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Abstract
We train an artificial neural network which distinguishes chaotic and regular dynamics of the
two-dimensional Chirikov standard map. We use finite length trajectories and compare the
performance with traditional numerical methods which need to evaluate the Lyapunov exponent
(LE). The neural network has superior performance for short periods with length down to 10
Lyapunov times on which the traditional LE computation is far from converging. We show the
robustness of the neural network to varying control parameters, in particular we train with one set
of control parameters, and successfully test in a complementary set. Furthermore, we use the
neural network to successfully test the dynamics of discrete maps in different dimensions, e.g. the
one-dimensional logistic map and a three-dimensional discrete version of the Lorenz system. Our
results demonstrate that a convolutional neural network can be used as an excellent chaos indicator.

1. Introduction

Chaotic dynamics exists in many natural systems, such as heartbeat irregularities, weather and climate [1, 2].
Such dynamics can be studied through the analysis of proper mathematical models which generate
non-linear dynamics and deterministic chaos. Chaotic and regular dynamics can co-exist in the phase space
of low-dimensional systems [3]. To distinguish chaotic from regular dynamics, tangent dynamics is used to
compute Lyapunov exponents (LEs) λ. In practice one integrates the tangent dynamics along a given
trajectory and averages a finite time LE λ(t). The averaging time T needed to reliably tell regular (λ = 0)
from chaotic (λ ̸= 0) trajectories apart is usually orders of magnitude larger than the Lyapunov time
Tλ ≡ 1/λ.

Here, we introduce a machine learning approach that alleviates the problems of calculating LEs and can
be used as a new chaos indicator. Machine learning has shown tremendous performance e.g. in pattern
recognition [4, 5]. Machine learning approaches turned useful to solve partial differential equations and
identify hidden physics models from experimental data [6–8]. Machine learning was used recently to predict
future chaotic dynamics details from time series data without knowledge of the generating equations [9, 10].
In this paper, we introduce a machine learning way to use short time series data for telling chaos from
regularity apart. We train a neural network using chaotic and regular trajectories from the Chirikov standard
map. Our method has a success rate of 98% using trajectories with length 10Tλ, while conventional methods
need up to 104Tλ to reach the same accuracy. The main reason for the small but finite failure rate of our
machine learning method is due to sticky orbits. These orbits are chaotic, yet can mimic regular ones for long
times due to trapping in fractal boundary phase space regions separating chaotic and regular dynamics. Our
method is also surprisingly successful when trained with Standard Map data but tested on maps with
different dimensions such as the logistic map (d = 1) and the Lorenz system (d = 3).

2. The Chirikov standardmap

The Chirikov standard map is an area-preserving map in dimension d = 2 [11] also known as the kicked
rotor [3]
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Figure 1. Examples of phase portraits (Poincare sections) of the standard map. (a) K = 0.5, (b) K = 1.0, (c) K = 2.0,
(d) K = 2.5.

pn+1 = pn +
K

2π
sin(2πxn) mod 1 ,

xn+1 = xn + pn+1 mod 1 .
(1)

The kick strength K controls the degree of nonintegrability and chaos appearing in the dynamics generated
by the map.

Consider the case when K = 0. Equation (1) reduces to pn+1 = pn (mod 1) and xn+1 = xn + pn+1

(mod 1) which is integrable and every orbit resides on an invariant torus. The orbit can exhibit periodic or
quasi-periodic behavior depending on the initial conditions (p0,x0). For small values of K e.g. K = 0.5
(figure 1(a)) most of these orbits persist, with tiny regions of chaotic dynamics appearing which are not
visible on the presented plotting scales. At K = Kc≈ 0.97 the last invariant KAM tori are destroyed and a
simply connected chaotic sea is formed which allows for unbounded momentum diffusion. For larger values
of K the chaotic fraction grows confining regular dynamics to regular islands embedded in a chaotic sea
(figure 1). Further increase of K leads to a flooding of the regular islands by the chaotic sea.

3. LEs and predictions

The LE characterizes the exponential rate of separation of a trajectory {pn,xn} and its infinitesimal
perturbation {δn, ζn}:
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Figure 2. λN versus N for a chaotic (triangles) respectively regular (squares) trajectory with K = 1.0. The dashed horizontal line
indicates the value of λ for the chaotic trajectory, and the dashed vertical one the corresponding value of Tλ.

pn+1 + δn+1 = (pn + δn)+
k

2π
sin(2π(xn + ζn))

xn+1 + ζn+1 = (xn + ζn)+ (pn+1 + δn+1)
(2)

Linearizing (2) in the perturbation yields the tangent dynamics generated by the variational equations

δn+1 = δn + kζncos(2πxn)

ζn+1 = ζn + δn+1
(3)

For computational purposes δ and ζ can be rescaled after any time step without loss of generality, while
keeping the rescaling factor. The LE λ for each trajectory is obtained from the time dependence of λN :

λN =
1

N

N∑
n=2

ln

 √
δ2n + ζ2n√

δ2n−1 + ζ2n−1

 , λ= lim
N→∞

λN . (4)

The Lyapunov time is then defined as Tλ ≡ 1/λ. For the main chaotic sea it is a function of the control
parameter K. A suitable fitting function yields λ ≈ ln(0.7+ 0.42 K) [12].

For a regular trajectory λN ∼ 1/N and λ = 0, at variance to a chaotic trajectory for which λN saturates at
λ at a time N≈ Tλ. Technically this saturation, and the value of λ can be safely confirmed and read off only
on time scales N≈ 102..103Tλ, without becoming a quantifiable distinguisher of the two types of
trajectories, see figure 2.

To quantify our statements, we run the standard map at K = 2.5 figure 1(d). We use a grid of 51× 51
points which partitions the phase space {p, x} into a square lattice. We use the corresponding 2601 initial
conditions and generate trajectories. Each trajectory returns a function λN . We plot the resulting histogram
forN = 20 andN = 3 · 105 in figures 3(a) and (b), respectively. ForN→∞ the histogram should show two
bars only—one at λN = 0 (all regular trajectories) and one at λN = λ (all chaotic trajectories). For finite N
the distributions smoothen. Note that even negative values λN are generated due to fluctuations and finite
averaging times. To tell chaotic from regular dynamics apart, we use the following protocol. We identify the
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Figure 3. Performance comparison of a Lyapunov exponent based method and a deep learning method to distinguish chaotic and
regular trajectories for K = 2.5 and λ ≈ 0.56. (a) Histogram of λN = 20. the dashed vertical line indicates the location of the
threshold (see text for details). (b) Same as (a) but N = 3× 105. (c) The success rates PR, PC and Ptot as a function of N for the
Lyapunov exponent based method (see text for details). (d) Same as in (c) but for the deep learning based method. The network
was trained for K = 2.5 and 2081 trajectories. The remaining 520 trajectories are used for testing. N in (d) represents the
trajectory length used for network training and test. Kmin = Kmax = 2.5,Mtr = 2081,Mtt = 520, NK≡N.

two largest peaks in each histogram, and identify the threshold dividing dynamics into regular and chaotic as
the deepest minimum between them (in case of a degeneracy, the one with the smallest value of λN). The
location of the threshold is shown for N = 20 and N = 3 · 105 in figures 3(a) and (b), respectively. We then
assign a chaos respectively regular label to each trajectory. This label can fluctuate as a function of time for
any given trajectory. We use the division for the largest simulation time N = 3 · 105 as a reference (‘true’)
label for all trajectories. The success rate in predicting the correct regular PR or chaotic PC label is defined by
the ratio of the correctly predicted labels within each subgroup of identical true labels. Likewise the success
rate of predicting any label correctly is denoted by Ptot. The results are plotted versus time N in figure 3(c).
While regular labels are predicted with high accuracy, chaotic ones are reaching 98% at only N≈ 103Tλ.

The low success rate PC is therefore also lowering the total success rate Ptot.

4. Neural networks and predictions

The input data of an artificial neural network consisting of only fully connected layers are limited to a
one-dimensional (array) form [13]. Fully connected layers connect all the inputs from one layer to every
activation unit of the next layer. The standard map generates sequences embedded in two dimensions. In
order to learn data embedded in dimensions two or larger, the data must be flattened, and spatial
information can get lost. A convolutional neural network (CNN) is known to learn while maintaining spatial
informations of images [14]. A CNN is usually configured with convolution and pooling layers. The former
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Table 1. CNN performance. For each K value, 2601 different initial values (p0,i,x0,j) were selected as
(p0,i = (i− 1) 1

50
,x0,j = ( j− 1) 1

50
, (i, j ∈ Z, 1≤ i, j≤ 51, )). Other parameters are listed in the main text.

KNK 20 18 16 14 12 10 2 1

PC/PR PC/PR PC/PR PC/PR PC/PR PC/PR PC/PR PC/PR

3.0 0.99/0.99 0.93/0.98 0.95/0.98 0.92/0.98 0.97/0.96 0.83/0.95 0.89/0.97 0.78/1.0
3.1 0.90/0.98 0.94/0.96 0.96/0.96 0.93/0.96 0.90/0.96 0.83/0.91 0.90/0.93 0.79/1.0
3.2 0.93/0.95 0.94/0.97 0.96/0.97 0.93/0.97 0.97/0.94 0.85/0.91 0.90/0.92 0.79/1.0
3.3 0.97/0.99 0.93/0.99 0.95/0.99 0.93/0.99 0.94/0.96 0.85/0.93 0.89/0.98 0.77/1.0
3.4 0.94/0.99 0.89/0.97 0.94/0.96 0.92/0.98 0.93/0.97 0.82/0.93 0.88/0.98 0.76/1.0
3.5 0.93/0.94 0.93/0.93 0.96/0.88 0.92/0.99 0.92/0.91 0.83/0.92 0.87/0.94 0.76/1.0

employ convolutional integrals with input data and filters to produce output feature maps. An additional
activation function turns the network non-linear. At the end of the convolution layers a pooling layer is
added which performs value extraction in a given pooling region. Through multiple convolution layers and
pooling layers, the network can improve its prediction features.

Finally, a fully connected layer generates classified output data. For binary classification, the last layer
consists of one node. Its output value is either zero or one. We refer the reader to appendix A for further
technical details of the CNN we use.

4.1. The standardmap
The input of the neural network is a time series (pn,xn) from equation (1). The trajectory (pn,xn) shows
regular or chaotic behavior depending on the initial values (p0,x0). Each of the trajectories is assigned a class
label based on the Lyapunov time: Class R corresponds to a non-chaotic trajectories while C corresponds to a
chaotic trajectories. We remind that the phase space is discretized into 51× 51 = 2601 grid points. The
training and testing is quantified with a set of parameters: (i) Kmin and Kmax denote the range of training
values of K on an equidistant grid withMK values; (ii)Mtr is the number of training trajectories per K value;
(iii) NK is the training trajectory length; (iv)Mtt is the number of test trajectories per K value.

To quantify the CNN performance, we assign a discrete label to each of the initial phase space points—C
respectively R based on the LE method with trajectory length N = 3 · 105. This way we separate all phase
space points into two sets—C and R, each containing AC and AR points. We then run the CNN prediction on
trajectories of length N = 20 which start from each of the gridded phase space points. We compute the
accuracy quantifying probabilities

PC =
BC

AC
, PR =

BR

AR
, Ptot =

BC +BR

AC +AR
(5)

where BC and BR are the numbers of trajectories predicted by the CNN to be chaotic respectively regular
within each of the true sets AC and AR. Thus strictly BC ≤ AC and BR ≤ AR.

Figure 3(d) compares the CNN performance to the standard Lyapunov base one. Accuracies of 98% and
more are reached by the CNN for trajectory length NK≥ 30. Similar accuracies need trajectory length N ≈
104 and more when using standard Lyapunov testing. Figure 4 shows the CNN performance with NK = 10
in the phase space of the standard map. We observe that most of the failures correspond to chaotic
trajectories starting in the fractal border region close to regular islands. These trajectories can be trapped for
long times in the border region, with trapping time distributions exhibiting power law tails [15].

To quantify the performance of the CNN, we first vary the NK from 1 to 20 (table 1). The network is
trained with chaotic and regular trajectories for Kmin = 1.0, Kmax = 2.0,MK = 11, and 1≤NK≤ 20 and the
network performance is evaluated for 3≤K ≤ 3.5 andMK = 6. The CNN requires that the length of test
trajectories is always kept equal to the length of the training trajectories. Note that the Lyapunov time Tλ ≈ 2
for the test values of K. The CNN shows improvement of the accuracy with increasing NK . While the
performance fluctuates with varying K, it shows excellent results for NK values and clearly outperforms the
LE based method.

We then further test the CNN performance for untrained K values by varying the training K range and
other relevant training parameters in figure 5. The network shows better performance on untrained K values
when trained with a set of different K values. As expected, smaller numbers of training K values yield poorer
accuracy due to overtraining. With increasing training range of K values and ranges the network improves its
chaos region predictions for untrained K values.
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Figure 4. Chaos classification in the standard map. The Lyapunov exponent classification with trajectory length N = 3 · 105 is
used as a reference classifier for K = 1 (a) and K = 2 (b). The CNN test results are shown for K = 1 (c) and K = 2 (d). Open
circles—regular, gray circles—chaotic. Black circles show the error locations of the CNN prediction. The CNN parameters are
Kmin = 1.0, Kmax = 2.0,MK = 11,Mtr = 2081,Mtt = 520, NK = 10.

4.2. Training with the standardmap, testing the logistic map
We proceed with testing how the CNN trained with standard map data performs in predicting chaos for
other maps. We choose the logistic map as a simple one-dimensional chaotic test bed. The logistic map is
written as xn+1 = rxn(1− xn). The parameter r controls the crossover from regular to chaotic dynamics,
which happens at rc≈ 3.56995. We choose the initial condition x0 = 0.4 and iterate over 40 steps. After
that we record the next 110 x-values and plot them for each value of r in figures 6(a) and (b). We observe the
well-known periodic orbits, the period doubling bifurcations, and the route to chaos. The corresponding LE
is plotted in figure 6(c) as a function of r and shows that periodic orbits stay regular (negative LE) while
chaotic attractors show positive LEs.

We use two training methods. The first one trains the network only with the pn data sequence from the
standard map in equation (1). We coin that trained network 1D. In that case we used a sequence of NK = 20
consequtive logistic map iteration data xn, ...,xn+19 as test data.

The second training method is the original CNN one discussed above for the standard map, coined here
2D. The network input trained by the standard map has the shape of an array with two columns each of
length NK = 20 (see appendix A). We write NK = 20 consecutive logistic map iteration data into the first
column, and the next NK = 20 ones into the second column to obtain a test input vector.

As shown in figure 6, the network mainly generates errors at the boundary between the chaos and regular
regions similar to the standard map. For 2.5≤ r≤ 4.0 the accuracy is 84% for 2D network and 90% for the
1D network.
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Figure 5. Network performance versus K for different trained K value numbers and ranges. (a), (b) Varying the
number of K values used for network training in a fixed interval with equidistant spacing (Kmin = 0.1, Kmax = 3.1
Mtt = 2601, NK = 20). (black square)MK = 4. (red circle)MK = 7. (blue triangle)MK = 16. (magenta inverted triangle)
MK = 31. (c), (d) Varying the interval of trained K values. The range of K values used in network learning are (black square)
Kmin = 1.0, Kmax = 3.7, MK = 28, (red circle) Kmin = 1.0, Kmax = 3.0, MK = 21, (blue triangle)
Kmin = 1.0, Kmax = 2.5, MK = 16, (magenta inverted triangle) Kmin = 1.0, Kmax = 2.0, MK = 11. The length of the input
trajectories are 20.

4.3. Training with the standardmap, testing the Lorenz system
Next we test the Lorenz system—a set of three coupled non-linear ordinary differential equations. We
discretize time to arrive at a three-dimensional map:

Xn+1 = Xn +σ∆(Yn −Xn),

Yn+1 = Yn + ρ∆Xn −∆XnZn −∆Zn,

Zn+1 = Zn +∆XnYn −β∆Zn.

(6)

We use a CNN trained on the two-dimensional standard map. The parameters σ = 10 and β = 8
3 . The time

step∆ = 0.001 measures the discretized time interval length when replacing the original differential
equations with a map.

The chaos parameter 0≤ ρ≤ 39.8 was varied in steps of 0.2. Because the network is trained with 2D data
(standard map), the prediction is performed by selecting only two dimensions in the 3D Lorenz system
((Xn,Yn),(Xn,Zn),(Yn,Zn)). As figure 7(a) shows, using trajectories obtained from equation (6) directly as a
network input classifies most of them as chaotic. We think this happens because the trajectory data of the
standard map used for training are bounded between 0 and 1, but the trajectories from Lorenz system are
not. Input values that exceed these boundaries cause nodes in the network to be active regardless of the input
characteristics. Therefore we normalize the input data from the Lorenz system. This leads to a drastic
increase of accuracy as shown in figure 7(b). We also tested the outcome when selecting only one dimension
in the Lorenz system for the input vector. We find a strong reduction of the accuracy. We therefore conclude
that the training and testing data are yielding best performance when for both the minimum of the two
dimensions (training map, testing map) is chosen.
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Figure 6. The result of predictions for the logistic map with a network trained from the standard map. The blue and red dots in
bifurcation diagram are the cases where the network correctly predicts chaotic and regular attractors, respectively. The black dots
show where the prediction fails. The network is trained with Kmin = 1.0, Kmax = 2.0, MK = 11, Mtr = 2081, Mtt = 520, and
NK = 20. (a) Test results for the 2D training (see text for details). (b) Test results for the 1D training (see text for details). (c)
Lyapunov exponents for the logistic map. The red line marks λ = 0.

Figure 7. The result of predictions for the Lorenz system with a network trained from the standard map. The XY, XZ, YZ bars
represent the dimensions of the Lorenz system used as input to the network trained with (p, x) data from the standard map. The
training conditions are NK = 20, Kmin = 1.0, Kmax = 2.0, andMK = 11. The X, Y, Z bars represent the single dimensions of the
Lorenz system used as input to the network trained with p data only from the standard map. (a) Accuracy without normalizing
the trajectories of the Lorenz system. (b) Accuracy when normalizing trajectories of the Lorenz system.

5. Conclusion

We trained CNNs with time series data from the two-dimensional standard map. As a result, the network can
classify unknown short trajectory sequences into chaotic or regular with high accuracy. To reach accuracies
of up to 98% we need trajectory segments with length less than 5–10 Lyapunov times. Similar accuracies
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need 100–1000 longer segments when using traditional classifiers based on measuring LEs. The main cause
of errors is due to fractal phase space structures at the boundaries between chaotic and regular dynamics.
Trajectories launched in these regions yield sticky trajectories which can mimic regular ones for long times,
only to escape at even larger times into the chaotic sea. We also used a network trained with two-dimensional
standard map data to classify chaotic and regular dynamics in one- and three-dimensional maps.
Surprisingly high accuracy is reached when the training data are projected into one dimension for
predictions on the one-dimensional logistic map, and when to-be-predicted data from the three-dimensional
Lorenz system are projected onto two dimensions. We conclude that accuracy is optimized when the
minimum of the two dimensions (training map, testing map) is chosen for both training and testing.
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Appendix A. Details of the neural network structure

The neural network model we use to analyze the chaotic pattern is the convolutional neural network (CNN)
[14] with a fully connected (FC) network [16, 17]. The required non-linear response of the system is
provided by the rectified linear unit (ReLU) [17, 18]. For supervised learning, we use a cross entropy as loss
function [17]. Figure A1 shows one of the CNN structures used here. In the figure, 1024 filters in the first
layer scan the input data independently, then yield 1024 feature maps which are used as the input data for the
second layer after applying the activation function ReLU. After processing through all convolutional layers,
we rearranged the pixels of the last feature maps into one-dimensional data for the fully connected layers. In
the last layer we set the desired output: 1 is a chaotic, and 0 is a regular trajectory.

We use a two-dimensional convolutional filter. The data comprise multiple spatial channels and each
channel gives time-series data. The relation between the 2D input vector a and the convolution layer output
vector z is

z(ℓ)i,j,m =

Frow∑
q=1

Fcol∑
p=1

w(ℓ)
p,q,ma

(ℓ−1)
(i+p−1),( j+q−1) + b(1)m . (A1)

After calculating z, the non-linear activation function (we used ReLU) is used to obtain the value of a of
the next layer:

a(ℓ)i,j,m = ReLU(z(ℓ)i,j,m), (A2)

where i, j are input element indices, p, q are filter element indices,m is the filter index (e.g.m = 1024 means
that 1024 filters of size Frow × Fcol were used), and ℓ is the layer index (the indices of input and first layer are ℓ

= 0 and ℓ= 1, respectively). The weight w(ℓ)
p,q,m is the (p, q)th element ofmth filter. The bias bm is a constant.

The filter size is Frow × Fcol, where we chose Frow = 2 and Fcol = 1. To apply the filter to all the elements of the
input, the boundary is filled with zeroes to match the size of the input, which is called zero padding [19]. The
2D input through the convolution layer has a dimension of (i, j,m) due to the number of filtersm in the
convolution layer. Accordingly, the input / output relationship of the next layer is as follows:

z(ℓ)i,j,n =

Mℓ∑
n=1

Frow∑
q=1

Fcol∑
p=1

w(ℓ)
p,q,na

(ℓ−1)
(i+p−1),( j+q−1),m + b(ℓ)n , (A3)

whereMℓ is the number of filters between the ℓth and (ℓ− 1)th layers, ℓ has a range of 1 to L. After
convolution, it processes through the activation function as shown in equation (A2).

As shown in figure A1, there is a pooling layer at the end of the convolution layers. This flattens the
convolutional output by finding the maximum according to the filter dimension of the input
(equation (A4)).

9
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Figure A1. Network architecture for chaos classification, consisting of four convolution layers, and three fully-connected layers.
The filter size and output size are provided for each layer. Network structure for (a) 2D and (b) 1D shape training.

a(ℓ)m =max(a(ℓ)i,j,m). (A4)

The reason for flattening the output is to use the convolutional output as the input of the fully connected
layer:

z(ℓ)i =
K∑
j=1

w(ℓ−1)
j,i a(ℓ−1)

j , (A5)

where wi,j is a weighted connection between the jth component of (ℓ− 1)th layer and the ith component of
(ℓ)th layer and K is the number of nodes in the (ℓ− 1)th layer. As in equation (A6), the activation function
uses ReLU:

a(ℓ)i = ReLU(z(ℓ)i ). (A6)

The output value of the network, when obtained in this way, is different from the desired output because
it is obtained from the unfitted w value. w updates in the direction of reducing this difference and we call this
difference the loss or cost. In this work, we selected the cross entropy as the loss function, defined as

C=−
NL∑
k=1

(atruek log(a(L)k )+ (1− atruek )log(1− a(L)k )), (A7)

where NL is the number of nodes in the output layer and atruek is the desired output at the kth node. The
cross-entropy loss function can reflect the degree of error to weight updates better than the mean square

error loss function (MSE, MSE= 1
NL

∑NL

k=1(a
true
k − a(L)k )2) because of the log term and is known as a cost

function suitable for classification problems [20]. Similar to the energy minimization problem in physics,
supervised learning minimizes a cost function C at the output layer.

10
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Table B1. Performance for different deep learning classifiers. The networks are trained with chaotic and regular
trajectories for Kmin = 1.0, Kmax = 2.0, MK = 11, Mtr = 2601 and NK = 20. The network performances are evaluated for
Kmin = 3.0, Kmax = 3.5, MK = 6, Mtt = 2601 and NK = 20. For each K value, 2601 different initial values (p0,i,x0,j) were selected as
(p0,i = (i− 1) 1

50
,x0,j = ( j− 1) 1

50
, (i, j ∈ Z, 1≤ i, j≤ 51, )).

Classifiers Ptot PC PR

FCN 0.89 0.88 0.91
SimpleRNN 0.94 0.96 0.92
GRU 0.95 0.96 0.93
LSTM 0.94 0.96 0.93
CNN 0.96 0.94 0.97

Training the neural network means finding optimized parameters w(ℓ)
pqm and b(l)n that minimize C. We use

an Adaptive Moment Estimation (Adam) algorithm for the optimization of learning [21]. As far as we know,
the choice of optimization algorithm has little impact on the network performance, but is instead mainly
related to the speed of learning. It is known that an Adam algorithm can find fitting variables faster than
stochastic gradient descent methods, RMSprop and AdaDelta [21].

Appendix B. Network comparison

In this section, we compare three different network architectures. First, we consider a fully connected neural
network (FCN) and then compare it to other machine learning methods. The FCN is chosen because it is the
most basic structure of deep learning classifiers. We also consider a recurrent neural network (RNN) [22].
The RNNs are usually used to deal with temporal dynamic behavior. We consider supervised classification
with labels indicating chaos or regularity, where the input of the neural networks is fixed at NK = 20, and
the output is one node for the corresponding label for training. The neural networks presented in this paper
end with a sigmoid layer.

The first type of network considered in this section is a fully connected network, which consists of
multiple fully connected layers and each layer has a non-linear activation function. We use eight hidden
layers with ReLU (Rectified Linear Unit) activation and the number of hidden neurons in each layer is
[256, 256, 512, 512, 512, 256, 128, 64]. The network is trained with the Adaptive Moment Estimation
(Adam) algorithm [21].

Recurrent neural networks (RNN) are neural networks for processing sequential data. RNN uses the
current input as well as any previously processed input. This is possible with a loop structure between the
RNN input and the output. Each node in a given layer is connected with a directed connection to the current
layer. Because of this, the RNN is expected to have a function of memory. The sequence itself has
information, and recurrent networks use this information through the loop structure. We use three type of
RNNs: simpleRNN [22], LSTM [22, 23], and GRU [24]. Three RNN cells(layers) were used, each with 200
hidden neurons. After the RNN cells, three fully connected layers are connected with the size of 200, 100 and
32, respectively. It is known that recurrent networks perform well for sequential data, but at least in our data
sets there was no significant difference between using CNN and RNN.
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