# Supplemental Material for: Dynamical Glass and Ergodization Times in Classical Josephson Junction Chains

Thudiyangal Mithun,<sup>1</sup> Carlo Danieli,<sup>1</sup> Yagmur Kati,<sup>1,2</sup> and Sergej Flach<sup>1</sup>

<sup>1</sup>Center for Theoretical Physics of Complex Systems,

Institute for Basic Science, Daejeon 34051, Korea

<sup>2</sup>Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea

# I. STATISTICAL ANALYSIS

The energy density  $\boldsymbol{h}$  is calculated with the micro-canonical partition function

$$Z = \int_{-\infty}^{\infty} \int_{-\pi}^{\pi} \prod_{n} dp_{n} dq_{n} e^{-\beta H}$$
(1)

as

$$h = -\frac{1}{N} \frac{\partial \ln(Z)}{\partial \beta} = \frac{1}{2\beta} + E_J \left( 1 - \frac{I_1(\beta E_J)}{I_0(\beta E_J)} \right), \quad (2)$$

with average potential energy density

$$u = E_J \left( 1 - \frac{I_1(\beta E_J)}{I_0(\beta E_J)} \right) \tag{3}$$

and average kinetic energy density

$$k = \frac{1}{2\beta}.$$
 (4)

In terms of k we rewrite Eq. 2 as

$$h = k + E_J \left( 1 - \frac{I_1(E_J/2k)}{I_0(E_J/2k)} \right).$$
 (5)

## **II. INTEGRATION**

We split Eq. 1 in the main text as

$$A = \sum_{n=1}^{N} \frac{p_n^2}{2} , \qquad B = E_J \sum_{n=1}^{N} (1 - \cos(q_{n+1} - q_n)) .$$
 (6)

As discussed in [1], this separation leads to a symplectic integration scheme called SBAB<sub>2</sub>, where

$$e^{\Delta t\mathcal{H}} = e^{\Delta t(A+B)} \approx e^{d_1 \Delta t L_B} e^{c_2 \Delta t L_A} e^{d_2 \Delta t L_B} \times e^{c_2 \Delta t L_A} e^{d_1 \Delta t L_B}$$
(7)

where  $d_1 = \frac{1}{6}$ ,  $d_2 = \frac{2}{3}$ ,  $c_2 = \frac{1}{2}$ . The operators  $e^{\Delta t L_A}$ and  $e^{\Delta t L_B}$  which propagate the set of initial conditions  $(q_n, p_n)$  from Eq. (6) at the time t to the final values  $(q'_n, p'_n)$  at the time  $t + \Delta t$  are

$$e^{\Delta t L_{A}} : \begin{cases} q'_{n} = q_{n} + p_{n} \Delta t \\ p'_{n} = p_{n} \end{cases}$$
$$e^{\Delta t L_{B}} : \begin{cases} q'_{n} = q_{n} \\ p'_{n} = p_{n} + E_{J} [\sin(q_{n+1} - q_{n}) + \sin(q_{n-1} - q_{n})] \Delta t \end{cases}$$
(8)

We then introduce a corrector  $C = \{\{A, B\}, B\}$ . Following [1], this term applies

$$SBAB_2C = e^{-\frac{g}{2}\Delta t^3 L_C}SBAB_2 e^{-\frac{g}{2}\Delta t^3 L_C}$$
(9)

for g = 1/72. The corrector term is

$$C = -\sum_{n=1}^{N} \frac{\partial \{A, B\}}{\partial p_n} \frac{\partial B}{\partial q_n} = \sum_{n=1}^{N} \left(\frac{\partial B}{\partial q_n}\right)^2$$
  
$$= E_J^2 \sum_{n=1}^{N} \left[\sin(q_{n+1} - q_n) + \sin(q_{n-1} - q_n)\right]^2.$$
 (10)

The corrector operator  ${\cal C}$  yields to the following resolvent operator

$$e^{tL_C}:\begin{cases} q_n = q_n \\ p'_n = p_n + E_J^2 \Big\{ 2 \big[ \sin(q_{n+1} - q_n) + \sin(q_{n-1} - q_n) \big] \cdot \big[ \cos(q_{n+1} - q_n) + \cos(q_{n-1} - q_n) \big] \\ -2 \big[ \sin(q_{n+2} - q_{n+1}) + \sin(q_n - q_{n+1}) \big] \cdot \cos(q_n - q_{n+1}) \\ -2 \big[ \sin(q_n - q_{n-1}) + \sin(q_{n-2} - q_{n-1}) \big] \cdot \cos(q_n - q_{n-1}) \Big\} \Delta t \end{cases}$$

### III. CALCULATION OF MAXIMAL LCE : TANGENT MAP METHOD AND VARIATIONAL EQUATIONS

If the autonomous Hamiltonian has the form [1]

$$H(\vec{q}, \vec{p}) = \sum_{n=1}^{N} \left[ \frac{1}{2} \vec{p}_n^2 + V(\vec{q}) \right], \tag{11}$$

the equations of motion are

$$\begin{bmatrix} \dot{\vec{q}} \\ \dot{\vec{p}} \end{bmatrix} = \begin{bmatrix} \vec{p} \\ -\frac{\partial V(\vec{q})}{\partial \vec{q}} \end{bmatrix}$$
(12)

(18)

The corresponding variational Hamiltonian and equations of motion are

$$H_V(\vec{\delta q}, \vec{\delta p}) = \sum_{n=1}^N \left[ \frac{1}{2} \delta \vec{p}_n^2 + \frac{1}{2} \sum_{m=1}^N D_V^2(\vec{q})_{nm} \delta \vec{q}_n \delta \vec{q}_m \right],$$
(13)

and 
$$\begin{bmatrix} \delta \vec{q} \\ \delta \vec{p} \end{bmatrix} = \begin{bmatrix} \delta \vec{p} \\ -D_V^2(\vec{q})\delta \vec{q} \end{bmatrix}$$
, (14)

respectively. Here,

$$D_V^2(q(\vec{t}))_{nm} = \frac{\partial^2 V(\vec{q})}{\partial \vec{q}_n \vec{q}_m} |_{\vec{q}(t)}$$
(15)

For Eq.(1) in the main text, the variational equations of motion are

 $e^{\Delta t L_C} : \begin{cases} \vec{\delta q}' = \vec{\delta q} \\ \vec{\delta p}' = \vec{\delta p} - D_C^2(\vec{q}) \delta \vec{q} \Delta t. \end{cases}$ 

$$\begin{bmatrix} \delta \dot{q_n} \\ \delta \dot{p_n} \end{bmatrix} = \begin{bmatrix} \delta p_n \\ -E_J \begin{bmatrix} -\cos(q_n - q_{n-1})\delta q_{n-1} + (\cos(q_{n+1} - q_n) + \cos(q_n - q_{n-1}))\delta q_n - \cos(q_{n+1} - q_n)\delta q_{n+1} \end{bmatrix}, \quad (16)$$

The corresponding operators are

From Eq. 18, we get

lowing resolvent operator

$$e^{\Delta t L_{AV}} : \begin{cases} \vec{\delta q'} = \vec{\delta q} + \vec{\delta p} \Delta t \\ \vec{\delta p'} = \vec{\delta p} \end{cases}$$

$$e^{\Delta t L_{BV}} : \begin{cases} \vec{\delta q'} = \vec{\delta q} \\ \vec{\delta p'} = \vec{\delta p} - D_V^2(\vec{q}) \delta \vec{q} \Delta t \end{cases}$$

$$(17)$$

Following [1], the corrector operator C yields the fol-

Here 
$$D_C^2(\vec{q}) = \frac{\partial^2 C}{\partial q_n \partial q_m}$$
 is the Hessian.

$$e^{\Delta t L_{C}}: \begin{cases} \delta q_{n}^{'} = \delta q_{n} \\ \delta p_{n}^{'} = \delta p_{n} - E_{J}^{2} \Big\{ \Big[ 2\cos(q_{n-2} - q_{n-1})\cos(q_{n} - q_{n-1}) \Big] \delta q_{n-2} \\ + \Big[ -2\cos(q_{n-1} - 2q_{n} + q_{n+1}) - 4\cos(2(q_{n} - q_{n-1})) - 2\cos(q_{n-2} - 2q_{n-1} + q_{n}) \Big] \delta q_{n-1} \\ + \Big[ 4\cos(2(q_{n+1} - q_{n})) + 4\cos(q_{n-1} - 2q_{n} + q_{n+1}) + 4\cos(2(q_{n-1} - q_{n})) - 2\sin(q_{n+2} - q_{n+1})\sin(q_{n} - q_{n+1}) - 2\sin(q_{n-2} - q_{n-1})\sin(q_{n} - q_{n-1}) \Big] \delta q_{n} \\ + \Big[ - 4\cos(2(q_{n+1} - q_{n})) - 2\cos(q_{n-1} - 2q_{n} + q_{n+1}) - 2\cos(q_{n+2} - 2q_{n+1} + q_{n}) \Big] \delta q_{n+1} \\ + \Big[ 2\cos(q_{n+2} - q_{n+1})\cos(q_{n} - q_{n+1}) \Big] \delta q_{n+2} \Big\} \Delta t \tag{19}$$

### IV. NUMERICAL SIMULATION

We simulate Eqs. 2 in the main text with periodic boundary conditions  $p_1 = p_{N+1}$  and  $q_1 = q_{N+1}$  and time step  $\Delta t = 0.1$ . In the simulation, the relative energy error  $\Delta E = \left|\frac{E(t)-E(0)}{E(0)}\right|$  is kept lower than  $10^{-4}$ . The initial conditions follow by fixing the positions to zero  $q_n = 0$ and by choosing the moments  $p_n$  according Maxwell's distribution. The total angular momentum  $L = \sum_{n=1}^{N} p_n$  is set zero by a proper shift of all momenta  $p_n - L/N$ . Finally, we rescale  $|p_n| \to a|p_n|$  to precisely hit the desired energy (density).



Figure 1: (Color online) Fluctuation index q for fixed the energy density h = 1 with R = 12. From top to bottom:  $E_J = 0.1$  (green),  $E_J = 0.5$  (red),  $E_J = 1.0$  (blue),  $E_J = 2.0$  (magenta) and  $E_J = 3.0$  (cyan).



3



TIME

VI.

#### ESTIMATE OF THE ERGODIZATION VII. TIME $T_E$

In the main text, we defined the ergodization time  $T_E$ as the prefactor of the 1/T decay of the fluctuation index:  $q(T \ll T_E) = q(0)$  and  $q(T \gg T_E) \sim T_E/T$ . We estimate this prefactor by approximating the time-dynamics of the observables  $k_n(t)$  with telegraphic random process [2–4].

$$k_n(t) \approx \begin{cases} k + \alpha & \text{if } k_n(t) > k \\ k - \beta & \text{if } k_n(t) < k \end{cases}$$
(20)

with real constant  $\alpha, \beta$  (for example see Fig. 4(a) of the main text, where  $\alpha = 1 - k$  and  $\beta = k$ ). This recast the finite time average  $\overline{k}_{n,T} = \frac{1}{T} \int_0^T k_n(t) dt$  of  $k_n$  to

$$\overline{k}_{n,T} \approx \frac{k+\alpha}{T} \sum_{i=1}^{M_n^+} \tau_n^+(i) + \frac{k-\beta}{T} \sum_{i=1}^{M_n^-} \tau_n^-(i)$$

$$\equiv k + \frac{1}{T} \left[ \alpha S_n^+ - \beta S_n^- \right]$$
(21)

since  $T = S_n^+ + S_n^-$ . Here  $M_n^{\pm}$  denote the number of excursions  $\tau^{\pm}$  within a time interval [0,T]. As  $\mu_k(T \to$  $\infty$ ) = k and  $\sigma_k(T \to \infty) = 0$  (see main text), we focus only on the variance  $\sigma_k(T)$  to estimate the dependence on T of the fluctuation index  $q(T) = \frac{\sigma_k^2(T)}{\mu_k^2(T)}$ . We first rewrite Eq.(21) in terms of  $S_n^+$  only by adding and subtracting  $\beta S_n^+/T$ 

$$\overline{k}_{n,T} \approx \frac{\alpha + \beta}{T} S_n^+ + k - \beta \tag{22}$$

By recalling that  $\sigma_{k+B}^2(T) = \sigma_k^2(T)$  and  $\sigma_{Bk}^2(T) =$  $B^2 \sigma_k^2(T)$  for any constant B, and by dropping the constant factor  $(\alpha + \beta)$  it follows that  $\sigma_k^2(T)$  scales as

$$\sigma_k^2(T) \sim \frac{1}{T^2} \sigma_{S_n^+}^2(T)$$
 (23)

As the excursion times  $\tau^+$  are considered independent variables identically distributed, it follows that

$$\sigma_{S_{\pi}^{+}}^{2}(T) = M_{n}^{+}(T)\sigma_{\tau}^{2}$$
(24)



Figure 2: (Color online) a)  $q(T/T_E)$  for fixed  $E_J = 1$  with energy densities 0.1 (black) 1.2 (red), 2.4 (green), 3.8 (blue), 5.4 (magenta), and 8.5 (cyan) (corresponding to Fig. 1 in the main body); b)  $q(T/T_E)$  for fixed energy density h = 1 with  $E_J = 0.5$ , (red),  $E_J = 1.0$ , (blue),  $E_J = 2.0$ , (magenta) and  $E_J = 3.0$ , (cyan) (corresponding to Fig. 1).

#### FINITE TIME AVERAGE FOR h = 1v.

Fig. 1 shows the index q(T) for fixed energy h = 1 with varying coupling strengths,  $E_J$ . It is similar to Fig.1 from the main text for fixed  $E_J$  and varying h.

with  $\sigma_{\tau}^2$  the variance of  $\tau^+$ . For  $T \gg \mu_{\tau}$  with  $\mu_{\tau}$  the first moment of  $\tau^+$ , the number of events  $M_n^+$  grows as  $M_n^+ \sim T/\mu_{\tau}$ . This yields

$$\sigma_k^2(T) \sim \frac{\sigma_\tau^2}{\mu_\tau} \frac{1}{T} \tag{25}$$

and ultimately to Eq. (4) of the main text.

#### VIII. LYAPUNOV EXPONENT COMPUTATION



Figure 3: (Color online) Lyapunov time for fixed  $E_J = 1$ . The black circles represent our numerical results, and the red squares represent the analytical results from [5]. The black line guides the eye.

- C. Skokos, D. O. Krimer, S. Komineas, and S. Flach, "Delocalization of wave packets in disordered nonlinear chains," Phys. Rev. E 79, 056211 (2009).
- [2] P. Richard, "Feynman. statistical Mechanics, a set of lectures," Frontiers in Physics. Perseus Books (1972).
- [3] S. Chakravarty and S. Kivelson, "Photoinduced macroscopic quantum tunneling," Phys. Rev. B 32, 76 (1985).
- [4] M. Kac, G. Uhlenbeck, and P. Hemmer, "On the van der

We compute the largest Lyapunov exponent  $\Lambda$  by numerically solving the variational equations

$$\dot{w}(t) = \left[J_{2N} \cdot D_H^2(x(t))\right] \cdot w(t) \tag{26}$$

for a small amplitude deviation  $w(t) = (\gamma q(t), \gamma p(t))$  coordinates. The largest Lyapunov exponent  $\Lambda$  follows

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|w(t)\|}{\|w(0)\|}.$$
(27)

In Fig. 3 we show the Lyapunov time  $T_{\Lambda} = 1/\Lambda$  versus energy densities h for given  $E_J = 1$ . It matches well with the analytical results obtained in [5].

Waals Theory of the Vapor-Liquid Equilibrium. i. Discussion of a One-Dimensional Model," Journal of Mathematical Physics 4, 216 (1963).

[5] L. Casetti, C. Clementi, and M. Pettini, "Riemannian theory of Hamiltonian chaos and Lyapunov exponents," Phys. Rev. E 54, 5969 (1996).