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I. STATISTICAL ANALYSIS

The energy density h is calculated with the micro-
canonical partition function
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Z 1
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with average potential energy density
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and average kinetic energy density

k =
1

2�
. (4)

In terms of k we rewrite Eq. 2 as

h = k + EJ
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II. INTEGRATION

We split Eq. 1 in the main text as

A =
NX

n=1

p2n
2

, B = EJ

NX

n=1

(1� cos(qn+1 � qn)) . (6)

As discussed in [1], this separation leads to a symplectic
integration scheme called SBAB2, where

e�tH = e�t(A+B) ⇡ ed1�tLBec2�tLAed2�tLB

⇥ec2�tLAed1�tLB
(7)

where d1 = 1
6 , d2 = 2

3 , c2 = 1
2 . The operators e�tLA

and e�tLB which propagate the set of initial conditions
(qn, pn) from Eq. (6) at the time t to the final values
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We then introduce a corrector C = {{A,B}, B}. Follow-
ing [1], this term applies
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� g
2�t3LC (9)

for g = 1/72. The corrector term is
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The corrector operator C yields to the following resolvent
operator

etLC :
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III. CALCULATION OF MAXIMAL LCE :
TANGENT MAP METHOD AND VARIATIONAL

EQUATIONS

If the autonomous Hamiltonian has the form [1]
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N
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, (11)

the equations of motion are
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The corresponding variational Hamiltonian and equa-
tions of motion are

HV ( ~�q, ~�p) =
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respectively. Here,
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For Eq.(1) in the main text, the variational equations of
motion are
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The corresponding operators are
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Following [1], the corrector operator C yields the fol-

lowing resolvent operator
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Here D2
C(~q) =

@2C
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is the Hessian.

From Eq. 18, we get

e�tLC :
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IV. NUMERICAL SIMULATION

We simulate Eqs. 2 in the main text with periodic
boundary conditions p1 = pN+1 and q1 = qN+1 and time
step �t = 0.1. In the simulation, the relative energy er-

ror �E = |E(t)�E(0)
E(0) | is kept lower than 10�4. The initial

conditions follow by fixing the positions to zero qn = 0
and by choosing the moments pn according Maxwell’s dis-

tribution. The total angular momentum L =
PN

n=1 pn is
set zero by a proper shift of all momenta pn � L/N . Fi-
nally, we rescale |pn| ! a|pn| to precisely hit the desired
energy (density).
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Figure 1: (Color online) Fluctuation index q for fixed the energy

density h = 1 with R = 12. From top to bottom: EJ = 0.1 (green),

EJ = 0.5 (red), EJ = 1.0 (blue), EJ = 2.0 (magenta) and EJ = 3.0
(cyan).
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Figure 2: (Color online) a) q(T/TE) for fixed EJ = 1 with energy

densities 0.1 (black) 1.2 (red), 2.4 (green), 3.8 (blue), 5.4 (magenta),

and 8.5 (cyan) (corresponding to Fig. 1 in the main body); b)

q(T/TE) for fixed energy density h = 1 with EJ = 0.5, (red),

EJ = 1.0, (blue), EJ = 2.0, (magenta) and EJ = 3.0, (cyan)

(corresponding to Fig. 1).

V. FINITE TIME AVERAGE FOR h = 1

Fig. 1 shows the index q(T ) for fixed energy h = 1 with
varying coupling strengths, EJ . It is similar to Fig.1 from
the main text for fixed EJ and varying h.

VI. EVALUATION OF THE ERGODIZATION
TIME

We rescale and fit the fluctuation index q(T ) shown
in Figs. 1 (main body) and 1 (in the supplement). We
choose a parameter set with a clearly observed asymp-
totic q(T ) ⇡ TE/T dependence, and fit this dependence
to obtain TE . We then rescale the variable T ! xT for
all other lines to obtain the best overlap with the initially
chosen line as shown in Fig. 2. The scaling parameters x
are then used to compute the corresponding ergodization
times.

VII. ESTIMATE OF THE ERGODIZATION
TIME TE

In the main text, we defined the ergodization time TE

as the prefactor of the 1/T decay of the fluctuation index:
q(T ⌧ TE) = q(0) and q(T � TE) ⇠ TE/T . We estimate
this prefactor by approximating the time-dynamics of the
observables kn(t) with telegraphic random process [2–4].

kn(t) ⇡
⇢

k + ↵ if kn(t) > k
k � � if kn(t) < k

(20)

with real constant ↵,� (for example see Fig. 4(a) of the
main text, where ↵ = 1� k and � = k). This recast the

finite time average kn,T = 1
T

R T

0 kn(t)dt of kn to
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k � �

T

M�
n

X

i=1

⌧�n (i)

⌘ k +
1

T

⇥

↵S+
n � �S�
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since T = S+
n + S�

n . Here M±
n denote the number of

excursions ⌧± within a time interval [0, T ]. As µk(T !
1) = k and �k(T ! 1) = 0 (see main text), we focus
only on the variance �k(T ) to estimate the dependence on

T of the fluctuation index q(T ) =
�2
k(T )

µ2
k(T )

. We first rewrite

Eq.(21) in terms of S+
n only by adding and subtracting

�S+
n /T

kn,T ⇡ ↵+ �

T
S+
n + k � � (22)

By recalling that �2
k+B(T ) = �2

k(T ) and �2
Bk(T ) =

B2�2
k(T ) for any constant B, and by dropping the con-

stant factor (↵+ �) it follows that �2
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�2
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1

T 2
�2
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n
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As the excursion times ⌧+ are considered independent
variables identically distributed, it follows that

�2
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n
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n (T )�2
⌧ (24)
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with �2
⌧ the variance of ⌧+. For T � µ⌧ with µ⌧ the

first moment of ⌧+, the number of events M+
n grows as

M+
n ⇠ T/µ⌧ . This yields

�2
k(T ) ⇠

�2
⌧

µ⌧

1

T
(25)

and ultimately to Eq. (4) of the main text.

VIII. LYAPUNOV EXPONENT COMPUTATION
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Figure 3: (Color online) Lyapunov time for fixed EJ = 1. The

black circles represent our numerical results, and the red squares

represent the analytical results from [5]. The black line guides the

eye.

We compute the largest Lyapunov exponent ⇤ by nu-
merically solving the variational equations

ẇ(t) =
⇥

J2N ·D2
H(x(t))

⇤

· w(t) (26)

for a small amplitude deviation w(t) = (�q(t), �p(t)) co-
ordinates. The largest Lyapunov exponent ⇤ follows

⇤ = lim
t!1

1

t
ln

kw(t)k
kw(0)k . (27)

In Fig. 3 we show the Lyapunov time T⇤ = 1/⇤ versus
energy densities h for given EJ = 1. It matches well with
the analytical results obtained in [5].
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