Supplemental Material for: Dynamical Glass and Ergodization Times in Classical Josephson Junction Chains

Thudiyangal Mithun, ${ }^{1}$ Carlo Danieli, ${ }^{1}$ Yagmur Kati, ${ }^{1,2}$ and Sergej Flach ${ }^{1}$
${ }^{1}$ Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34051, Korea
${ }^{2}$ Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea

I. STATISTICAL ANALYSIS

The energy density h is calculated with the microcanonical partition function

$$
\begin{equation*}
Z=\int_{-\infty}^{\infty} \int_{-\pi}^{\pi} \prod_{n} d p_{n} d q_{n} e^{-\beta H} \tag{1}
\end{equation*}
$$

as

$$
\begin{equation*}
h=-\frac{1}{N} \frac{\partial \ln (Z)}{\partial \beta}=\frac{1}{2 \beta}+E_{J}\left(1-\frac{I_{1}\left(\beta E_{J}\right)}{I_{0}\left(\beta E_{J}\right)}\right), \tag{2}
\end{equation*}
$$

with average potential energy density

$$
\begin{equation*}
u=E_{J}\left(1-\frac{I_{1}\left(\beta E_{J}\right)}{I_{0}\left(\beta E_{J}\right)}\right) \tag{3}
\end{equation*}
$$

and average kinetic energy density

$$
\begin{equation*}
k=\frac{1}{2 \beta} . \tag{4}
\end{equation*}
$$

In terms of k we rewrite Eq. 2 as

$$
\begin{equation*}
h=k+E_{J}\left(1-\frac{I_{1}\left(E_{J} / 2 k\right)}{I_{0}\left(E_{J} / 2 k\right)}\right) . \tag{5}
\end{equation*}
$$

II. INTEGRATION

We split Eq. 1 in the main text as

$$
\begin{equation*}
A=\sum_{n=1}^{N} \frac{p_{n}^{2}}{2}, \quad B=E_{J} \sum_{n=1}^{N}\left(1-\cos \left(q_{n+1}-q_{n}\right)\right) \tag{6}
\end{equation*}
$$

As discussed in [1], this separation leads to a symplectic integration scheme called SBAB_{2}, where

$$
\begin{align*}
& e^{\Delta t \mathcal{H}}=e^{\Delta t(A+B)} \approx e^{d_{1} \Delta t L_{B}} e^{c_{2} \Delta t L_{A}} e^{d_{2} \Delta t L_{B}} \\
& \quad \times e^{c_{2} \Delta t L_{A}} e^{d_{1} \Delta t L_{B}} \tag{7}
\end{align*}
$$

where $d_{1}=\frac{1}{6}, d_{2}=\frac{2}{3}, c_{2}=\frac{1}{2}$. The operators $e^{\Delta t L_{A}}$ and $e^{\Delta t L_{B}}$ which propagate the set of initial conditions $\left(q_{n}, p_{n}\right)$ from Eq. (6) at the time t to the final values $\left(q_{n}^{\prime}, p_{n}^{\prime}\right)$ at the time $t+\Delta t$ are

$$
\begin{align*}
& e^{\Delta t L_{A}}:\left\{\begin{array}{l}
q_{n}^{\prime}=q_{n}+p_{n} \Delta t \\
p_{n}^{\prime}=p_{n}
\end{array}\right. \\
& e^{\Delta t L_{B}}:\left\{\begin{array}{l}
q_{n}^{\prime}=q_{n} \\
p_{n}^{\prime}=p_{n}+E_{J}\left[\sin \left(q_{n+1}-q_{n}\right)+\sin \left(q_{n-1}-q_{n}\right)\right] \Delta t
\end{array}\right. \tag{8}
\end{align*}
$$

We then introduce a corrector $C=\{\{A, B\}, B\}$. Following [1], this term applies

$$
\begin{equation*}
\mathrm{SBAB}_{2} C=e^{-\frac{g}{2} \Delta t^{3} L_{C}} \mathrm{SBAB}_{2} e^{-\frac{g}{2} \Delta t^{3} L_{C}} \tag{9}
\end{equation*}
$$

for $g=1 / 72$. The corrector term is

$$
\begin{align*}
C & =-\sum_{n=1}^{N} \frac{\partial\{A, B\}}{\partial p_{n}} \frac{\partial B}{\partial q_{n}}=\sum_{n=1}^{N}\left(\frac{\partial B}{\partial q_{n}}\right)^{2} \\
& =E_{J}^{2} \sum_{n=1}^{N}\left[\sin \left(q_{n+1}-q_{n}\right)+\sin \left(q_{n-1}-q_{n}\right)\right]^{2} . \tag{10}
\end{align*}
$$

The corrector operator C yields to the following resolvent operator

$$
e^{t L_{C}}:\left\{\begin{aligned}
q_{n}^{\prime}= & q_{n} \\
p_{n}^{\prime}= & p_{n}+E_{J}^{2}\left\{2\left[\sin \left(q_{n+1}-q_{n}\right)+\sin \left(q_{n-1}-q_{n}\right)\right] \cdot\left[\cos \left(q_{n+1}-q_{n}\right)+\cos \left(q_{n-1}-q_{n}\right)\right]\right. \\
& -2\left[\sin \left(q_{n+2}-q_{n+1}\right)+\sin \left(q_{n}-q_{n+1}\right)\right] \cdot \cos \left(q_{n}-q_{n+1}\right) \\
& \left.-2\left[\sin \left(q_{n}-q_{n-1}\right)+\sin \left(q_{n-2}-q_{n-1}\right)\right] \cdot \cos \left(q_{n}-q_{n-1}\right)\right\} \Delta t
\end{aligned}\right.
$$

III. CALCULATION OF MAXIMAL LCE : TANGENT MAP METHOD AND VARIATIONAL EQUATIONS

If the autonomous Hamiltonian has the form [1]

$$
\begin{equation*}
H(\vec{q}, \vec{p})=\sum_{n=1}^{N}\left[\frac{1}{2} \vec{p}_{n}^{2}+V(\vec{q})\right], \tag{11}
\end{equation*}
$$

$$
\left[\begin{array}{c}
\dot{\vec{q}} \tag{12}\\
\dot{\vec{p}}
\end{array}\right]=\left[\begin{array}{c}
\vec{p} \\
-\frac{\partial V(\vec{q})}{\partial \vec{q}}
\end{array}\right]
$$

The corresponding variational Hamiltonian and equations of motion are

$$
\begin{equation*}
H_{V}(\overrightarrow{\delta q}, \overrightarrow{\delta p})=\sum_{n=1}^{N}\left[\frac{1}{2} \delta \vec{p}_{n}^{2}+\frac{1}{2} \sum_{m=1}^{N} D_{V}^{2}(\vec{q})_{n m} \delta \vec{q}_{n} \delta \vec{q}_{m}\right], \tag{13}
\end{equation*}
$$

$$
\text { and } \quad\left[\begin{array}{c}
\delta \dot{\vec{q}} \tag{14}\\
\delta \vec{p}
\end{array}\right]=\left[\begin{array}{c}
\delta \vec{p} \\
-D_{V}^{2}(\vec{q}) \delta \vec{q}
\end{array}\right]
$$

respectively. Here,

$$
\begin{equation*}
\left.D_{V}^{2}(q \vec{t})\right)_{n m}=\left.\frac{\partial^{2} V(\vec{q})}{\partial \vec{q}_{n} \vec{q}_{m}}\right|_{\vec{q}(t)} \tag{15}
\end{equation*}
$$

For Eq.(1) in the main text, the variational equations of motion are

$$
\left[\begin{array}{l}
\delta \dot{q_{n}} \tag{16}\\
\delta \dot{p}_{n}
\end{array}\right]=\left[\begin{array}{c}
\delta p_{n} \\
-E_{J}\left[-\cos \left(q_{n}-q_{n-1}\right) \delta q_{n-1}+\left(\cos \left(q_{n+1}-q_{n}\right)+\cos \left(q_{n}-q_{n-1}\right)\right) \delta q_{n}-\cos \left(q_{n+1}-q_{n}\right) \delta q_{n+1}\right]
\end{array}\right],
$$

The corresponding operators are

$$
\begin{align*}
& e^{\Delta t L_{A V}}:\left\{\begin{array}{l}
\vec{\delta} q^{\prime}=\vec{\delta} q+\vec{\delta} p \Delta t \\
\vec{\delta} p^{\prime}=\vec{\delta} p
\end{array}\right. \tag{17}\\
& e^{\Delta t L_{B V}}:\left\{\begin{array}{l}
\vec{\delta} q^{\prime}=\vec{\delta} q \\
\vec{\delta} p^{\prime}=\vec{\delta} p-D_{V}^{2}(\vec{q}) \delta \vec{q} \Delta t
\end{array}\right. \tag{18}
\end{align*}
$$

lowing resolvent operator

$$
e^{\Delta t L_{C}}:\left\{\begin{array}{l}
\vec{\delta} q^{\prime}=\vec{\delta} q \\
\vec{\delta} p^{\prime}=\vec{\delta} p-D_{C}^{2}(\vec{q}) \delta \vec{q} \Delta t
\end{array}\right.
$$

Following [1], the corrector operator C yields the fol-
Here $D_{C}^{2}(\vec{q})=\frac{\partial^{2} C}{\partial q_{n} \partial q_{m}}$ is the Hessian.

From Eq. 18, we get

$$
e^{\Delta t L_{C}}:\left\{\begin{align*}
\delta q_{n}^{\prime}= & \delta q_{n} \tag{19}\\
\delta p_{n}^{\prime} & =\delta p_{n}-E_{J}^{2}\left\{\left[2 \cos \left(q_{n-2}-q_{n-1}\right) \cos \left(q_{n}-q_{n-1}\right)\right] \delta q_{n-2}\right. \\
& +\left[-2 \cos \left(q_{n-1}-2 q_{n}+q_{n+1}\right)-4 \cos \left(2\left(q_{n}-q_{n-1}\right)\right)-2 \cos \left(q_{n-2}-2 q_{n-1}+q_{n}\right)\right] \delta q_{n-1} \\
& +\left[4 \cos \left(2\left(q_{n+1}-q_{n}\right)\right)+4 \cos \left(q_{n-1}-2 q_{n}+q_{n+1}\right)+4 \cos \left(2\left(q_{n-1}-q_{n}\right)\right)-2 \sin \left(q_{n+2}-q_{n+1}\right) \sin \left(q_{n}\right.\right. \\
& \left.\left.-q_{n+1}\right)-2 \sin \left(q_{n-2}-q_{n-1}\right) \sin \left(q_{n}-q_{n-1}\right)\right] \delta q_{n} \\
& +\left[-4 \cos \left(2\left(q_{n+1}-q_{n}\right)\right)-2 \cos \left(q_{n-1}-2 q_{n}+q_{n+1}\right)-2 \cos \left(q_{n+2}-2 q_{n+1}+q_{n}\right)\right] \delta q_{n+1} \\
& \left.+\left[2 \cos \left(q_{n+2}-q_{n+1}\right) \cos \left(q_{n}-q_{n+1}\right)\right] \delta q_{n+2}\right\} \Delta t
\end{align*}\right.
$$

IV. NUMERICAL SIMULATION

We simulate Eqs. 2 in the main text with periodic boundary conditions $p_{1}=p_{N+1}$ and $q_{1}=q_{N+1}$ and time step $\Delta t=0.1$. In the simulation, the relative energy error $\Delta E=\left|\frac{E(t)-E(0)}{E(0)}\right|$ is kept lower than 10^{-4}. The initial conditions follow by fixing the positions to zero $q_{n}=0$ and by choosing the moments p_{n} according Maxwell's distribution. The total angular momentum $L=\sum_{n=1}^{N} p_{n}$ is set zero by a proper shift of all momenta $p_{n}-L / N$. Finally, we rescale $\left|p_{n}\right| \rightarrow a\left|p_{n}\right|$ to precisely hit the desired energy (density).

Figure 1: (Color online) Fluctuation index q for fixed the energy density $h=1$ with $R=12$. From top to bottom: $E_{J}=0.1$ (green), $E_{J}=0.5$ (red), $E_{J}=1.0$ (blue), $E_{J}=2.0$ (magenta) and $E_{J}=3.0$ (cyan).

Figure 2: (Color online) a) $q\left(T / T_{E}\right)$ for fixed $E_{J}=1$ with energy densities 0.1 (black) 1.2 (red), 2.4 (green), 3.8 (blue), 5.4 (magenta), and 8.5 (cyan) (corresponding to Fig. 1 in the main body); b) $q\left(T / T_{E}\right)$ for fixed energy density $h=1$ with $E_{J}=0.5$, (red), $E_{J}=1.0$, (blue), $E_{J}=2.0$, (magenta) and $E_{J}=3.0$, (cyan) (corresponding to Fig. 1).

V. FINITE TIME AVERAGE FOR $h=1$

Fig. 1 shows the index $q(T)$ for fixed energy $h=1$ with varying coupling strengths, E_{J}. It is similar to Fig. 1 from the main text for fixed E_{J} and varying h.

VI. EVALUATION OF THE ERGODIZATION TIME

We rescale and fit the fluctuation index $q(T)$ shown in Figs. 1 (main body) and 1 (in the supplement). We choose a parameter set with a clearly observed asymptotic $q(T) \approx T_{E} / T$ dependence, and fit this dependence to obtain T_{E}. We then rescale the variable $T \rightarrow x T$ for all other lines to obtain the best overlap with the initially chosen line as shown in Fig. 2. The scaling parameters x are then used to compute the corresponding ergodization times.

VII. ESTIMATE OF THE ERGODIZATION TIME T_{E}

In the main text, we defined the ergodization time T_{E} as the prefactor of the $1 / T$ decay of the fluctuation index: $q\left(T \ll T_{E}\right)=q(0)$ and $q\left(T \gg T_{E}\right) \sim T_{E} / T$. We estimate this prefactor by approximating the time-dynamics of the observables $k_{n}(t)$ with telegraphic random process [2-4].

$$
k_{n}(t) \approx \begin{cases}k+\alpha & \text { if } k_{n}(t)>k \tag{20}\\ k-\beta & \text { if } k_{n}(t)<k\end{cases}
$$

with real constant α, β (for example see Fig. 4(a) of the main text, where $\alpha=1-k$ and $\beta=k$). This recast the finite time average $\bar{k}_{n, T}=\frac{1}{T} \int_{0}^{T} k_{n}(t) d t$ of k_{n} to

$$
\begin{align*}
\bar{k}_{n, T} & \approx \frac{k+\alpha}{T} \sum_{i=1}^{M_{n}^{+}} \tau_{n}^{+}(i)+\frac{k-\beta}{T} \sum_{i=1}^{M_{n}^{-}} \tau_{n}^{-}(i) \tag{21}\\
& \equiv k+\frac{1}{T}\left[\alpha S_{n}^{+}-\beta S_{n}^{-}\right]
\end{align*}
$$

since $T=S_{n}^{+}+S_{n}^{-}$. Here $M_{n}^{ \pm}$denote the number of excursions $\tau^{ \pm}$within a time interval $[0, T]$. As $\mu_{k}(T \rightarrow$ $\infty)=k$ and $\sigma_{k}(T \rightarrow \infty)=0$ (see main text), we focus only on the variance $\sigma_{k}(T)$ to estimate the dependence on T of the fluctuation index $q(T)=\frac{\sigma_{k}^{2}(T)}{\mu_{k}^{2}(T)}$. We first rewrite Eq.(21) in terms of S_{n}^{+}only by adding and subtracting $\beta S_{n}^{+} / T$

$$
\begin{equation*}
\bar{k}_{n, T} \approx \frac{\alpha+\beta}{T} S_{n}^{+}+k-\beta \tag{22}
\end{equation*}
$$

By recalling that $\sigma_{k+B}^{2}(T)=\sigma_{k}^{2}(T)$ and $\sigma_{B k}^{2}(T)=$ $B^{2} \sigma_{k}^{2}(T)$ for any constant B, and by dropping the constant factor $(\alpha+\beta)$ it follows that $\sigma_{k}^{2}(T)$ scales as

$$
\begin{equation*}
\sigma_{k}^{2}(T) \sim \frac{1}{T^{2}} \sigma_{S_{n}^{+}}^{2}(T) \tag{23}
\end{equation*}
$$

As the excursion times τ^{+}are considered independent variables identically distributed, it follows that

$$
\begin{equation*}
\sigma_{S_{n}^{+}}^{2}(T)=M_{n}^{+}(T) \sigma_{\tau}^{2} \tag{24}
\end{equation*}
$$

with σ_{τ}^{2} the variance of τ^{+}. For $T \gg \mu_{\tau}$ with μ_{τ} the first moment of τ^{+}, the number of events M_{n}^{+}grows as $M_{n}^{+} \sim T / \mu_{\tau}$. This yields

$$
\begin{equation*}
\sigma_{k}^{2}(T) \sim \frac{\sigma_{\tau}^{2}}{\mu_{\tau}} \frac{1}{T} \tag{25}
\end{equation*}
$$

and ultimately to Eq. (4) of the main text.

VIII. LYAPUNOV EXPONENT COMPUTATION

Figure 3: (Color online) Lyapunov time for fixed $E_{J}=1$. The black circles represent our numerical results, and the red squares represent the analytical results from [5]. The black line guides the eye.

We compute the largest Lyapunov exponent Λ by numerically solving the variational equations

$$
\begin{equation*}
\dot{w}(t)=\left[J_{2 N} \cdot D_{H}^{2}(x(t))\right] \cdot w(t) \tag{26}
\end{equation*}
$$

for a small amplitude deviation $w(t)=(\gamma q(t), \gamma p(t))$ coordinates. The largest Lyapunov exponent Λ follows

$$
\begin{equation*}
\Lambda=\lim _{t \rightarrow \infty} \frac{1}{t} \ln \frac{\|w(t)\|}{\|w(0)\|} \tag{27}
\end{equation*}
$$

In Fig. 3 we show the Lyapunov time $T_{\Lambda}=1 / \Lambda$ versus energy densities h for given $E_{J}=1$. It matches well with the analytical results obtained in [5].
[1] C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, "Delocalization of wave packets in disordered nonlinear chains," Phys. Rev. E 79, 056211 (2009).
[2] P. Richard, "Feynman. statistical Mechanics, a set of lectures," Frontiers in Physics. Perseus Books (1972).
[3] S. Chakravarty and S. Kivelson, "Photoinduced macroscopic quantum tunneling," Phys. Rev. B 32, 76 (1985).
[4] M. Kac, G. Uhlenbeck, and P. Hemmer, "On the van der

Waals Theory of the Vapor-Liquid Equilibrium. i. Discussion of a One-Dimensional Model," Journal of Mathematical Physics 4, 216 (1963).
[5] L. Casetti, C. Clementi, and M. Pettini, "Riemannian theory of Hamiltonian chaos and Lyapunov exponents," Phys. Rev. E 54, 5969 (1996).

