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We study the interplay of two interacting discrete time quantum walks in the presence of disorder. Each
walk is described by a Floquet unitary map defined on a chain of two-level systems. Strong disorder induces
a novel Anderson localization phase with a gapless Floquet spectrum and one unique localization length ξ1 for
all eigenstates for noninteracting walks. We add a local contact interaction which is parametrized by a phase
shift γ . A wave packet is spreading subdiffusively beyond the bounds set by ξ1 and saturates at a new length
scale ξ2 � ξ1. In particular we find ξ2 ∼ ξ 1.2

1 for γ = π . We observe a nontrivial dependence of ξ2 on γ , with a
maximum value observed for γ values which are shifted away from the expected strongest interaction case γ =
π . The novel Anderson localization regime indicates violation of single parameter scaling for both interacting
and noninteracting walks.

DOI: 10.1103/PhysRevB.101.144201

I. INTRODUCTION

Anderson localization (AL) [1–4] established that in the
presence of uncorrelated on-site random potential, all eigen-
states are exponentially localized in one and two dimensions.
In three dimensions there is an energy mobility edge sepa-
rating localized and delocalized eigenstates. The localization
length ξ1 is determined by many parameters such as eigenstate
energy, hopping integrals between adjacent sites, and the
amplitude of the random potential, as obtained for different
lattices and various types of random potentials [4]. AL results
in a strong suppression of transport in low-dimensional sys-
tems [1,4]. AL was observed experimentally in a variety of
condensed matter and optical systems [3,5–9].

The challenging study of the interplay of interaction and
disorder leads to a number of unexpected results for the
localization properties of many particles eigenstates. This
problem is relevant for understanding the many-body local-
ization (MBL), a phenomenon of suppression of transport
due to disorder in systems with macroscopic numbers of
particles. MBL transition from ergodic to localized dynamic
phases happen at certain values of the interaction strength and
disorder rate ratios due to competing interplay between those
two effects [10,11]. The minimal setup with two interacting
particles (TIPs) can be considered as a building stone of the
formation of MBL. The seemingly simplest case of TIPs
in one space dimension was analyzed in an impressive set
of publications [12–24]. For uncorrelated disorder the TIPs
localization length ξ2 is assumed to be finite, with the main
questions addressing the way ξ2 scales with ξ1 in the limit
of weak disorder [12–22], and the nature of the observed
subdiffusive wave packet spreading on length scales ξ1 �
L � ξ2 [23,24]. The lack of analytical results stresses the
need for computational studies. However, in all above cases,
there are limits set by the size of the system (in particular

for diagonalization routines due to immense Hilbert space
dimensions), the largest evolution times obtained through
direct integrations of time-dependent Schrödinger equations
with continuous time variables, and the energy dependence of
the localization length ξ1.

An interesting alternative platform is Floquet unitary maps
on two-level system networks known as discrete-time quan-
tum walks (DTQWs). DTQWs were introduced for quantum
computing purposes [25–28]. A classical analog, (classical)
random walks are used as a basis in multiple best performing
classical algorithms, for example density of states calculation
[29]. This inspired research of DTQW as a tool for quantum
computing, with successful examples of significant speed-ups,
for example quantum NAND trees evaluation [30]. Recently
they have been used to study some numerically challenging
complex problems of condensed matter physics, e.g., lattice
Dirac transport [31], topological phases [32,33], Anderson
localization [34–36], and nonlinear transport in ordered and
disordered lattices supporting flat bands [37,38]. Note that the
resulting Floquet Anderson localization is proven analytically
for a whole range of different cases, including those where the
eigenvalue spectrum is dense, homogeneous, and gapless, and
the localization length ξ1 is governing all random eigenstates
independent of their eigenvalues [35]. We stress that DTQWs
are particular examples of a Floquet driven quantum lattice,
and, therefore, apply to studies of AL under nonequilibrium
or simply infinite temperature conditions in an elegant and
simple way as compared to the approach defined by time-
periodic Hamiltonian systems (see, e.g., [39]). DTQWs have
been implemented in various condensed matter and optics
setups, see, e.g., [40–43].

Stefanak et al. [44] and Ahlbrecht et al. [45] proposed
an extension of the single particle DTQW to two inter-
acting DTQWs using a local contact interaction which is
parametrized by a phase shift γ . We use this Hubbard-like
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interaction and consider two interacting disordered discrete
time quantum walks (TIWs). Using direct numerical simula-
tions, we compute the time-dependent spreading of the TIWs
wave packet and its dependence on the angle ξ1, and the
strength of the interaction γ . The computational evolution of
wave functions for Hamiltonian systems involves the need
to control accumulating errors due to the discretization of
the continuous time variable. DTQWs do not require such
approximations making them superior when it comes to long
time evolutions.

The paper is organized as follows: in Sec. II we first present
the model for a single one-dimensional DTQW. We then
extend the model to two interacting DTQWs. In Sec. III we
present the computational details and measures used for the
study of the time evolution of two interacting DTQWs. In
Sec. IV we present the numerical results, and discuss them.
Section V provides the conclusions.

II. MODELS

We consider the dynamics of a single quantum parti-
cle with an internal spinlike degree of freedom on a one-
dimensional lattice [25–28,33,35,46,47]. Such a system is
characterized by a two-component wave function |�(t )〉 de-
fined on a discrete chain of N sites. The wave function is
embedded in a 2N-dimensional Hilbert space:

|�(t )〉 =
N∑

n=1

∑
α=±

ψα
n (t ) |α〉 ⊗ |n〉

=
N∑

n=1

[ψ+
n (t ) |+〉 + ψ−

n (t ) |−〉] ⊗ |n〉 , (1)

where |α〉 = |±〉 are basis vectors of local two-level systems,
|n〉 are basis vectors in a one-dimensional coordinate space,
and ψα

n are the wave function amplitudes. The Floquet time
evolution of the system is realized by means of a unitary map
involving coin Ĉ and shift Ŝ operators:

|�(t + 1)〉 = ŜĈ |�(t )〉 . (2)

The coin operator Ĉ is a unitary matrix given by [35]

Ĉ =
N∑

n=1

ĉn ⊗ |n〉 〈n| , (3)

with local unitary coin operators ĉn,

ĉn = eiϕn

(
eiϕ1,n cos θn eiϕ2,n sin θn

−e−iϕ2,n sin θn e−iϕ1,n cos θn

)
, (4)

which are parametrized by four spatially dependent angles
θn, ϕn, ϕ1,n, and ϕ2,n. Such local coin operators can be
implemented in various experimental setups through, e.g., a
periodic sequence of effective magnetic field pulses [40–43].

As it was shown in Ref. [35], the angle ϕn is related to a
potential energy, the angles ϕ1,n and ϕ2,n to an external and
internal magnetic flux, respectively, and the angle θn to a local
kinetic energy or hopping. In this work we intend to generalize
the corresponding problem of two interacting particles in a
one-dimensional tight-binding chain with uncorrelated disor-
der. Therefore, we choose ϕ1,n = ϕ2,n = 0 and θn ≡ θ , which

FIG. 1. A schematic view of the TIW. The four components of
the wave function on each site of a square lattice are shifted in
different directions indicated by the arrows.

simplifies the local coins ĉn in (4) to

ĉn = eiϕn

(
cos θ sin θ

− sin θ cos θ

)
. (5)

The spatial local disorder will be introduced through the
angles ϕn [35]. This particular choice of disorder resembles a
random on-site potential of the original Anderson model [1].

The shift operator Ŝ in Eq. (2) couples neighboring sites by
shifting all the ψ+

n components one step to the right, and all
the ψ−

n components to the left:

Ŝ =
∑

n

|n〉 〈n + 1| ⊗ |−〉 〈−| + |n〉 〈n − 1| ⊗ |+〉 〈+| . (6)

This completes the definition of a single particle discrete-time
quantum walk [25–28,33,35,46,47].

We extend the above single particle walk to two interacting
discrete time quantum walks (TIWs) in analogy to the exten-
sion of a single quantum particle in the Anderson model to
two interacting particles:

|�(t )〉 =
N∑

i, j=1

∑
α,β=±

ψ
αβ
i j (t ) |α, β〉 ⊗ |i, j〉 . (7)

The wave function |�(t )〉 is embedded in a 4N2-dimensional
Hilbert space where |α, β〉 are basis vectors of two local two-
level systems, and |i, j〉 are basis vectors in a two-dimensional
square lattice. The TIW evolution is obtained through a prod-
uct of a TIW coin Ŵ , shift T̂ , and interaction Ĝ operators
acting on the wave function (see Fig. 1):

|�(t + 1)〉 = T̂ Ŵ Ĝ |�(t )〉 . (8)

The coin Ŵ and shift T̂ operators are tensor products of the
corresponding single particle operators:

Ŵ = Ĉ ⊗ Ĉ, T̂ = Ŝ ⊗ Ŝ. (9)

In the absence of interaction Ĝ = 1 they describe the evolu-
tion of two independent single particle DTQWs. The local
Hubbard-like contact interaction between the two DTQWs
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was introduced in Ref. [45] as

Ĝ = 1c ⊗ 1p + (eiγ − 1)1c ⊗ N̂, (10)

where γ is the interaction strength parameter. N̂ =∑
i |i, i〉 〈i, i| is a projector on the diagonal of the coordinate

space, 1c is the 4 × 4 unity matrix in the coin space, and 1p

is the N2 × N2 unity matrix in the position space. Note that
γ = 0 corresponds to two noninteracting DTQWs.

III. ANDERSON LOCALIZATION

The local disorder is introduced through uncorrelated ran-
dom values of the angle ϕn. For the disorder strength 0 �
W � 2π , a set of ϕn is independently drawn from a uniform
distribution of [−W/2,W/2].

A. Single particle DTQW

As it was shown in Ref. [35], all eigenstates of the single
particle DTQW are exponentially localized and characterized
by a localization length ξ1, in full analogy to Anderson local-
ization for Hamiltonian single particle systems [1]. The single
particle DTQW possesses two distinct limiting parameter
cases for which ξ1 → ∞. The first is obtained for W → 0,
again in full analogy with Hamiltonian systems. The DTQW
eigenvalues form a band spectrum and are located on the
unit circle [35], which is in general gapped for W → 0.
Consequently the localization length ξ1 is a function of the
eigenvalue and different for different eigenstates, reaching its
largest value in the center of the above bands. The second
parameter case is unique for Floquet Anderson systems and
is obtained for the case of strongest disorder W = π . The
DTQW spectrum is now dense, homogeneous, and gapless on
the unit circle, with all eigenstates having the same localiza-
tion length irrespective of their eigenvalue [35]:

ξ1 = − 1

ln (| cos θ |) . (11)

The limit ξ1 → ∞ is obtained by varying the hopping angle
θ → 0. We are not aware of a similar regime for Hamiltonian
systems. In the following, we will study the TIW in that novel
regime.

B. TIW

We will follow the time evolution of a TIW wave function
starting from the initial state

|�(t = 0)〉 = (|+,−〉 + |−,+〉)√
2

⊗ |N/2, N/2〉 (12)

for which the two single particle DTQWs are localized on
the lattice site N/2 where the TIW interaction is present. The
system size N varies from 5000 up to 25 000, such that the
spreading wave packet does not reach the edges in order to
exclude finite system size corrections. We perform a direct
numerical propagation of (8) up to tmax which varies from 104

for the γ = 0 to 106 for nonzero interaction strength values.

FIG. 2. σ1(t ) for γ = 0 (solid lines, 100 disorder realizations)
and σsp(t ) (dashed lines, average over 104 disorder realizations). θ =
π/8, π/12, π/16, π/20 from bottom to top. Here N = 5000 for θ =
π/8, π/12 and N = 25 000 for θ = π/16, π/20. Inset: Snapshot of
the probability distribution pi j (t = 104) for θ = π/20.

We follow the wave function probability distribution in
coordinate space

pi j (t ) =
∑

α,β=±

∣∣ψαβ
i j

∣∣2
. (13)

To assess TIW localization length scales we will project pi j

in three different ways onto a one-dimensional coordinate
space and compute the standard deviation of a probability
distribution vector {vi} (see, e.g., [23,24]):

σ [{vi}] =
⎛
⎝∑

i

i2vi −
(∑

i

ivi

)2
⎞
⎠

1/2

. (14)

Measure 1: projection on a one particle space: we define
vi = ∑

j pi j (t ), substitute it in (14) and obtain σ1(t ).
Measure 2: projection on the space of the center mass

motion: we define vi = ∑
j pi, j−i(t ), substitute it in (14) and

obtain σ‖(t ).
Measure 3: projection on the space of (relative) distance

between particles: we define vi = ∑
j pi,i+ j (t ), and substitute

it in (14) and obtain σ⊥.
In addition to the above three TIW length scales σ1, σ‖, σ⊥

we also define a length scale σsp which follows from the
numerical simulation of a single particle DTQW. We define
vi = |ψ+

i (t )|2 + |ψ−
i (t )|2, substitute it in (14), and obtain σsp.

In the presence of Anderson localization, all the above
length scales are expected to grow in time and saturate at
some finite values for t → ∞. For the single particle DTQW
we expect σsp(t → ∞) ∼ ξ1. For the noninteracting TIW case
γ = 0 we expect the distribution pi j (t → ∞) to have fourfold
discrete rotational symmetry (see, e.g., inset in Fig. 2). It
follows σ1 ≈ σ‖ ≈ σ⊥ ≈ σsp ∼ ξ1. However, for γ �= 0 the
two walks are expected to be able to travel beyond the limits
set by σsp and ξ1 as long as their two coordinates are close
enough such that |i − j| < ξ1. This is in analogy to two
interacting particles in Hamiltonian settings. The interaction
is introducing nonzero matrix elements between the Anderson
eigenstates of the noninteracting system which leads to an
effective internal degree of freedom of two walks (or particles)
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FIG. 3. Various length scales L versus θ : ξ1 (solid line), σsp(t f )
(blue circles), σ1(t f ) (red triangles), P (green squares). Here t f =
2 × 104, γ = 0. Inset: σsp/ξ1, σ1/ξ1, and P/ξ1 as a function of the
angle θ . Results have been averaged over 104 disorder realizations
for σsp(t f ), 100 realizations for σ1(t f ) and 5000 eigenstates for P.
Error bars are smaller than the marker size.

which form a weakly bound state. Consequently the distri-
bution pi j (t → ∞) should elongate along the diagonal i = j
and reduce its symmetry to a twofold rotational symmetry
(see, e.g., inset in Fig. 4). It follows σ1 ≈ σ‖ ≡ ξ2, σ⊥ ≈ σsp ∼
ξ1, and ξ2 � ξ1. The TIW is therefore characterized by two
length scales ξ2 and ξ1.

IV. COMPUTATIONAL RESULTS

A. γ = 0

The time dependence σ1(t ) (averaged over 100 disorder
realizations) is shown in Fig. 2 for various values of the
hopping angle θ with solid lines. We observe the expected
saturation of σ1 for large evolution times t = 104. The wave
function probability distribution pi j (t = 104) is shown in the
inset of Fig. 2 for θ = π/20. It shows the above discussed
fourfold discrete rotational symmetry. In addition we plot
the time dependence of σsp(t ) with dashed lines, which are
averaged over 104 disorder realizations and nicely follow the
corresponding σ1(t ) curves.

A first nontrivial test is the comparison of ξ1 with σsp(t →
∞) and σ1(t → ∞) for γ = 0. While we expect σsp ≈ σ1,
the connection between ξ1 and σsp is far from obvious. The
Hamiltonian case is known to obey the single parameter
scaling property [48], which implies in our case ξ1 ∼ σsp. In
Fig. 3 we compare the localization length ξ1 (11) (solid line)
with σsp(t = 104) from Fig. 2 (blue circles) and σ1(t = 104)
from Fig. 2 (red triangles) for different values of θ . At a
first glance the single parameter scaling seems to be satisfied,
since the data symbols follow the analytical curve reasonably
closely. However, the inset in Fig. 3 plots the corresponding
ratios σsp/ξ1 and σ1/ξ1 versus θ which result in nonhorizontal
curves and indicate a violation of the single parameter scaling
hypothesis. To further test indications of the absence of the
single parameter scaling property, we diagonalize the single
particle DTQW numerically for a system size N = 1500, and
obtain the participation numbers Pν of all eigenfunctions |�〉ν
as 1/P = ∑N

n=1

∑
α=± |ψα

n |4. The average P = ∑
ν Pν/2N is

FIG. 4. Time evolution of σ1 of a TIW for different values of
θ = π/8, π/12, π/16, π/20 from bottom to top. Here γ = π and
N = 25 000. Inset: Snapshot of the probability distribution pi j for
θ = π/20 at t = 106, showing strongly anisotropic wave packet
spreading.

plotted in Fig. 3 (green squares). We find that P/ξ1 is varying
with ξ1, and even shows an opposite trend as compared
to σsp/ξ1, possibly confirming the presence of a variety of
different length scales in the problem.

At the same time, σsp closely follows σ1, implying that any
changes in σ1 upon increasing the TIW interaction γ away
from γ = 0 are solely due to the interaction, and not due to
measurement ambiguities.

B. γ = π

Let us present the numerical analysis of the dynamics of the
TIW for nonvanishing interaction γ �= 0. The largest absolute
value of the term (eiγ − 1) in (10) is obtained for γ = π ,
which we choose as our operational value in this section. We
evolve a system of size N = 25 000 up to time tmax = 106. We
follow the time dependence of the standard deviation σ1 for
various values of the angle θ . These results are presented in
Fig. 4 (solid lines). σ1(t ) shows ballisticlike growth (σ ∝ t)
up to σ1 ∼ ξ1 in analogy to the noninteracting case. During
this first part of the dynamics, the wave packet spreads up to
a length scale of the order of the single particle localization
length ξ1. At variance to the noninteracting case, the interact-
ing dynamics continues beyond the limits set by the single
particle DTQW Anderson localization. The corresponding
growth of σ1 with time is close to a subdiffusive one σ ∝ tα

with α � 0.5.
For θ = π/8 and ξ1 ≈ 12 we observe saturation of σ1(t ) at

the largest computational time t = 106. For smaller values of
θ and correspondingly for larger values of ξ1, the saturation is
shifted to larger time and spatial scales, and becomes barely
visible for θ = π/20 and ξ1 ≈ 81. Choosing larger system
sizes, despite being necessary, turns hard due to CPU time and
memory limitations. For practical purposes we therefore will
present data which correspond to the largest evolution times.

In the inset of Fig. 4 we plot the probability distribution
of wave function pi j (t = 106) for θ = π/20. It shows a clear
reduction to the twofold rotational symmetry which leads to
the emergence of at least two different length scales σ⊥ and
σ‖ � σ⊥ which characterize the width and elongation of the
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FIG. 5. Scaling of the TIW length scale σ⊥ (green squares),
σ‖ (orange triangles), and σ1 (blue circles) with the single particle
DTQW length scale σsp. The corresponding values of θ vary between
π/20 and π/3. Here γ = π and N = 25 000. Black dashed lines are
algebraic fits.

cigarlike shape. The dependence of the new length scales on
the single particle σsp one is shown in Fig. 5. The width σ⊥ ≈
σsp demonstrates that the limit of relative distance on which
the two single particle DTQW components of the TIW can
propagate is set by σsp. However, the elongation σ‖ shows a
faster than linear growth with σsp. A simple power-law fit σ‖ ≈
σ

β
sp yields β ≈ 1.2.

C. Varying γ

Finally we study the impact of varying the interaction
strength γ for two different values of θ = π/8 and θ = π/12
in Fig. 6. In order to avoid disorder realization induced fluc-
tuations, we evolve the wave packet up to t = 2 × 105 (which
is sufficient for the chosen θ values) and average over ten
disorder realizations. We first discuss the data for the width
σ⊥. Since we concluded that σ⊥ ≈ σsp is a single particle
DTQW length scale, it should not depend on the value of γ .
Indeed, the computational data demonstrate this very clearly.
At the same time, the elongation scale σ‖, with respect to σ1,
should strongly depend on γ . Again, the computational data
in Fig. 6 demonstrate this very clearly. The curves σ‖,1(θ )
show a clear maximum at γm(θ ). Surprisingly, γm �= π , with
a weak but observable dependence on θ . Therefore the value
γ = π is in general not corresponding to the case of strongest
enhancement of the TIW localization length. Possibly there
is a hidden symmetry in the TIW problem at γ = π whose
violation for γ �= π might lead to an enhancement of the
localization length.

V. CONCLUSION AND OUTLOOK

We analyzed the interplay of disorder and interaction in
the Floquet Anderson localization problem of two interacting
discrete time quantum walks. The single particle DTQW is
described by a Floquet unitary map defined on a chain of
two-level systems. Despite the action of strong disorder in
one of the Floquet unitary map parameters, the resulting novel
Anderson localization phase is characterized by a gapless
Floquet spectrum and one unique localization length ξ1 for

FIG. 6. σ1 (blue circles), σ‖ (orange triangles), σ⊥ (green
squares) as functions of the interaction parameter γ . (a) θ = π/8.
(b) θ = π/12. Results have been averaged over ten disorder realiza-
tions. Error bars are smaller than the marker size.

all single particle eigenstates. The ratio of the participation
number of the eigenstates P over ξ1 is not constant, indicating
a violation of the usually expected single parameter scaling
regime as known for Hamiltonian disordered systems. We add
a local contact interaction, which is parametrized by a phase
shift γ . A wave packet is spreading subdiffusively beyond
the bounds set by ξ1 and saturates at a new length scale
ξ2 � ξ1. For the assumed strongest interaction case γ = π

we identify a new length scale ξ2 � ξ1 which follows ξ2 ∼
ξ 1.2

1 . We observe a nontrivial dependence of ξ2 on γ , with
a maximum value observed for γ values which are shifted
away from the expected strongest interaction case γ = π .
We currently lack an understanding of this intriguing fact,
which has to be addressed in future work. In the absence
of interaction γ = 0 we observe indications of the violation
of the single parameter scaling. We can only speculate on
possible reasons for this observation. Are we not close enough
to the asymptotic regime of very large localization length? Is
the observation caused by the fact that the localization length
diverges, but the eigenstates do not restore a (translational)
symmetry in real space and stay disordered? The explanation
of this surprising observation is another interesting topic to be
addressed in future work.
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