or significant slowing down to values γ < 1/3.

Finally, for E = 1.0 the dynamics enter the self-trapping regime, as our theory predicts.
There a major part of the initial excitation stays localized, while the remainder spreads (yellow
curves in figure 6). The participation numbers, therefore, do not grow significantly and 〈log10 P〉

starts to level off at large time (figure 6, left panel, bottom, yellow curve). In contrast, the
small spreading portion yields a continuous increase of the second moment m2 (figure 6, left

11 In order to compare the nonlinear frequency shift δ ∼ E of the KG model with the energy scales of the DNLS
model 1 and d , we use the approximate mapping βn ≈ 6λE at t = 0. Therefore, the quantity that is plotted in
figure 2 for the KG model is 6λE .
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Figure 6. Numerical results obtained by integrating the KG equations of motion
(5). The time evolution of 〈log10 m2〉 (left panel, top), γ (right panel, top),
〈log10 P〉 (left panel, bottom) and 〈ξ〉 (right panel, bottom) is shown versus
log10 t . The parameters are {λ, E} = {2.5, 0.005}, {2.5, 0.01}, {2.5, 0.055},
{2.5, 0.075}, {2.5, 1.0}. We used an initial wave packet with width L = 13 for
E = 0.005, 0.01, 0.075, 1 and L = 11 for E = 0.075. The width of the lines for
the quantities 〈log10 m2〉, 〈log10 P〉 and γ represents the statistical error as in
figure 4. In the top right panel, the two dashed lines correspond to theoretically
predicted power laws γ = 1/3 and γ = 1/2.

panel, top, yellow curve), which initially is characterized by large values of γ > 1/2 (howbeit,
for larger time, γ decreases). Consequently, the compactness index 〈ξ〉 (figure 6, right panel,
bottom, yellow curve) drops to small values indicating a deep self-trapping regime. Note that
similar behaviour has been observed before in purely random systems [11, 12]. Unusually large
values of m2 can be explained by local trapping–detrapping processes in the evolving wave
packet. The corresponding dynamics is in strong non-equilibrium—its theoretical description is
yet to be developed.

5.3. Role of the shape of the initial wave packet

In this subsection, we show that the results discussed so far do not depend on the shape of the
initial wave packet. Besides its theoretical interest, this issue is also relevant from the point of
view of experiments, where it is not always possible to design the wave packets at will.

In the previous sections, we have used a square distribution as the initial wavepacket. Now,
inspired by the experiments with ultracold atoms, we consider initial wave packets with the
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shape of a Gaussian distribution or a Thomas–Fermi (TF) distribution. The Gaussian wave
packet centred around the site j = 0 has the form

ψ j(0)= C1 e−
j2

2σ2 , (13)

where σ is a parameter controlling the width of the packet, while C1 is a constant factor that can
be determined by using the normalization condition

∑
j |ψ j |

2
= 1. A TF wave packet is instead

defined by

ψ j(0)= C2

√
1 −

j2

R2
(14)

in the region where | j |< R and ψ j = 0 otherwise. The parameter R is the TF radius
characterizing the width of the distribution, while the constant C2 is a normalization factor.
These two distributions are of interest when considering ultracold bosons initially released from
a harmonic trap in the Gross–Pitaevskii (GP) regime [33].

In figure 7, we show the time evolution in the DNLS model of the second moment of the
expanding wave packet, 〈log10 m2〉 (top row), and of the spreading exponent, γ (bottom row),
using initially a Gaussian (left column) and a TF (right column) wave packet distribution. In the
insets, we also show the compactness index 〈ξ〉, in order to identify the self-trapping regime.
We choose the width of the initial distributions (σ and R) so that the nonlinear frequency shift
is similar to the one already used for the simulations in figure 412. In particular, we use σ = 5
and R = 7.5, yielding a nonlinear frequency shift δ ≈ β/13. The values of β used in figure 7 are
the same as those previously considered.

From the comparison between the results of figures 7 and 4, we can conclude that the shape
of the initial wave packet does not affect the overall behaviour of the time evolution, nor its
interpretation in terms of regimes of weak and strong chaos, self-trapping and overshooting.
This suggests the results that we have obtained are rather general and that the nonlinear
frequency shift δ is the only key parameter controlling the dynamics of the wave packet.

5.4. Application to cold atoms

The DNLS model can be used to simulate the dynamics of bosons in optical lattices at zero
temperature [23] and in the tight-binding regime, where the DNLS equation corresponds to
a discretized version of the GP equation for the dynamics of a Bose–Einstein condensate in
the single-band approximation. The validity of this mean-field theory is not ensured for those
dynamical regimes where GP predicts chaos [34], which can be viewed as a signature of a large
depletion of the condensate. For this reason, in the presence of disorder the theory fails to predict
the long-time evolution of observables directly related to small scale fluctuations and long-range
coherence. However, for coarse-grained observables, such as the width of the wave packet in
real and momentum space, or the participation number, the predictions of the theory remain
very good even in regimes where the depletion is expected to be large, long after the random
fluctuations prevent the prediction of fine scale structures. This has recently been shown in [35]
by comparing the predictions of the GP equation with the one beyond mean-field theory in
numerical simulations within timescales of the order of typical experiments with cold atoms
and long enough to observe the effects of depletion and chaotic dynamics. Indeed, our analysis

12 For Gaussian and TF distributions, we identify the nonlinear frequency shift with the quantity β
∑

j |ψ j |
4, which

is also identical (up to a prefactor) with the mean-field interaction energy in equation (1).
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Figure 7. Average logarithm of the second moment of the expanding wave
packet, 〈log10 m2〉, and spreading exponent, γ , as a function of time for different
nonlinearities β = 0.5, 1, 5, 10, 100. The disorder strength is λ= 2.5 in all
simulations. As an initial condition, we have used a Gaussian wave packet with
σ = 5 (left plots) and a TF distribution with R = 7.50 (right plots). The width
of the lines represents the statistical error as in figure 4. Insets: the average
compactness index of the expanding wave packet 〈ξ〉 for the same sets of
simulations.

is essentially based on coarse-grained observables. In addition, for each set of parameters we
also average over many realizations and this extends the validity of the present approach even
for longer times, as any residual dependence on small scale fluctuations is further suppressed
by the averaging procedure.

When applied to bosons expanding in bichromatic optical lattices, our results provide a
consistent interpretation of the experimental data of [22], where a Bose–Einstein condensate,
initially confined in a harmonic trap, is let free to expand in a bichromatic potential. In our
dimensionless units, the expansion lasts for times of the order of 104 (see [20] for more details)
and the width of the atomic cloud increases up to 50–100 lattice sites. In this experiment, a
subdiffusive spreading is observed with exponents γ significantly larger than 1/3 already for
weak nonlinearities and even larger than 1/2 for larger nonlinearities13. Our work suggests that

13 We note that the spreading exponent α in [22] differs from our exponent γ by a factor of two, α = γ /2, due to a
different notation.
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such large values of γ can be explained in terms of a transient overshooting caused by partial
self-trapping in mini-bands.

6. Summary and conclusions

In this work, we have considered the problem of the interplay between localization and
interaction in 1D quasiperiodic systems. We have investigated the expansion of initially
localized wave packets in two different quasiperiodic models, DNLS and KG. We have
confirmed that interaction destroys localization, giving rise to a subdiffusive growth of the
second moment of the wave packet (m2 ∼ tγ with γ < 1).

We have interpreted the spreading process in terms of resonances in the mode–mode
coupling. In particular, we have identified the different spreading regimes of self-trapping,
strong chaos and weak chaos by comparing the frequency shift induced by the nonlinearity
with the energy scales extracted from the spectrum of the underlying linear system. For weak
and strong chaos regimes, we have also predicted the expected spreading exponents γ = 1/3
and 1/2, respectively.

We have performed numerical simulations, which last for much longer times than existing
simulations, and we have averaged our results over many realizations. This gave us the
possibility to accurately calculate the spreading exponent γ and observe the weak chaos
regime. A key difference with respect to random systems [6, 9] is the occurrence of transient
overshooting regimes that we interpret as due to the peculiar structure of the linear spectrum of
the quasiperiodic system, which is separated into mini-bands. These mini-bands are responsible
for mechanisms of partial self-trapping. Signatures of strong chaos have also been observed,
but the temporal overlap of strong chaos and partial self-trapping makes the analysis of the
spreading more complex than for random systems. We have also verified that our main results
do not depend on the details of the shape of the initial wave packet. This suggests that the
nonlinear frequency shift, δ, is the only parameter that controls the dynamics.

Finally, our results provide a consistent interpretation of the subdiffusive spreading
observed in experiments with ultracold atoms propagating in bichromatic optical lattices [22].
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