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We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to
coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction
generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result,
the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb
light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to
spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising
from the influx of polaritons. That results in a complex inhomogeneous line broadening.
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Condensation of exciton-polaritons (EPs) in semicon-
ductor microcavities formed by two distributed Bragg
mirrors with quantum wells between them has been
experimentally observed [1–5]. Being incoherently excited
in the microcavity, EP condensates are, in general, out of
thermodynamic equilibrium. EP condensates refuel their
particle depot from an excitonic reservoir and emit coherent
light due to tunneling of the composite EP states through
distributed Bragg mirrors. Sample inhomogeneity, either
accidental or intentional, can induce several condensation
centers (CCs) [3,6–8]. At low enough pumping, one
expects a system of disconnected Bose-Einstein condensate
(BEC) droplets emitting light at different uncorrelated
frequencies. As the pumping increases, the condensates
tend to establish mutual coherence and emit in a laser mode
[6]. Already, two CCs can synchronize and emit at a single
joint frequency [9,10]. This is possible because the con-
densates exchange particles due to Josephson coupling and
adjust their emission frequencies. Those, in turn, depend on
the number of condensed particles due to the polariton-
polariton repulsion. In addition to the coherent Josephson
coupling, the dissipative (radiative) coupling between CCs
reflects the dependence of the losses in the system on the
symmetry of single-particle states. A new stationary regime
called weak lasing emerges when pumping rates reside
between some minimal and maximal rates of losses [10].
In the weak lasing regime, the system is stabilized by the
formation of specific many-particle states which adjust the
balance between gain and loss in the system.
In this Letter, we show that, in the weak lasing regime,

two CCs can emit not only at a single frequency, but
also at a whole frequency comb which contains a great
number of equidistant lines of coherent laserlike radiation.
This emission reflects the fact of formation of spontaneous

self-sustained anharmonic oscillations of both the occupa-
tion numbers and the relative phase between the conden-
sates in sharp contrast to previously reported damped
Josephson oscillations [11–13]. We study possible emis-
sion spectra and the way they are affected by noise. While
the emission frequency of single-line EP lasers resides in
the eV range [1,3,6,7,14], the modulation frequency of
comb emission can be adjusted to be in the terahertz and
microwave range. Filtering out of the high-frequency
component through optical demodulation yields the low-
frequency coherent signal as a new promising type of
coherent terahertz emitter.
The EP self-induced oscillation is a novel mechanism of

optical frequency comb generation. Its origin differs from
that of mode-locked lasers [15,16], where the comb appears
due to repetition of laser pulses. Also, contrary to the case
of optical microresonators [17,18], the system is excited
incoherently. We also note that EP comb generation relies
on the presence of dissipative coupling between two lasing
modes, contrary to the case of nonlinear distributed
couplers [19,20] and multicore fiber systems [21]. The
main benefit of the EP system is that the strong nonlinearity
due to polariton-polariton repulsion results in the possibil-
ity of comb generation at relatively weak pumping, which
is an important feature for optical computing and optical
clock applications.
Consider two coupled EP condensates with order

parameters

ψ1;2 ¼
ffiffiffiffiffiffiffiffi
n1;2

p
eiðΦ∓ϕÞ; ð1Þ

where n1;2 are the occupations of the two condensates, Φ is
the total phase, and 2ϕ is the phase difference. The time
evolution of ψ1;2 is governed by the Langevin equations
(ℏ ¼ 1) [10]
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dψμ

dt
¼ −

1

2
ðgψμ þ γψνÞ

−
i
2
ð2ωμψμ − Jψν þ αjψμj2ψμÞ þ fμðtÞ; ð2Þ

where μ ≠ ν ¼ 1; 2 label the condensates. The parameter
g ¼ Γ −W describes the difference between the rates of
losses Γ and pumping W, ωμ denotes the singe-particle
energies of the condensates, the parameters γ and J define
dissipative and coherent coupling between the condensates,
respectively, and α is the polariton-polariton interaction
constant. The last term in Eq. (2) is the Gaussian white
noise satisfying hfμðtÞfμ0 i ¼ 0 and hfμðtÞf%μ0ðt0Þi ¼
Wμδμμ0δðt − t0Þ. Because of gauge invariance, only the
frequency detuning ω is relevant, and in what follows,
we will count the frequency from ω0 ¼ ðω1 þ ω2Þ=2.
Rescaling time, we can fix γ ¼ 1 and, since rescaling
the condensate amplitudes is equivalent to a change of α,
we can set α ¼ 2 without loss of generality.
The dissipative coupling makes the dissipation in the

system dependent on the relative phase ϕ. This can be
observed from the eigenvalues λ which control the con-
densate evolution ψ1;2 ∼ eλt in the absence of interaction.
With increasing pumping (increasing γ=g), one of the
eigenmodes turns unstable. Therefore, the dissipative
coupling acts as a phase-selective pump which depends
on the relative phase ϕ: it pumps one eigenmode while
keeping the other one lossy. In this regime, nontrivial weak
lasing states are formed.
First we consider the noise-free case, f1;2 ¼ 0. Two

nontrivial fixed-point solutions F& to Eqs. (2) characterized
by nonzero time-independent triplets fn1; n2;ϕg& were
identified (see Ref. [10] for a complete account). Here, we
indicate that the total phase Φ of the condensates satisfies

_Φ ¼
"
−
1

2
þ J cosð2ϕÞ

4
ffiffiffiffiffiffiffiffiffiffi
n1n2

p
#
ðn1 þ n2Þ þ

sinð2ϕÞ
4

ffiffiffiffiffiffiffiffiffiffi
n1n2

p ðn1 − n2Þ;

ð3Þ

and the rhs in (3) gives a time-independent frequency
_Φ ¼ −Ω0 at F&. The two centers evolve in a coherent
fashion ψ1;2 ∼ e−iΩ0t and Ω0 defines the blueshift of the
emission line with respect to the average single-particle
frequency. We note that F& correspond to fixed point
solutions in the subspace fn1; n2;ϕg&, while they are limit
cycles (LCs) (periodic orbits) in the full four-dimensional
space fψ1;ψ2g. The F& states lose stability at g ¼ g&c [10]

2ðg4c þ J2ÞR&ðgcÞ ¼ ðg2c þ 1Þ½ωgc þ ðg2c þ J2ÞR&ðgcÞ(;
ð4Þ

where R&ðgÞ ¼ &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g2Þ=ðg2 þ J2Þ

p
. We plot the two

instability curves in the fg;ωg space at fixed J ¼ 0.1 in
Fig. 1 (solid lines). The F& states are unstable in the shaded
areas LC&. In particular, they are both unstable in the joint

area LCþ and LC−, where the trivial solution n1 ¼ n2 ¼ 0
is unstable as well. What are, then, the stable stationary
states of the system, if any?
The answer is obtained by linearizing the phase space

flow around F& in the subspace fn1; n2;ϕg&. At g ¼ g&c ,
two corresponding eigenvalues are purely imaginary
&iΔΩ, with their real parts changing sign. As a result, a
supercritical Hopf bifurcation occurs, where stable limit
cycles LC& with frequency

ΔΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2 þ J2=g2 þ J2 þ ωg=R&

q
ð5Þ

are born around the respective unstable fixed points
F& [22].
Away from the bifurcation line, the LCs increase the

oscillation amplitudes, deform, and change their frequency.
The coexistence region of LCþ and LC− grows in size as
the Josephson tunneling is reduced. At the Hopf bifurca-
tion, where a LC emerges, n1;2;ϕ, and _Φ become periodic
functions of time with period T ¼ 2π=ΔΩ. The nonzero
average of _Φ results in a linear time dependence,
ΦDC ¼ −Ω0t, similar to F&. Therefore,

ψμðtÞ ¼ pμðtÞe−iΩ0t; ð6Þ

where the functions pμðtÞ ¼ pμðtþ TÞ are periodic in time.
The Fourier spectrum of ψμðtÞ is an equidistant array of
peaks with frequency harmonics positioned at Ω0 þ NΔΩ.
Approaching the dashed lines g&s in Fig. 1, the corre-

sponding LC turns unstable and undergoes a period
doubling bifurcation. This gives rise to a new stable
period-doubled LC, which, however, again quickly under-
goes a period doubling bifurcation. A period doubling
route to chaos along a Feigenbaum scenario leads to
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FIG. 1 (color online). Limit cycles LC& appear in the shaded
areas in the ω, g-parameter space. Stable LC& are born through
Hopf bifurcations at the solid g&c line and turn unstable at the
dashed g&s lines where they undergo period doubling bifurcations.
They are the only stable attractors to coexist in the central
(yellow) region. Here, J ¼ 0.1γ.
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chaotic attractors [23]. Therefore, just two coupled exciton-
polariton condensates suffice to produce an extremely rich
and complex synchronized dynamics.
Experimentally, the polariton order parameter is detected

by analyzing the emitted light from the microcavity. In
near-field measurements, only small parts of the sample,
like one condensation center, can be probed. Our aim is
to calculate the spectral density I1;2ðΩÞ of the radiation
corresponding to different nontrivial attractors. Applying a
Fourier transformation (FT) we have

IμðΩÞ ¼ jFT½zμðtÞ(j2; μ ¼ 1; 2: ð7Þ

In the fixed points F&, _n1;2 ¼ _ϕ ¼ 0, and the time
dependence comes from the evolution of the total phase
Φ ¼ −Ω0t

ψμðtÞ ¼ Cμe−iΩ0t; ð8Þ

with constants Cμ. Thus, the condensates emit light at
frequency Ω0 fully synchronized. The emission spectrum
consists of only one peak, in contrast to the case of non-
interacting polaritons, where two separated peaks are
expected.
Since the limit cycles LC& are characterized by an

equidistant spectrum, first, we numerically compute the
corresponding frequency positions, and then, calculate
the intensity of each frequency harmonics. The resulting
spectra are shown in Figs. 2(a) and 2(b). Close to the Hopf
bifurcation, there is only one considerable emission peak
originating from the Fþ spectral line [Figs. 2(a) and 2(b)
upper panels]. Further away from the Hopf bifurcation,
the satellite peaks grow to form a frequency comb with
asymmetric tails [Figs. 2(a) and 2(b) lower panels]. The
comb also acquires several peak maxima, with the highest
peak originating from a satellite with nonzero N ¼ 2
[Figs. 2(a) and 2(b) lower panels]. When the LC undergoes
a period doubling bifurcation, the comb becomes twice as
dense [Fig. 2(c)].
The typical modulation frequency is independent of the

polariton-polariton interaction constant α and is of the order
of the coupling constant ΔΩ ∼ γ ∼ 1 meV. This puts the
typical comb spacing just below the terahertz region. One
can achieve terahertz modulation in the microcavities
with a lower quality factor and/or for finite detuning ω
[see Eq. (5)]. On the other hand, ΔΩ is shifted into the
millimeter-wave band for high-quality microcavities and
due to the reduction of separation by period doubling.
Finally, we consider the influence of noise in Eq. (2).

In general, it will broaden the peaks discussed so far, and
can lead to a merging of peaks with too small spacing.
The emission spectrum can be obtained using the Wiener-
Khinchin theorem

IμðΩÞ ¼
1

π
ℜ
Z

∞

0
hψμðtÞψ%

μð0ÞieiΩtdt; ð9Þ

where hψμðtÞψ%
μð0Þi is the autocorrelation of the, now,

random process ψμðtÞ.
The F& states are periodic orbits in the full four-

dimensional phase space, and the dynamics along these
periodic orbits is parametrized by the total phase Φ. While
fluctuations off the periodic orbit will relax back, fluctua-
tions along the orbit do not, and will enforce diffusion of Φ
on the orbit. The latter fluctuations form a Lorentzian line
with the full width at half maximum (FWHM) given by
Wðn1 þ n2Þ=8n1n2 [24]. Note that the FWHM is inversely
proportional to the number of particles in the condensate, as
it should be for a laser.
In contrast to the F& states, the LC& states are formed by

the motion on a two-dimensional torus in the full phase
space. The stability of the attractor demands that fluctua-
tions off the torus relax back. Fluctuations along the torus
surface enforce a diffusion on it. The two nontrivial phases
which diffuse, are the total phase Φ and the LC phase.
Close to the Hopf bifurcation, and in the presence of only

a few satellite peaks, we can obtain a closed formula for the
line width. To parametrize the LC, we consider two time
arguments, one originating from the total phase and the
other from the LC phase. Time evolution of the former
defines the global blueshift of the emission lines, while the
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FIG. 2 (color online). Asymmetric frequency combs in the
near-field spectrum from a LCþ (a),(b) and a period doubled LCþ

(c). Here, ω ¼ 0, J ¼ 0.1. The small arrows indicate the position
of the respective N ¼ 0 peak. (a) I1 with g ¼ 0.19 (upper panel),
g ¼ 0.27 (lower panel). (b) The same as (a) but for I2. (c) I1 for
g ¼ 0.425 (upper panel) and g ¼ 0.426 (lower panel, period
doubled LC spectrum). For visualization, a small artificial
Lorentzian line width was added to all emission lines.
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latter is responsible for the formation of the frequency
comb. Noise in both arguments broadens the emission
lines. According to Eq. (6), we have

ψμðtÞ ¼ pμ

"
tþ 1

−vðtÞ

Z
PðτÞdτ

#
e−iΩ0tþi

R
FðτÞdτ

¼
X

N

CN
μ e

−iNΔΩftþ½1=−vðtÞ(
R

PðτÞdτge−iΩ0tþi
R

FðτÞdτ;

ð10Þ

where the periodic function pμ has been expanded in a
Fourier series with coefficients CN

μ , N ¼ 0;&1;&2;…,
and vðtÞ is the velocity of the noise-free trajectory along
the LC in the three-dimensional space fn1; n2;ϕg. PðtÞ
is the projected noise along the LC, while FðtÞ ¼
ð1=4iÞ½

P
μ½fμðtÞ=ψμ( − c:c:( is the noise added to the rhs

of Eq. (3) for _Φ. Since ΦðtÞ is time periodic, perturbing the
time argument of pμðtÞ already accounts for a part of the
noise FðtÞ. The transformation of the LC frequency comb
into the single line emission through the Hopf bifurcations
happens through a continuous decaying and washing out
of the satellite peaks. Therefore, the periodic part of ΦðtÞ
is negligible compared to its DC part, and the above
separation of noise in the time arguments is justified.
The two noise terms possess nonvanishing correlations

h½NPðtÞ þ FðtÞ(½NPðt0Þ þ Fðt0Þ(i ¼ 2κNðtÞδðt − t0Þ;
ð11Þ

where denoting hPðtÞPðt0Þi ¼ κPPδðt − t0Þ, hFðtÞFðt0Þi ¼
κFFδðt − t0Þ, hPðtÞFðt0Þi ¼ κPFδðt − t0Þ, we have

κN ¼ κFF þ 2NκPF þ N2κPP; ð12Þ

with an asymmetric (blueshifted vs redshifted) dependence
on the comb line number N, originating in the broken time-
reversal symmetry of the dissipative dynamics. The non-
zero cross correlations and the asymmetry reflect the fact
that both the noise of the global phase and the noise of the
preexponential factor affect the width of the comb lines in
comparable and nonadditive ways under conditions when
the overlap of the lines becomes substantial.
The intensity of the noise κNðtÞ is periodic in time, which

originates from the oscillation of occupationnumbers and the
relative phase for evolution along the LC. Experimentally,
the measurement time spans many LC periods and one
can use the average value κ̄N ¼ ð1=TÞ

R
T
0 κNðτÞdτ. Then,

IμðΩÞ ¼
1

πT

X

N

jCN
μ j2

κ̄N
κ̄2N þ ðΩ −Ω0 − NΔΩÞ2

: ð13Þ

The result is a Lorentzian for every emission line, with
an N-dependent width κ̄N according to Eq. (11). The
N dependence of the line broadening κ̄N follows from

Eq. (12) and shows two remarkable features. First, there is
a symmetric line broadening∼N2 which dominates for large
N. Second, there is an asymmetric contribution ∼N which
originates from nonzero correlations κPF. It may lead to a
satellite peak with N ≠ 0 becoming more narrow than the
main peakN ¼ 0, and can further enhance the asymmetry of
the spectrum, as compared to the noise-free case.
To calculate the line width κ̄ numerically, we denote by

(AðtÞ; BðtÞ; CðtÞ)T the normalized tangent vector along the
LC in the coordinates ðϕ; n1; n2ÞT. Then, P is the noise in
_ϕ; _n1; _n2 projected onto this tangent and we can evaluate
from Eq. (11)

κN ¼ W1

n1

$
N2

"
A2

4
þ B2n21

#
−
NA
4

þ 1

16

%

þW2

n2

$
N2

"
A2

4
þ C2n22

#
þ NA

4
þ 1

16

%
: ð14Þ

We show the spectrum with inhomogeneous line broad-
ening compared to the noise-free case in Fig. 3. Because of
noise, the asymmetry of the spectrum is enhanced and the
strict equidistance of emission lines is relaxed for strong
enough line broadening.
The analysis of modulated emission from a pair of

condensation centers sheds light on features of exciton-
polariton lasing from disordered microcavities, where
physics is determined by optimal configurations which
consist of only two localized states resonantly coupled with
each other, as the probability to have coupling with more
states vanishes. Therefore, one expects to observe the
frequency comb lasing from disordered microcavities as
well. The features of the modulated emission discussed
above are very reminiscent of some of the experimentally
obtained spectra. In particular, equidistant peaks with a
gradual increase of the line width of satellite peaks were
reported in Fig. 2(b) of Ref. [7] and Fig. 1 of Ref. [14].
More analysis is needed to make definite conclusions.
To achieve and manipulate the comb generation, it is

convenient to operate with the polariton condensates that
are decoupled from the exciton reservoirs created by
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FIG. 3 (color online). Noisy (green lines) against noise-free
(black frequency combs) spectrum of a LCþ at g ¼ 0.7, ω ¼ 0,
J ¼ 0.5, for (a) condensation center 1 and (b) condensation center
2. The arrows indicate the central peak. Here, W ¼ 0.02.
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external pumping. Formation of such “trapped” conden-
sates has been recently reported [25]. Owing to the
presence of dissipative coupling between the condensates
[26], low threshold pumping powers (∼10 mW for a single
trapped condensate), and feasible adjustments of conden-
sate geometry, this distributed system is a promising
candidate for the frequency comb generation discussed
in this Letter.
Dissipative coupling between coexisting exciton-

polariton condensates in semiconductor microcavities,
together with a strong polariton-polariton repulsion, leads
to a rich dissipative nonlinear dynamics already for two
coupled condensates. We showed that, in addition to full
synchronization [9,10], formation of limit cycles gives rise
to frequency combs of equidistant asymmetric spectral
lines. The frequency offset and line spacing of the combs
are tunable through the control parameters. Through period
doubling, the line spacing can be additionally reduced by
an order of magnitude. This modulated emission can be
useful for terahertz and microwave applications. Shot noise
from the pump results in a complex diffusion in phase space
and has a strong impact on higher order satellite peaks.
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