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• We study the evolution of NDE and dynamics of nonlinear disordered lattices (KG/DNLS).
• We used two key quantities: the statistical measures of second moment and kurtosis.
• The numerics show good correspondence to NDE analytics in a wide parameters range.
• We also introduced a modified NDE with long-range exponentially decaying coupling.
• Numerics for above model show even deeper correspondence of KG/DNLS and the NDE.
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a b s t r a c t

Probably yes, since we find a striking similarity in the spatio-temporal evolution of nonlinear diffusion
equations and wave packet spreading in generic nonlinear disordered lattices, including self-similarity
and scaling. We discuss, analyze and compare nonlinear diffusion equations with compact or exponen-
tially decaying interactions, and generalized dependences of the diffusion coefficient on the density. Our
results strongly support applicability to wave packet spreading in disordered nonlinear lattices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The combined impact of disorder and nonlinearity strongly
affects the transport properties of many physical systems leading
to complex behavior contrary to their separate linear counterparts.
The application has great range; particularly relevant are nonlinear
effects in cold atoms [1,2], superconductors [3], and optical
lattices [4–6]. Yet experimental probing of both disordered and
nonlinear media remains limited due to reachable time or size
scales.

Significant achievements towards understanding the interplay
of disorder and nonlinearity have been made in recent theoretical
and numerical studies. A highly challenging problem was the dy-
namics of compact wave packets expanding in a disordered poten-
tial, in the presence of nonlinearity. Themajority of studies focused

∗ Corresponding author.
E-mail address: lapteva@pks.mpg.de (T.V. Laptyeva).

on two paradigmatic models – the discrete nonlinear Schrödinger
(DNLS) and the Klein–Gordon (KG) equations – revealing both de-
struction of an initial packet localization and its resulting subdif-
fusive spreading, however with debate regarding the asymptotic
spreading behaviors [7–14]. Hypotheses of an ultimate slowing-
down [15,16] or eventual blockage of spreading [17,18] have been
recently challenged with evidence in [19], which reported a fi-
nite probability of unlimited packet expansion, even for small non-
linearities. For more details on ongoing controversial debates, we
refer the reader to the recent review [20]. A qualitative theory of
the nonlinear wave evolution in disordered media is based on the
random phase ansatz [12], derives power-law dependences of the
diffusion coefficient on the local densities, and predicts several dis-
tinct regimes of subdiffusion that match numerics [11–14] con-
vincingly. Closely tied to these phenomena is thermal conductivity
in a disordered quartic KG chain, analyzed in [21].

Similar power-law dependences of the diffusion coefficient on
the local density have been extensively studied in the context
of the nonlinear diffusion equation (NDE). The NDE universally
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describes a diverse range of different phenomena, such as heat
transfer, fluid flow or diffusion. It applies to gas flow through
porous media [22,23], groundwater infiltration [24,25], or heat
transfer in plasma [26]. As a key trait, the NDE admits self-similar
solutions (also known as the source-type solution, ZKB solution or
Barenblatt–Pattle solution). It describes the diffusion from a com-
pact initial spot and was first studied by Zel’dovich, Kompaneets,
and Barenblatt [27,28].

The connection between nonlinear disordered spatial wave
equations and NDE was conjectured recently and remains an
open terrain [29,15,30–33]. A particularly challenging question is
whether the NDE self-similar solution is an asymptotic time limit
for the wave packet spreading in nonlinear disordered arrays. If
yes, this will support the expectations that compact wave packets
spread indefinitely, without re-entering Anderson localization.
In this paper, we demonstrate that the NDE captures essential
features of energy/norm diffusion in nonlinear disordered lattices.
At present, we still lack a rigorous derivation of the NDE from the
Hamiltonian equations for nonlinear disordered chains. Here we
show that at a sufficiently large time the properties of the NDE self-
similar solution reasonably approximate those of the energy/norm
density distribution of nonlinear waves; manifesting in similar
asymptotical behaviors of statisticalmeasures (such as distribution
moments and kurtosis), and in the overall scaling of the density
profiles. To substantiate our conclusions, we perform simulations
of a modified NDE and compare the results against the spatio-
temporal evolution of nonlinear disordered media [13,14].

2. Theoretical predictions

2.1. Basic nonlinear disordered models

The spreading of wave packets has been extensively studied
within the framework of KG/DNLS arrays. Particularly, the DNLS
describes the wave dynamics in various experimental contexts,
from optical wave-guides [5,6] to Bose–Einstein condensates [34].
It was found that the KG equation approximates well the DNLS
one under appropriate conditions of small energy densities. This
is substantiated by previous derivations of the correspondence in
the ordered lattice case [35,36]. While a similar derivation for the
disordered case is missing, an enormous amount of numerical data
shows that the analogy is working for the spreading characteristics
of wave packets [10,11,13,14]. We perform computations exactly
in the same parameter regimes covered by these previous studies.
Note also that the KG has the advantage of faster integration at the
same level of accuracy.

The DNLS chain is described by the equations of motion

iψ̇l = ϵlψl + β |ψl|
2 ψl − ψl+1 − ψl−1, (1)

where ϵl is the potential strength on the site l, chosen uniformly
from an uncorrelated random distribution [−W/2,W/2] parame-
terized by the disorder strengthW .

The KG lattice is determined by

ül = −ϵ̃lul − u3
l +

1
W
(ul+1 + ul−1 − 2ul), (2)

where ul and pl are, respectively, the generalized coordinate/
momentum on the site lwith an energy density El. The disordered
potential strengths ϵ̃l are chosen uniformly from the random
distribution [1/2, 3/2]. The total energy Ē =


l El acts as the

nonlinear control parameter, analogous toβ in DNLS (see e.g. [11]).
Both models conserve the total energy, the DNLS additionally

conserves the total norm S =


l |ψl|
2. The approximate mapping

from the KG to the DNLS is βS ≈ 3WĒ was empirically confirmed
in a large number of extensive numerical simulations [10–14].

Therefore we restrict analytics to the DNLS model. We also note
that we exclude here numerical considerations for strong nonlin-
earities where self trapping occurs in the DNLS model rigorously
due to the two integrals of motion [17]. For the KG a similar the-
orem does not exist (note however that again previous numerical
investigations [10–14] showed that self trapping occurs in the KG
case as well up to the largest computed times).

2.1.1. Spreading predictions
In order to quantitatively characterize the wave-packet spread-

ing in Eqs. (1) and (2) and compare the outcome to the NDEmodel,
we track the probability at the l-th site,Pl ≡ nl = |ψl|

2, where nl is
the normdensity distribution. Note that the analog of nl in the KG is
the normalized energy density distribution El. We then track a nor-
malized probability density distribution, zl ≡ nl/


k nk. In order

to probe the spreading, we compute the time-dependentmoments
mη =


l zl(l − l̄)η , where l̄ =


l lzl gives the distribution center.

We further use as an additional dynamical measure the kurto-
sis [37], defined as γ (t) = m4(t)/m2

2(t) − 3. Kurtosis is an indi-
cator of the overall shape of the probability distribution profile—in
particular, as a deviation measure from the normal profile. Large
values correspond to profiles with sharp peaks and long extending
tails. Low values are obtained for profiles with rounded/flattened
peaks and steeper tails. As an example, the Laplace distribution has
γ = 3, while a compact uniform distribution has γ = −1.2.

The time dependence of the second moment m2 of the above
distributions zl was previously derived and studied in [10–14].
Different regimes of energy/norm subdiffusion were observed and
explained. Generally,m2 follows a power-law tα with α < 1. Here
we briefly recall the key arguments.

In the linear limit Eqs. (1) and (2) reduce to the same eigenvalue
problem [10,11]. We can thus determine the normalized eigenvec-
tors Aν,l and the eigenvalues λν . Withψl =


ν Aν,lφν , Eq. (1) reads

in an eigenstate basis as

iφ̇ν = λνφν + β


ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗

ν1
φν2φν3 , (3)

where Iν,ν1,ν2,ν3 =


l Aν,lAν1,lAν2,lAν3,l are overlap integrals and
φν determine the complex time-dependent amplitudes of the
eigenstates.

In [12] the incoherent ‘‘heating’’ of cold exterior by the packet
has been established as the most probable mechanism of spread-
ing. Following this analysis, the packet modes φν(t) should evolve
chaotically with a continuous frequency spectrum. In particular,
chaotic dynamics of phases is expected to destroy localization. The
degree of chaos is linked to the number of resonances, whose prob-
ability becomes an essential measure for the spreading. Previous
studies [38] indicate that the probability of a packet eigenstate to
be resonant is R(βn) = 1− e−Cβn, with C being a constant depen-
dent on the strength of disorder. The heating of an exterior mode
close to the edge of the wave packet with norm density n would
then follow

iφ̇µ = λµφµ + βn3/2R(βn)f (t) (4)

with delta-correlated (or, reasonably, short-time correlated) noise
f (t), and lead to

φµ2 ∼ β2n3(R(βn))2t . The momentary diffu-
sion rate follows as D ∼ β2n2(R(βn))2.

With m2 ∼ n−2
= Dt one arrives at 1/n2

∼ β(1 − e−Cβn)t1/2.
Depending on the product Cβn being larger or smaller than one,
the packet has two regimes of subdiffusion (and a dynamical
crossover between them): m2 ∼ βt1/2 (strong chaos) and m2 ∼

β4/3t1/3 (asymptotic weak chaos) [10–14].
The validity of the assumption of incoherent phases and of

Eq. (4) was established through numerical studies for the first time
byMichaely and Fishman [39], moving the above conjecture based
theories onto solid grounds.
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2.2. Nonlinear diffusion equation

The assumption of chaos and randomphases, Eq. (4), the density
dependent diffusion coefficient and the resulting subdiffusion
strongly suggest an analogy to nonlinear diffusion equations (see
e.g. Ref. [40]). We first consider here the much studied NDE with a
power-law dependence of the diffusion coefficient on the density.
The NDE in the one-dimensional case reads

∂tP = ∂x

κP a∂xP


. (5)

Here P ≡ P (x, t) is the concentration of the diffusing species
(which may be related to the energy/norm density), a > 0 and
κ are some constants. Hereafter, we set κ = 1 without loss of
generality.

The NDE conserves one quantity – its total norm. It appears
therefore to be well suited for the KG model, which also conserves
one quantity – the total energy. The NDE can be thus expected to
describe diffusion of energy in the KG model. However, the DNLS
model conserves two quantities. Is therefore a more complicated
two-component NDE type equation needed in that case? Appar-
ently, not necessarily when wave packet spreading into an empty
(zero densities) volume is studied. This follows from the propor-
tionality of energy and norm density currents for DNLS in the limit
of small densities, and is further supported by our numerics. Fur-
ther support comes from the studies of Mulansky et al., where a
number of comparisons between the NDE and the DNLS dynam-
ics were performed [29]. It remains an interesting open question,
at which levels of the complicated nonlinear dynamics this differ-
ence in the number of conserved quantities begins to matter.

Let us discuss the scaling properties of Eq. (5). Given a solution
P (x, t) it follows that

P (x, t) = spP (sxx, st t), (6)

where sp, sx, st are some scaling factors. From normalization it
follows that sp = sx. Inserting (6) into (5) we find

st = sa+2
x . (7)

After some algebra for the momentmη(t)we conclude

mη =


t
t0

η/(a+2)

mη(t0), (8)

which corresponds to a subdiffusive process.
Eq. (5) has various self-similar solutions [41,42,25], which

depend on the characteristics of the evolving state. For compact
wave packets, the self-similar state is realized in the asymptotic
limit of large time [27,28,43]:

P (x, t) =


A −

ax2

2(2 + a)t2/(2+a)

1/a

t−1/(2+a), (9)

where A is a normalization constant and |x| < x0. For |x| > x0 the
density P strictly vanishes. The edge position x0 depends on time
as

x0 =

2A(2/a + 1)t2/(2+a)1/2 . (10)

The linear stability of Eq. (9) was demonstrated in [44,45].
Using a change of variables y = x/x0, we obtain for the density

P̄ (y, t)with P̄dy = Pdx:

P̄ (y, t) = A1/a+1/2

4/a + 2(1 − y2)1/a. (11)

Since P̄ does not depend on time, it follows

mη(t) = xη0m̄η, m̄η =

 1

−1
yηP̄dy. (12)

In agreement with (8) this yields e.g.m2 ∼ t2/(2+a).

The moments of solution (9) are

mη =


2(2 + a)

a

 η+1
2

B


a + 1
a

,
η + 1

2


A

a(η+1)+2
2a t

η
2+a , (13)

where B[x, y] is the Euler Beta Function. Using Eq. (13), we derive
for the kurtosis

γ∞ ≡ lim
t→∞

γ = 3
0

 5
2 +

1
a


0

 5
2 +

1
a


0

 3
2 +

1
a


0

 7
2 +

1
a

 − 3, (14)

where 0[x] is Legendre’s Gamma function. As can be seen, the
kurtosis of the self-similar solution does not depend on time. For
the values a = 4 and a = 2 we obtain kurtosis values γ = −1.091
and γ = −1.00 respectively. Additionally, γ = −1.20 in the limit
of a → ∞, which corresponds to a flat uniform distribution.

A few remarks are required in order to proceed. First, the spatial
discretization of the NDE (5) by introducing discrete Laplacians
with nearest-neighbor differences does not modify the properties
of the asymptotic states [40]. However, the overlap integrals in (3)
decay exponentially in space. Therefore spreading wave packets
will have exponentially decaying tails, instead of being compact
as it happens in the NDE. Moreover, the diffusion coefficient D
for spreading wave packets is in general different from a pure
power of the density (see Eq. (4) and below). It takes such a
power function form only in the asymptotic regime of weak chaos
and the potentially long-lasting intermediate strong chaos regime.
Therefore, we will generalize and adapt the above NDE in the next
subsection.

2.3. Modified nonlinear diffusion equation

Firstly, we rewrite Eq. (5) as

∂tP =
1

a + 1
∂2x P a+1. (15)

Since density leakage into neighboring sites is directly related to
resonance probability [10–14], we introduce it into the RHS of
Eq. (15) following the discussion of Eq. (4) as

P a+1
→ F = P a+1 

1 − e−CP
2
.

Randomness in disordered systems exponentially localizes the
normal modes, so mode–mode coupling in the nonlinear overlap
integral has an exponential dependence in distance as well. We
therefore introduce an exponentially decaying interaction along a
discrete chain. Using a finite central difference, we arrive at the
modified nonlinear diffusion equation (MNDE):

∂tPn =


m>n

e−m/χ (Fn−m − 2Fn + Fn+m) . (16)

The parameter χ is corresponding to the localization length. In the
above, we treat C as a free parameter, and equal χ in our numerics
to localization lengths of the disordered lattice models. We choose
a = 2 for the MNDE in order to obtain the proper correspondence
to the wave packet spreading properties (see Eq. (4) and
discussion), and expect to observe similar regimes, such that with
Pl ∼ 1 we have weak chaos for C ≪ 1 and strong chaos in the
opposite limit of C ≫ 1. The above MNDE is therefore expected
to account for the resonance probabilities between normal modes,
and the exponentially decaying interaction between them.

The exponentially decaying interactions in (16) can be expected
to lead to a loss of the scaling properties of the MNDE as compared
to the NDE. However, asymptotically the same scaling laws could
again still hold for the following reason. In the NDE for large
times the length scales increase as well. The exponential decay of
interactions in theMNDE is controlled by the localization length of
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ρ

Fig. 1. Numerical results for theMNDEwith χ = 6 and a = 2, for initial conditions
given in the text. Upper: The exponent α(t) for the MNDEwith the following values
of C: 0.1 (dashed black), 1.0 (solid black), 10 (dashed dark gray), 25 (solid dark gray),
50 (dashed light gray), and 103 (solid light gray). Lower: The kurtosis γ (t) for the
same simulations. Inset: The density profiles of the above simulations at t = 106 .

the underlying linear wave equation, which stays finite. As soon as
the NDE length scales become large enough, they coarse grain over
the much shorter localization length, and we can expect a wave
packet profile, which restores the scaling features of the NDE in its
central part, yet keeping exponential tails, which do not follow the
NDE scaling. As we will see below, this is indeed what we observe.

2.4. Numerical simulations of MNDE

We integrate Eq. (16) with a fourth-order Runge–Kutta scheme
[46], for a number of values for the free parameter C . We start
with an initially compact distribution of width L = 41 and density
P|l|≤L/2 = 1 (hereafter referred to as a brick distribution) and
P|l|>L/2 = 0. The integrations were carried out to t ≈ 106 using a
time step of 0.4, all thewhile conserving norm to better than 10−12.

From the second moment,m2(t), we compute the derivative

α(t) =
d log10 m2

d log10 t
(17)

and plot the result in the upper panel of Fig. 1. We find that the
MNDE reproduces weak chaos (α = 1/3 for C ≤ 1) and interme-
diate strong chaos (α = 1/2 for C ≫ 1).

We further plot in Fig. 1 the time-dependent kurtosis (lower
panel) and the density distributions at t = 106 (inset), for a few
representative values of C . Note that those states that are in the
weak chaos regime (C . 1) show a tendency towards an asymp-
totic γ∞ ≈ −1.091 in agreement with the NDE, but not reach-
ing it fully in our simulations. Those states in the intermediate
strong chaos regime (C & 100) exhibit long-lasting saturation at
γ∞ ≈ −1 in agreement with the NDE. We also observe a growth
of the kurtosis into positive values for weak chaos, followed by a
drop that decays to −1.091.

3. Wave packet spreading in nonlinear disordered lattices

Let us discuss first the details of computations. For both models
of Eqs. (1) and (2) we consider initial brick distributions of width
L with nonzero internal energy density (or norm density for the
DNLS) and zero outside this interval. In contrast to the NDE and
MNDE, these lattice systems (in addition to local densities) are
also characterized by local phases. Initially the phase at each
site is set randomly. Equations were evolved using SABA-class
split-step symplectic integration schemes [47], with time-steps
of 10−2–10−1. Energy conservation is within a relative tolerance
of less than 0.1%. We perform ensemble averaging over 103

realizations of the onsite disorder.
With m2 ∼ t2/(2+a) of the NDE self-similar solution, Eq. (13),

and m2 ∼ tα for KG/DNLS models, the NDE parameter a is related
to the exponent α as a = 2(1 − α)/α. This allows a monitoring of
a as the energy density changes. We expect then a = 2 and a = 4
respectively for the strong and weak chaos regimes, as well as a
shift from a = 2 to a = 4 associated with the crossover between
the two regimes.

We validate these predictions using our numerical data that
correspond to the different regimes of spreading [13]. We plot
in Fig. 2 the NDE parameter a from the numerically obtained α
(see inset in Fig. 2), assuming that the energy density E(t) ∼

E(0)L ⟨m2(t)⟩−1/2. As predicted, a reaches the asymptotic value
a = 4 for weak chaos. Our numerical results also show that once a
reaches its asymptotic value a = 4, it does not increase further in
time, even for quite small energydensities. That is a clear indication
for the absence of speculated slowing-down dynamics [15]. For
strong chaos, a temporarily saturates around a = 2, keeps this
value only within some interval of energy densities, and finally
crosses over into the interval 2 < a < 4 with a clear tendency
to reach the weak chaos value a = 4 at larger times.

The resulting kurtosis evolution ⟨γ (t)⟩ is presented in Fig. 3. For
the initial wave packet ⟨γ (0)⟩ = −1.2. The kurtosis first displays
a transient increase to positive values. This is very similar to the
MNDE results and is due to exponential localization of the initial
state in normal mode space. At larger times ⟨γ (t)⟩ displays a de-
crease in time, approaching the self-similar behaviors in density
distributions with ⟨γ ⟩ ≈ −1 (recall that the NDE self-similar solu-
tion gives us γ = −1 for a = 2 and γ = −1.091 for a = 4).

The evolution of the averaged energy density profiles ⟨E⟩ in
the course of spreading is illustrated in Fig. 4. The peaked initial
distribution profiles transform into more flat ones as time evolves.
The most striking result is obtained by rescaling the profiles in
Fig. 4 according to the scaling laws of the NDE. We estimate the
value of x0 (see Eq. (10)) as the distance between the position
where the profiles in Fig. 4 reach 10−4 and the center of the wave
packet l = 500. We then plot the rescaled densities according
to Eq. (11) in the inset of Fig. 4. This is obtained by rescaling the
coordinate (l − 500) → (l − 500)/x0 and rescaling the whole
distribution function zl → x0zl. In practical terms we simply
rescale the curves for t = 104 and t = 107 to coincide with the
curve at t = 108 and then stretch the rescaled curves to extend
from l = 0 to l = 1000. We observe very good scaling behavior.

To make sure that the scaling is not just a property of the KG
model, we perform the scaling also with data for the DNLS. We
take β = 0.04 and the data already used in Fig. 3. We show in
Fig. 5 the corresponding data for the times t = 105, 106, 107 and
rescale them similar to the KG case. The result is shown in the inset
of Fig. 5 and shows again very good agreement.

Together with the proper scaling of x0 which was tested in [29],
this is the strongest argument to support the applicability of
NDE and MNDE to the spreading of wave packets in nonlinear
disordered systems. It also strongly supports that the spreading
process follows the predicted asymptotics and does not slow down
or even halt.
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Fig. 2. The NDE parameter a versus the energy density E(t) ∼ E(0)L ⟨m2(t)⟩−1/2 as obtained from numerical simulations of the KG chain. Horizontal lines guide the eye at
values a = 2 and a = 4. Left panel: W = 4, L = 21, and E ∈ {0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 0.75} (varying from the top to bottom and from weak chaos to strong chaos
and self trapping). Right panel: W = 2 and E = 0.1 (curve 1, strong chaos), W = 4 and E = 0.2 (curve 2, crossover from the strong to weak chaos), W = 4 and E = 0.01
(curve 3, weak chaos), W = 6 and E = 0.05 (curve 4, weak chaos). Inset: Dependence of α on time for the same data as in the right panel. The dot-dashed and dashed lines
correspond to the values α = 1/3 and α = 1/2 respectively.

Fig. 3. Semi-log plot of average over 103 realizations kurtosis ⟨γ ⟩ versus time for
KG (see main part) and DNLS (see inset) models with parameters W = 4, L = 21.
Numbers correspond to different energy densities (KG), or, nonlinearity strengths
(DNLS): E = 0.01 or β = 0.04 (curve 5), E = 0.02 or β = 0.08 (curve 4), E = 0.04
or β = 0.18 (curve 3), E = 0.08 or β = 0.36 (curve 2), E = 0.2 or β = 0.72 (curve
1). The dashed lines correspond to the ⟨γ ⟩ = −1.0.

Fig. 4. KG: the log of the normalized energy density distribution ⟨log10 zl⟩ at three
different times (from top to bottom t ≈ 104, t ≈ 107, t ≈ 108). The initial
parameters are E = 0.2,W = 4 and L = 21. Symbols correspond to the
average over 103 disorder realizations, and solid lines correspond to an additional
smoothing. Inset: Rescaled distributions (see text).

Fig. 5. DNLS: the log of the normalized norm density distribution ⟨log10 zl⟩ at three
different times (from top to bottom t ≈ 105, t ≈ 106, t ≈ 107). The initial
parameters are β = 0.04,W = 4, and L = 21. Symbols correspond to the
average over 103 disorder realizations, and solid lines correspond to an additional
smoothing. Inset: Rescaled distributions (see text).

4. Conclusion

Wescrutinized the suggested connection between the temporal
evolution of self-similar solutions of the NDE and MNDE on one
side, and the asymptotic dynamics of the energy/normdistribution
within nonlinear disordered media on the other, and found a
remarkable correspondence. In order to describe the expansion of
an initial distributionwith time,we used two key quantities: (i) the
secondmomentm2(t), which shows how the squared width of the
distribution grows; (ii) the kurtosis γ (t), which indicates how the
shape of the distribution profile changes.

As a first test we compared the exponents characterizing the
subdiffusion for the second moments of the energy/norm density
distributions. In KG/DNLS models, m2(t) ∼ tα , and for the NDE
self-similar solution, m2(t) ∼ t2/(2+a), the exact identity giving
α = 2/(2 + a). We found that the wave packets in nonlinear
disordered chains converge towards the self-similar behavior at
large times. The numerical results show a good correspondence to
the NDE-based analytics in a wide range of parameters.

Second, in disordered lattices the energy/norm distributions
have exponentially decaying tails at variance to the steep-edged
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NDE self-similar solution. Such a difference of energy/norm distri-
bution profiles has no effect on m2(t) at large times. However, it
leads to differences between the NDE and the KG/DNLS dynam-
ics at intermediate times, e.g. seen in the temporal behavior of the
kurtosis ⟨γ (t)⟩. In order to study the possible impact of various ini-
tial density profiles, we also computed the time evolution of the
NDE for initial probability distributions with exponential tails. In
all simulations with NDE parameter a ≤ 6, the kurtosis asymptot-
ically reached the expected value γ∞ being a function of the pa-
rameter a only.

To bridge a possible gap between the NDE and the disordered
nonlinear lattices, we introduced a modified MNDE. To account
for the interaction between localized Anderson lattice modes we
implemented exponentially decaying coupling in the MNDE, and
also incorporated the resonance probability of normal modes
into a modified nonlinear diffusion coefficient. Then we indeed
observe the dynamical behavior that reproduces the spatio-
temporal evolution of nonlinear disordered chains, namely the
weak and the strong chaos regimes of spreading, and we correct
temporal evolution of the kurtosis, and the distribution profiles.
Most importantly we observe the precise scaling behavior of the
asymptotic NDE solutions in the case of nonlinear wave packets.

Let us summarize. There is a lack of knowledge on the statistical
properties of chaotic dynamics generated by nonlinear coupling.
We are still far from a rigorous derivation of the NDEwhen starting
with the equations ofmotion for nonlinear disordered chains. Nev-
ertheless, the theory for initial energy/norm spreading in KG/DNLS
chains which is based on a Langevin dynamics approximation has
earlier been confirmed by exhaustive numerical studies. Of course,
there is difference between KG/DNLS nonlinear disordered mod-
els and the NDE. Despite this, numerical results confirm that at
sufficiently large time the NDE self-similar solution approximates
remarkably well the spreading properties of energy/norm density
distributions in terms of the second moment, the kurtosis, and the
scaling features. Therefore, the NDE as a simple analytical tool is
extremely useful for studying the initial excitation spreading in
nonlinear disordered media at asymptotically large times. Addi-
tionally, the NDE analog with long-range exponentially decaying
coupling shows an even deeper correspondence between generic
nonlinear disordered models and the NDE and therefore might
prove to be an insightful model for the future analysis of spreading
in nonlinear disordered systems.
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