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We study the eigenstates of two opposite spin fermions on a one-dimensional lattice with finite range
interaction. The eigenstates are projected onto the set of Fock eigenstates of the noninteracting case. We
find antiresonances for symmetric eigenstates, which eliminate the interaction between two symmetric
Fock states when satisfying a corresponding selection rule.
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1. Introduction

Up to now a lot of interest in experiments on cold atoms has
been focused on matter wave properties of the condensates which
are described by the Hartree–Fock–Bogoliubov mean field model
for weakly interacting quantum gases [1–5]. At the same time, the
use of collision processes turns out to be a promising approach
to implement quantum gate operations [6]. A standard method for
the description of such systems is to map them to Hubbard like
lattice models where atomic physics provides a whole toolbox to
engineer various types of Hamiltonians for 1D, 2D, and 3D Bose
and Fermi systems.

The interplay of interactions and discreteness leads to a set of
interesting phenomena, including bound states, see e.g. [7–11] and
[12,14,13]. In recent papers [15,16] we have studied properties
of such bound states (also frequently coined quantum breathers)
in various one-dimensional Hubbard like models by considering
two bosons or two fermions (with opposite spins) on lattices. The
fermionic case adds to the complexity with the spin as an addi-
tional degree of freedom. Consequently two fermions can form up
to three different bound states, while two bosons form only one.
In all these cases the interaction was assumed to be local, i.e. both
particles interact only when occupying the same lattice site. In the
present Letter we consider fermionic particles with a finite range
of interaction, as a more realistic description of experimental sit-
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uations, which may be directly applicable in quantum computing,
where the controlled interaction can be used to create entangle-
ment with high fidelity. We analyze two particle eigenfunctions
and identify resonance conditions for which two particles do not
scatter despite the presence of a nonzero interaction.

2. Model and spectrum

We consider one-dimensional periodic lattice with f sites de-
scribed by an extended Hubbard model. The Hamiltonian is given
by

Ĥ = Ĥ0 + ĤU + Ĥ V , (1)

Ĥ0 = −
∑
j,σ

â+
j,σ (â j−1,σ + â j+1,σ ), (2)

ĤU = −U
∑

j

n̂ j,↑n̂ j,↓, n̂ j,σ = â+
j,σ â j,σ , (3)

Ĥ V = −V
∑

j

n̂ jn̂ j+1, n̂ j = n̂ j,↑ + n̂ j,↓. (4)

Here Ĥ0 describes the nearest-neighbor hopping, σ = ↑,↓ de-
notes the spin, ĤU and Ĥ V describe the onsite and intersite
(between adjacent sites) interaction between the particles with
strengths U and V , respectively; a+

j,σ and a j,σ are the fermionic
creation and annihilation operators satisfying the anticommutation
relations: [â j,σ , â+

l,σ ′ ] = δ j,lδσ ,σ ′ , and [â j,σ , âl,σ ′ ] = [â+
j,σ , â+

l,σ ′ ] = 0.
The sign of U and V is not specified. The Hamiltonian (1) com-
mutes with the number operator N̂ = ∑

j n̂ j whose eigenvalues are
n = n↑ +n↓ , which is the total number of fermions in the lattice. In
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this work we focus on the simplest nontrivial case of n = 2, with
n↑ = 1 and n↓ = 1.

To describe quantum states, we use a number state basis |Φn〉 =
|n1;n2 · · ·n f 〉 [12], where ni = ni,↑ + ni,↓ represents the number of
fermions at the i-th site of the lattice. The fermionic two particle
states are generated from the vacuum |O 〉 by successively creating
a particle with spin down and spin up.

The Hamiltonian (1) commutes with the translational oper-
ator T̂ , which shifts all lattice indices by one. Its eigenvalues
are τ = exp(ik) with the Bloch wave number k = 2πν

f , and ν =
0,1,2, . . . , f − 1.

2.1. Single-fermion states

In this simplest case, only one fermion is in the lattice (either
with spin up or down) (n = 1), and the state is represented by
| j〉 = â+

j,σ |O 〉. The interaction terms (ĤU and Ĥ V ) have no contri-
bution for a single particle. Thus the eigenstates of the Hamiltonian
(1) are the eigenstates of Ĥ0 which are given by:

|Ψ1〉 = 1√
f

f∑
s=1

(
T̂

τ

)s−1

|1〉. (5)

The corresponding eigenenergies are

εk = −2 cos(k). (6)

2.2. Two fermions

For the case of two opposite spin fermions (n = 2 with n↑ = 1
and n↓ = 1), each eigenstate is formed as a linear combination of
number states with fixed n,

|Ψn〉 =
∑

j

c j
∣∣Φ j

n
〉
. (7)

For two particles, this involves Ns = f 2 basis states, |Φ j
2〉, which is

the number of ways one can distribute two fermions with opposite
spins over the f sites with possible double occupancy. Then we
define the basis state with a given value of the wave number k as
in Ref. [16] and a complete wave function is:

∣∣Ψ k
2

〉 = c1|Φ1〉 +
( f +1)/2∑

j=2

c j,+|Φ j,+〉 +
( f +1)/2∑

j=2

c j,−|Φ j,−〉. (8)

Here we consider the case of an odd number of lattice sites, the
extension to even numbers is straightforward (see e.g. Ref. [12]).
Any vector in the corresponding Hilbert space is spanned by the
numbers |c1, c2,+, c2,−, c3,+, c3,−, . . .〉 and the vectors |Φ1〉, |Φ j,+〉
and |Φ j,−〉 in two fermion case are defined as follows:

|Φ1〉 = 1√
f

f∑
s=1

(
T̂

τ

)s−1

â+
1,↑â+

1,↓|O 〉,

|Φ j,+〉 = 1√
f

f∑
s=1

(
T̂

τ

)s−1

â+
j,↑â+

1,↓|O 〉,

|Φ j,−〉 = 1√
f

f∑
s=1

(
T̂

τ

)s−1

â+
1,↑â+

j,↓|O 〉. (9)

We diagonalize the Hamiltonian (1) in the framework of the
basis defined in (8) and derive the eigenenergies for each given
Bloch wave number k from Ĥ|Ψ k

2 〉 = E|Ψ k
2 〉. This leads to an f × f

matrix whose elements Hi, j (i, j = 2, . . . , ( f + 1)/2) are derived
from
Fig. 1. Energy spectrum of two fermions of the extended Hubbard model with pe-
riodic boundary conditions for U = 2, V = −3 and f = 101. The lines follow from
numerical diagonalization of the matrix (10) and symbols are the results of analyt-
ical computations for the bound states similar to the calculations in [16].

Hi,1 = H∗
1,i = 〈Φi,±|Ĥ|Φ1〉, Hi, j = 〈Φi,±|Ĥ|Φ j,±〉. (10)

We show in Fig. 1 the energy spectrum of the Hamiltonian
matrix (10) obtained by numerical diagonalization for the case of
opposite signs of interaction parameters U = 2 and V = −3 and
the form of the spectrum is similar to the one in Ref. [16]. Besides
a two particle continuum, three bound state bands are found. The
eigenstates |Φk1,k2 〉 of the continuum correspond to two fermions
independently moving along the lattice as with zero interaction,
and are derived from (8). Their eigenenergies are given by:

E0
k,k1

= −4 cos(k/2) · cos(k1), (11)

with k being the Bloch wave number and k1 = 2πν/( f − 1), being
the canonically conjugated momentum of the relative coordinate
(distance) between both particles and ν = 0, . . . , ( f −1)/2. Eq. (11)
is the result of the sum of Bloch bands E± = −2 cos( k

2 ±k1) of two
asymptotically free particles [17].

3. Weight functions in normal mode space

We transform to the basis of the symmetric and antisymmetric
states

|Φ j,s〉 = |Φ j,+〉 + |Φ j,−〉√
2

, |Φ j,a〉 = |Φ j,+〉 − |Φ j,−〉√
2

(12)

where a and s refer to the antisymmetric and the symmetric states,
respectively, j = 2, . . . , ( f + 1)/2. Note that |Φ1〉 is also a sym-
metric state. In this basis the matrix (10) decomposes into two
irreducible parts given by

Hs(i, j) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U q
√

2

q∗√2 V q

q∗ 0 q
. . .

. . .
. . .

q∗ 0 q

q∗ p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

and
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Ha(i, j) = −

⎛
⎜⎜⎜⎜⎜⎜⎝

V q
q∗ 0 q

q∗ 0 q
. . .

. . .
. . .

q∗ 0 q
q∗ −p

⎞
⎟⎟⎟⎟⎟⎟⎠

, (14)

with q = 1 + τ and p = τ−( f +1)/2 + τ−( f −1)/2. The rank of the
symmetric matrix is ( f + 1)/2 and the rank of the antisymmetric
matrix is ( f − 1)/2.

Our strategy is to compute an eigenstate for the interacting
case, and expand it in the basis of the eigenstates of the noninter-
acting case. For this purpose we fix the Bloch momentum k, and
choose a seed eigenstate |Ψ 0

k̃1
〉 of the unperturbed case with seed

mode number k̃. Upon switching on the interaction it becomes a
new eigenstate |Ψk̃1

〉, which will have overlap with several eigen-
states of the unperturbed case. We expand the eigenfunction of the
perturbed system using first order perturbation approximation:

|Ψk̃1
〉 = ∣∣Ψ 0

k̃1

〉 + ε
∑

k′
1 	=k̃1

〈Ψ 0
k′

1
|ĤU + Ĥ V |Ψ 0

k̃1
〉

E0
k̃1

− E0
k′

1

∣∣Ψ 0
k′

1

〉
(15)

and define the weight function as the square of the projection of
this eigenstate on the unperturbed eigenfunction space:

C s(k1; k̃1) = ∣∣〈Ψ 0
k1

∣∣Ψk̃1

〉∣∣2
. (16)

Then from expansion (15) it follows that the off-diagonal terms in
the (k1 	= k̃1) weight function at first order are given by:

C s(k1; k̃1) =
(2U |q|2 + V E0

k1
E0

k̃1
)2|(〈Ψ 0

k1
|)1(|Ψ 0

k̃1
〉)1|2

4|q|4(E0
k̃1

− E0
k1

)2
, (17)

with |q|2 = 2 + 2 cos(k). Here E0
k1

and E0
k̃1

are the eigenenergies of

the unperturbed system given by Eq. (11), and (|Ψ 0
k̃1

〉)1 defines the

first component of the eigenvector |Ψ 0
k̃1

〉.

3.1. Symmetric states

First we consider the case of small interaction constants and as
expected we find localization in normal mode space. For instance,
in the case of dominant onsite interaction constant U = 1 and
V = 0.1, quite similar results to those obtained in Ref. [15] charac-
terizing quantum q-breathers properties are derived and the result
of the perturbation formula (17) matches pretty well with those
of the diagonalization procedure. But if now we take interaction
constants U , V with comparable values (but again in perturba-
tive limit) one will unavoidable deal with additional antiresonance
structure presented in Fig. 2, where the weight function vanishes
exactly. The appearance of these structures follows from the an-
alytical formula (17). Indeed, in perturbative limit of interaction
constants one can find such a seed k̃1 and probe k1 wave num-
bers that the weight function becomes exactly zero. We find the
following condition for zero weight:

U

V
= −2 cos(k1) cos(k̃1). (18)

It also follows from Eq. (18) that there is a critical wave number
given by

kc
1 = arcos

(
− U

)
. (19)
2V
Fig. 2. Weight function for two seed mode numbers k̃1 = 0.23π and k̃1 = 0.79π ,
with the onsite and intersite interaction parameters U = 0.1 and V = 0.08. Here
k = 0.5π and f = 101. Dashed lines are the results using formula (17).

An antiresonance appears only if the following inequalities are sat-
isfied: π − kc

1 < k̃1 < kc
1 (here for simplicity we assume both inter-

action constants positive). As it is seen from Fig. 2 the perturbative
limit (17) works well even in case of presence of an antiresonance.
Eq. (18) further tells that an antiresonance will be observed even
for U = 0. In this case the seed wave number k̃1 = π/2 is not
modified by interaction V . On the other hand if V = 0 the antires-
onances are not observable.

For larger values of interaction constants the perturbative pre-
dictions will get significant corrections. To show this we plot three-
dimensional graphs of weight function versus seed k̃1 and probe k1
wave numbers for various values of interaction constants in Fig. 3.
As seen for small values of interaction constants the track of the
antiresonances keeps the symmetry in the seed-probe mode num-
ber space traces predicted by perturbation theory. However for
large interaction constants this symmetry is lost.

3.2. Antisymmetric states

The structure of the antisymmetric matrix (14) suggests that
the weight function for antisymmetric states can be computed as:

Ca(k1; k̃1) =
V 2|(〈Ψ 0

k1
|)1(|Ψ 0

k̃1
〉)1|2

(E0
k̃1

− E0
k1

)2
, (20)

and according to this formula the weight function does not de-
velop antiresonances. This has been confirmed by numerical diag-
onalization.

4. Discussions

Let us discuss the meaning of the observed antiresonances. Two
particles, when travelling along the lattice, will meet, interact, and
scatter. If prepared in an initial symmetric noninteracting seed
state, the particles will scatter into all other available noninter-
acting symmetric states – except for one special case: when the
weight function defined by (16) vanishes. This cancellation hap-
pens because the scattering can go either via the onsite interaction
U or via the intersite interaction V . A corresponding destructive
interference makes the amplitude in this particular scattering state
exactly zero. Antisymmetric states have strict zero occupation on
the same site, and therefore only one scattering path (using V ) is
left. Consequently they do not show antiresonances. But they will,
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Fig. 3. Three-dimensional plots of the weight function for symmetric states for a fixed value of the Bloch wave number k = 0.12π and different interaction constants U
and V . The lattice size is the same f = 101 as in the previous plots. Red peak structure is a signature of quantum q-breathers and yellow antipeak traces displays the
invisibility places. (For interpretation of colors in this figure, the reader is referred to the web version of this Letter.)
if we add even more distant (e.g. next-to-nearest-neighbor) inter-
actions and/or consider more realistic potentials. Here we have
chosen the simple interaction scheme in order to show the invis-
ibility effect which might be useful for quantum computing pur-
poses.
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