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Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic
modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into
flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain
analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer
cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.
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I. INTRODUCTION

The phenomenon of wave localization has been intensively
studied since its prediction in 1958 [1], where complete
localization was proved in the case of a one-dimensional (1-D)
chain defined over a random potential. Moreover, it was shown
that the 3-D case allows for an energy-dependent transition
from localized to delocalized eigenstates. The transition has
been since coined metal-insulator transition (MIT). The critical
energy Ec is called a mobility edge; in general, it depends
on and varies upon changes of the control parameters of the
given model [2]. Interestingly, an MIT can also be realized in
one-dimensional settings with sufficiently correlated disorder
potentials [3].

In 1980, Aubry and André proved the existence of the
MIT for a 1-D chain defined over a specific quasiperiodic
potential [4]. This MIT occurs at a critical value (λc = 2) of the
on-site potential’s strength λ, and separates the metallic phase
λ ∈ ]0,2[ from an insulating phase λ ∈ ]2,+∞[. This remark-
able result was fully understood via the principle of duality, in
which a particular Fourier transformation relating eigenmodes
and energy spectra allows for a direct functional equivalency
between momentum space and its transform counterpart. This
equivalency is energy-independent: upon crossing the critical
value λc all eigenstates turn from localized to extended,
regardless of their eigenenergy. The appearance of a mobility
edge is thus avoided. Analytic results have been discovered in
the last decade regarding the topological Cantor structure of
the spectrum [5] and its Lebesgue measure [6]. Furthermore,
for each different regime (insulating, metallic, and critical)
different spectral decompositions have been found [7–9].
Model generalizations were reported, e.g., quasiperiodic sys-
tems constantly maintained at criticality [10,11], bichromatic
quasiperiodic lattices displaying mobility edges [12,13], and
completely localized quasiperiodic models [14]. Correlated
metallic states have also been observed in the insulating
regime, for the case of two interacting particles within a 1-D
Aubry-André chain [15]. In another recent work [16], a suit-
ably modified quasiperiodic potential was shown to produce
a mobility edge expressible in an analytic form—a property
which we will take to new limits using flat-band topologies.

Wave propagation on lattices with flat-band topologies is
characterized by the existence of horizontal (flat) bands in
their band structure. Known in condensed matter, this model
class has gained great interest in the scientific community,

due in part to experimental realizations in optical lattices and
paraxially approximate light propagations [17–19]. Recent
theoretical discoveries have also considered the presence
of a disordered potential [20,21] and nonlinearity [22]. An
innovative procedure detangles flat-band states from dispersive
ones [23]. This allows one to inspect specific features of the
models as they relate to the choice of the on-site perturbations,
and also suggests specific potential correlations. In the present
work, this detangling technique of local rotations [23] is
applied as an extension of [25], in particular, regarding the
preliminary finding of an MIT occurring in a flat-band lattice
under quasiperiodic Aubry-André perturbation.

The present paper has the following structure: In Sec. II the
general features of flat-band topologies are introduced that de-
fine two particular models (cross-stitch and diamond lattices),
a quasiperiodic Aubry-André on-site perturbation is defined,
and the coordinate transformation that allows rotation into
Fano defect lattices [23]. In Secs. III and IV, our findings for the
cross-stitch and diamond lattices are respectively presented:
for both, two distinct chain correlations are discussed. Where
applicable, the exact mathematical expression obtained for
the mobility edge is jointly shown with numerically obtained
transitions for these particular on-site correlations.

II. FLAT-BAND TOPOLOGIES

Consider the eigenvalue problem of a generalized tight-
binding model:

Eψn = ϵnψn − V̂ ψn − T̂ ψn−1 − T̂ †ψn+1. (1)

For all n ∈ Z, each component of the vector ψn =
(ψ1

n , . . . ,ψℓ
n)T represents a site of a periodic lattice, while

the set of sites represented by ψn is the nth unit cell. The real
matrix V̂ defines the geometry of the unit cell, while the real
matrix T̂ describes hopping to neighboring cells (as will be
clarified below for each model). At each of the lattice’s ith leg
{ψ i

n}n, an on-site perturbation {ϵi
n}n is defined. The unit cell

perturbation ϵn of Eq. (1) is thus given by the diagonal square
matrix ϵn = diag(ϵa

n,ϵb
n, . . . ,ϵ

ℓ
n).

The model geometry is contained in the matrices T̂ and V̂ ,
which are then used to derive the dispersion spectrum via the
Bloch solution ψn = φke

ikn on an unperturbed crystal ϵn = 0.
Flat-band topologies are models in which this crystalline
case exhibits at least one band independent of k; such a
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FIG. 1. Left: The cross-stitch lattice. The gray-shaded region
indicates the unit cell. Right: The transformed Fano defect lattice
of Eq. (10).

band is dispersionless, or “flat”. Eigenmodes corresponding
to this flat-band energy are (usually) compact localized states
(CLS), i.e., modes whose amplitude is nonzero only across a
finite number of sites [23]. The flat-band topology class U is
then defined as the minimum number of unit cells the CLS
occupies [23].

In this paper we consider two lattice topologies, the cross-
stitch and diamond. Both are examples of “frustrated two-
leg ladders”, which have garnered intense interest from the
quantum spin chain community [24]. The cross-stitch model,
shown on the left of Fig. 1, is defined for a unit cell ψn =
(an,bn)T with a 2 × 2 perturbation matrix ϵn. This yields for
Eq. (1) the following matrices:

V̂CS =
(

0 t
t 0

)
, T̂CS =

(
1 1
1 1

)
. (2)

Likewise for the diamond lattice, as shown on the left
of Fig. 2, the unit cell is ψn = (an,bn,cn)T with a 3 × 3
perturbation matrix ϵn. In this case, the matrices in Eq. (1)
are

V̂DC =

⎛

⎝
0 t 1
t 0 1
1 1 0

⎞

⎠, T̂DC =

⎛

⎝
0 0 0
0 0 0
1 1 0

⎞

⎠. (3)

In the unperturbed crystal ϵn = 0, the dispersive bands are

E(k) =
{
−t − 4 cos k, cross-stitch,

− 1
2 (t pm

√
t2 + 16 cos k + 16), diamond.

(4)

Additionally, both models contain a flat band at E(k) = t .
Associated with the flat-band energy, resulting com-

pact localized states (CLS) can be constructed: ψn =
(1,−1)T δn,n0/

√
2 (cross-stitch) and ψn = (1,−1,0)T δn,n0/

√
2

(diamond). Note that both CLS are contained within a single
unit cell. Therefore, according to the definition previously
stated, both lattices are flat-band models class U = 1. Coordi-
nate transformations local to the unit cells rotate these lattices
into a Fano defect form [23]. For the cross-stitch, the rotation

FIG. 2. Left: The diamond lattice. The gray-shaded region in-
dicates the unit cell. Right: The transformed Fano defect lattice of
Eq. (21).

is defined by the real matrix ÛCS

(
pn

fn

)
= ÛCS ψn, ÛCS = 1√

2

(
1 1
1 −1

)
. (5)

Similarly for the diamond lattice the transformation is defined
by the real matrix ÛDC

⎛

⎝
pn

fn

cn

⎞

⎠ = ÛDC ψn, ÛDC = 1√
2

⎛

⎝
1 1 0
1 −1 0
0 0

√
2

⎞

⎠. (6)

Lastly, this local coordinate transformation must also rotate
the on-site perturbation. For both lattices, this gives

ϵ±
n =

(
ϵa
n ± ϵb

n

)/
2. (7)

The effect of quasiperiodic Aubry-André perturbations on
these two topologies is the focus of the present work. For
both lattices, the on-site perturbations {ϵi

n} are defined as
independent Aubry-André potentials

ϵi
n = λi cos[2π (αn + θi)], (8)

for the i = a,b (cross-stitch) and i = a,b,c (diamond) legs.
The parameters λi are positive real values controlling the
perturbative strength, θi is the phase shift, and α is an
irrational number (here set to the golden ratio) called the
incommensurate parameter. Without loss of generality, the
a-leg phase can be zeroed (θa = 0). We also set the leg potential
strengths equal to each other λi = λ.

From Eq. (7), notable correlations between the a-leg and
b-leg perturbations appear and will be the object of our studies
for both models; namely

symmetric: ϵ−
n = 0 ⇔ ϵa

n = ϵb
n, (9)

antisymmetric: ϵ+
n = 0 ⇔ ϵa

n = −ϵb
n.

Since the a-leg phase has been zeroed, from Eq. (8) these
two correlations are obtained solely from the b-leg phase; e.g.,
θb = 0.5 (θb = 0) for the antisymmetric (symmetric) case.

Note that in the crystalline case ϵn = 0, the number of
bands in the dispersion relation equals the number of sites in
the unit cell for each of the above models, Eq. (4). Breaking the
translation invariance of the lattices with the introduction of a
nonperiodic on-site perturbation [e.g., Eq. (8)] will generally
lead to a loss of the spectral band structure due to hybridization,
resulting in one single energy spectrum for the model. However
as seen here, the symmetric case of Eq. (9) renormalizes
the flat-band states, yet keeps their compact localized form
due to the absence of any hybridization with the rest of the
dispersive states. Note that the resulting eigenstate separation
into two groups (CLS and dispersive) is unrelated to the
above-mentioned band structure of the crystalline case, since
the spectra of both groups will overlap in general. We start the
analysis of these models with the cross-stitch in Sec. III, and
then with the diamond lattice in Sec. IV.

III. CROSS-STITCH LATTICE

By Eqs. (5) and (7), the cross-stitch lattice transforms into

(E + t) pn = ϵ+
n pn + ϵ−

n fn − 2(pn−1 + pn+1),
(10)

(E − t) fn = ϵ+
n fn + ϵ−

n pn.
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This results in a Fano chain, as shown in the right of Fig. 1.
The local rotation yields a dispersive coordinate pn and a
compact Fano coordinate fn. The sequence ϵ+

n describes on-
site perturbations of both pn and fn, while the sequence ϵ−

n

couples the dispersive to the Fano coordinate within the rotated
unit cell [23]. Solving for the Fano coordinates fn in the second
equation above, we obtain a new equation for the dispersive
portion,

(E + t) pn =
[
ϵ+
n + (ϵ−

n )2

(E − t) − ϵ+
n

]
pn − 2(pn−1 + pn+1).

(11)
The reduced topology assumes the tight-binding form. If
eigenmodes are exponentially localized, their asymptotic
decay is ψν

n ∼ e− n
ξ . The rate ξ−1(E) is the inverse localization

length of a localized state at eigenenergy E ∈ R, found by
applying the recursive iteration

ξ−1(E,λ) = lim
M→+∞

1
M

M∑

n=1

ln
∣∣∣∣
pn+1

pn

∣∣∣∣ (12)

for any given potential strength λ. We will use this method in
all the numerical computations of the two models’ localization
lengths, for M = 106. The energy E in Eq. (11) will be
numerically found from an exact diagonalization of a finite
lattice of N = 512 unit cells. In all the figures of the paper, if
the recursive iteration converges to a finite value (chosen [26]
here as ξ ! N/10), the data point (E,λ) is declared a localized
state and plotted in blue. Otherwise if the iteration diverges,
the data point is declared an extended state and plotted in
red.

A. Symmetric case: Metal-insulator transition

We analyze first the symmetric case ϵ−
n = 0, obtained for

θb = 0.0. Equation (10) reads

(E + t) pn = ϵ+
n pn − 2(pn−1 + pn+1),

(13)
(E − t) fn = ϵ+

n fn,

with ϵ+
n = ϵi

n. The two sets of states pn and fn decouple and
generate two independent spectra, respectively labeled σp and
σf . The parameter t then simply operates as a shift parameter,
translating σp and σf relative to each other by 2t .

The dispersive states pn are described by an Aubry-André
chain, displaying an MIT at λc = 4. The σf states keep their
compact feature, but the degeneracy of their eigenenergies is
now removed; these eigenenergies are given by E = ϵ+

n + t . In
Fig. 3, we plot the spectrum from Eq. (13), as a function of λ.
In this symmetric case, the spectra σp and σf are independent,
since the pn and the fn coordinates decouple. For every
potential strength λ > 0, the Fano states spectrum σf = {ϵ+

n }n
is equidistributed within the interval [t − λ,t + λ]. In Fig. 3
we indicate its boundaries by dashed lines. For the dispersive
spectrum σp, the localization length is numerically found with
the recursive iteration (12), and the localized phase (red) is
demarcated from the extended one (blue). At the critical value
λc = 4, all dispersive states switch from extended to localized.
In this case, there is no mobility edge.

FIG. 3. (Color online) Symmetric case. The dispersive spectrum
(σp) of the cross-stitch lattice, for ϵ−

n = 0 and t = 0. The Fano state
spectrum σf is omitted, but its boundaries are indicated by black
dashed lines. The black line represents the MIT at λ = 4, which
clearly separates extended states (blue) from those localized (red).

B. Asymmetric case ϵ−
n ̸= 0:

Numerical evidence for mobility edge

Breaking the symmetry ϵ−
n ̸= 0 (θb ̸= 0) of the Fano chain

Eq. (10) effectively couples the dispersive states pn to their
compact Fano counterparts fn. Therefore, the self-duality is
lost, and the two independent spectra (σp,f ) are now joint.
Nevertheless, we expect a transition between localized and
extended states via an energy-dependent mobility edge. In
Fig. 4 we plot the spectrum of the lattice in the asymmetric
case for θb = 0.25 and t = 0. A mobility edge is clearly
observed separating the localized regime (red) from that which
is extended (blue).

C. Antisymmetric case (ϵ+
n = 0): Analytic mobility edge

Among all the nonsymmetric cases obtained for θb ̸= 0,
antisymmetry (θb = 0.5) deserves special attention. It was
already introduced in [25], providing a starting point in which
to clarify technical details and to obtain a closed form for
mobility edge curves; this will be made use of later on for
discussion of the diamond chain.

In this situation ϵ+
n = 0 and Eq. (10) transforms into

(E + t) pn = ϵ−
n fn − 2(pn−1 + pn+1),

(14)
(E − t) fn = ϵ−

n pn.

Since ϵ−
n ̸= 0, from the second equation of (14) it follows that

at the flat-band energy

ϵ−
n pn = 0 ⇒ pn = 0. (15)
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FIG. 4. (Color online) Asymmetric case. Spectrum of the cross-
stitch lattice, for θ = 0.25 and t = 0. The extended (localized) portion
of the spectrum is shown in blue (red), while the color boundary is a
mobility edge approximation of the spectrum.

Then, from the first equation of (14) we conclude

ϵ−
n fn = 0 ⇒ fn = 0. (16)

Therefore, only (pn,fn) = (0,0) satisfies Eq. (14) exactly at the
flat-band energy E = t . It follows that all compact localized
states are expelled from the unperturbed flat-band energy E =
t , since their energies are shifted away from this energy due
to hybridization with the dispersive states. The resulting states
are then localized modes, located in the localized portion of
the energy spectrum.

As already observed in [25], for this case we identify the
analytical form of the mobility edge. Indeed the dispersive
part, Eq. (11), reads

(E + t) pn = (ϵ−
n )2

E − t
pn − 2(pn−1 + pn+1). (17)

By trigonometric bisection

(ϵ−
n )2 = λ2 cos2(2παn) = λ2

2
[1 + cos(4παn)]. (18)

Substituting Eq. (18) back into the previous equation, we
obtain

Ẽ pn = λ2

4(E − t)
cos(4παn) − (pn−1 + pn+1),

where Ẽ := E + t

2
− λ2

4(E − t)
. (19)

Therefore, the model becomes an Aubry-André chain
eigenequation, but with on-site perturbation strength depend-
ing on λ and E. From [4], the MIT occurs when the potential
strength is twice larger than the hopping strength. Imposing

that condition, an analytic expression is found for the mobility
edge, λc(Ec):

∣∣∣∣
λ2

c

4(Ec − t)

∣∣∣∣ = 2 ⇒ λc(Ec) = 2
√

2|Ec − t |. (20)

Note that for Ec = t , the critical potential strength λc vanishes
in a square root manner, where the previously discussed lack
of states at the unperturbed flat-band energy E = t occurs.
The analytic curve of the mobility edge was already plotted
in Fig. 4 of [25], displaying excellent agreement with the
numerical result.

IV. DIAMOND LATTICE

Under the transformation in Eqs. (6) and (7), the diamond
lattice’s Eq. (1) becomes

(E + t) pn = ϵ+
n pn + ϵ−

n fn −
√

2(cn + cn+1),

(E − t) fn = ϵ+
n fn + ϵ−

n pn, (21)
(
E − ϵc

n

)
cn = −

√
2(pn−1 + pn),

as illustrated graphically in the right plot of Fig. 2. Expressing
the fn and cn variables through the pn ones we reduce these
equations to a tight-binding form which contains the pn

coordinates only:

(E + t)pn =
[
ϵ+
n + (ϵ−

n )2

(E − t) − ϵ+
n

+ 2
E − ϵc

n

+ 2
E − ϵc

n+1

]
pn

+ 2
E − ϵc

n

pn−1 + 2
E − ϵc

n+1
pn+1,

= ϵ̃n pn + γn−1 pn−1 + γn+1 pn+1. (22)

The effective on-site potential ϵ̃n is a function of the three on-
site energies of the diamond lattice ϵa,b,c

n in Eq. (8). However,
the effective hopping terms γn±1 depend only on the on-site
energy ϵc

n of the c chain. Since the model has both quasiperiodic
on-site energies and hopping coefficients, one may expect that
the Aubry-André duality does not generally hold.

Also note that the functional dependence of several terms
in Eq. (22) is of the form

2
E − ϵc

n

= 2
E − λ cos[2π (αn + θc)]

, (23)

which was used in Ref. [16] for a model with constant hopping
coefficients to arrive at analytically expressible mobility edges.
Therefore one can expect that mobility edges will be present
in our model as well. As an example, in Fig. 5 the spectrum of
the diamond lattice Eq. (22) is plotted, for θb = 0.5, θc = 0.05,
and t = 0; a mobility edge is clearly observed.

To obtain closed forms of the mobility edge, the hopping
terms are set constant: γn±1 = .. From Eq. (23), this choice
corresponds to

2
E − ϵc

n

= . ⇔ ϵc
n = K (24)
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FIG. 5. (Color online) Spectrum of the diamond lattice, for θb =
0.5, θc = 0.05, and t = 0. The extended (localized) spectral portion
is shown in blue (red), while the color boundary is again a spectral
mobility edge approximation.

for a real constant value K . Equation (22) becomes

(E + t) pn =
[
ϵ+
n + (ϵ−

n )2

(E − t) − ϵ+
n

+ 4
E − K

]
pn

+ 2
E − K

(pn−1 + pn+1). (25)

As a consequence of this choice, an extended state D exists at
energy E = K , regardless of any other control parameters of
Eq. (21):

E = K, cn = (−1)n, fn = pn = 0. (26)

The state’s amplitudes reside only on the c sites (see Fig. 6).
The existence of this extended state is not affected by the
perturbation strength λ, the flat-band energy E = t , and any
specific correlation of the on-site potential. Therefore if the
model admits a mobility edge curve λc(Ec), it follows that it
will diverge λc(Ec = K) = ∞, yielding a singularity.

•

•

•

•

•

•

•

•

•

0

0

0

0

0

0

±1 ∓1 ±1

FIG. 6. Extended stateD at energy E = K on the diamond lattice
in the case of constant on-site potential ϵc

n = K on the c chain (up to
normalization).

FIG. 7. (Color online) Symmetric case. Dispersive spectrum
(σp,c) of the diamond lattice, for ϵ−

n = 0, K = 1, t = 0. The Fano
state spectrum (σf ) is omitted, but its boundaries are indicated by
black dashed lines. The extended (localized) states of the dispersive
spectrum are shown in blue (red); the boundary between these is a
mobility edge approximation, in good agreement with the analytical
form of Eq. (29), shown as a solid black line. Note that at E = K ,
the mobility edge diverges to infinity.

A. Symmetric case: Analytic mobility edge

We consider first the symmetric case ϵ−
n = 0, obtained for

θb = 0.0. In this situation, Eq. (21) reads

(E + t) pn = ϵ+
n pn + −

√
2(cn + cn+1),

(E − t) fn = ϵ+
n fn, (27)

(E − K) cn = −
√

2(pn−1 + pn).

The fn states decouple from both pn and cn states, generating
two independent spectra σf and σp,c. The flat-band energy t
shifts the two energy spectra of 2t relative to each other. The
rotated Eq. (25) now turns into

Ẽ pn = (E − K)λ
2

cos(2παn) pn + pn−1 + pn+1,

where Ẽ := (E + t)(E − K)
2

− 2. (28)

Note that the on-site potential strength is now dependent on λ
and E. Imposing the equality between the potential strength
and the Aubry-André critical value, we arrive at the mobility
edge

∣∣∣∣
(Ec − K)

2
λc

∣∣∣∣ = 2 ⇒ λc(Ec) =
∣∣∣∣

4
Ec − K

∣∣∣∣. (29)

The mobility edge curve diverges at E = K due to the
existence of the delocalized state D. We plot this mobility
edge curve in Fig. 7 and observe very good agreement with
the numerical results.
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FIG. 8. (Color online) Antisymmetric case. Spectrum of the dia-
mond lattice, for ϵ+

n = 0, K = 1, t = −1. The extended (localized)
spectral portion is shown in blue (red). The boundary between is an
approximation of the spectrum’s mobility edge—in good agreement
with the analytical form of Eq. (32), plotted as a black line. Note that
the mobility edge curve zeros at E = t , as well as diverges at E = K .

B. Antisymmetric case: Analytic mobility edge

We consider the antisymmetric case ϵ+
n = 0 obtained with

θb = 0.5, and with ϵc
n = K . Equation (21) reads

(E + t) pn = ϵ−
n fn −

√
2(cn + cn+1),

(E − t) fn = ϵ−
n pn, (30)

(E − K) cn = −
√

2(pn−1 + pn).

For t ̸= K , all eigenenergies are expelled from the flat-band
energy E = t .

In Fig. 8 we plot the spectrum for this antisymmetric case
for t = −1 and K = 1. We derive an analytical expression of

the mobility edge by reducing Eq. (30) to an Aubry-André
form for the pn coordinates:

Ẽ pn = E − K

2
λ2

2(E − t)
cos(4παn) pn + pn−1 + pn+1,

where Ẽ := E − K

2

[
(E + t) − λ2

2(E − t)

]
− 2. (31)

The condition for the MIT yields
∣∣∣∣
E − K

2
λ2

c

2(E − t)

∣∣∣∣ = 2 ⇒ λc(E) = 2

√

2
∣∣∣∣

E − t

E − K

∣∣∣∣. (32)

In Eq. (32), the mobility edge curve λc(Ec) diverges to
infinity at E = K , in correspondence to the delocalized state
D. The curve also displays a zero at E = t , which corresponds
to the lack of any states at the flat-band energy [27]. The
mobility edge curve of Eq. (32) is plotted in Fig. 8 and shows
excellent agreement with the numerical data.

V. CONCLUSION

Flat-band topologies are characterized by macroscopic
degeneracy at the flat-band energy. General perturbations of
these topologies lead to a removal of the degeneracy, yet keep
a high density of states and a bunching of the renormalized and
hybridized states around the original flat-band energy. This has
especially dramatic consequences for quasiperiodic Aubry-
André form perturbations. The flat-band energy now hosts
a zero of a mobility edge curve λc(Ec). When approaching
this zero the density of states grows, and the spatial extent
of the eigenstates drops, making them more localized. For
specific symmetries of the applied quasiperiodic potential, the
dependence λc(Ec) is obtained analytically, confirming the
predicted zero, and further proving the strict nonexistence of
any state at the former flat-band energy. Some flat-band topolo-
gies allow the existence of completely delocalized eigenstates
at certain energies E = K . This leads to even more complex
mobility edge curves which allow for a coexistence of zeros
and divergencies of λc(Ec). Possible future topics of study
include extension to U > 1 topological classes and higher
dimensional flat-band models. It is our hope that the use of
flat-band topologies will contribute interest to tunable mobility
edges, e.g., by those realized in graphene [28], monolayered
dichalcogenides [29], or vanadium dioxide films [30].
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