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Multifractality of correlated two-particle bound states in quasiperiodic chains
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We consider the quasiperiodic Aubry-André chain in the insulating regime with localized single-particle states.
Adding local interaction leads to the emergence of extended correlated two-particle bound states. We analyze
the nature of these states, including their multifractality properties. We use a projected Green function method to
compute numerically participation numbers of eigenstates and analyze their dependence on the energy and the
system size. We then perform a scaling analysis. We observe multifractality of correlated extended two-particle
bound states, which we confirm independently through exact diagonalization.
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I. INTRODUCTION

Understanding the transport properties of quantum disor-
dered or inhomogeneous systems has been an active topic
of research since the discovery of Anderson localization
(AL). AL describes the arrest of transport in a single-particle
system due to disorder or inhomogeneous potential, which
renders all the eigenstates in one and two space dimensions
exponentially localized [1]. The original work of Anderson
triggered a sequence of theoretical studies, and by now the
single-particle case is well understood [2]. The important
and much harder question involves the stability of modi-
fication of AL in the presence of many-body interactions.
Decades of research attempts culminated in the opening of the
field of many-body localization (MBL) [3–5]. Interestingly,
one of the strongly debated issues is the possible exis-
tence of “bad” metallic states that are nonergodic or simply
multifractal [3,5].

A notorious issue with MBL-related studies is the compu-
tational complexity due to the exponential proliferation of the
Hilbert space dimension with increasing numbers of particles
and system size. A legitimate and complementary approach is
therefore to consider only a few interacting particles, which
allows us to increase the system size beyond the limits set
by typical MBL models. Three main directions with single-
particle localization in one dimension have been explored:
genuine AL due to uncorrelated disorder [2], Wannier-Stark
localization (WSL) due to an external dc field [6], and Aubry-
André localization (AAL) due to a quasiperiodic external
potential [7]. Genuine AL yields a nontrivial increase of
the localization length for two interacting particles with still
unsettled scaling details [8–11]. Two interacting particles
yield no localization change for WSL with interaction, only
affecting the Bloch oscillation periods [12]. At variance, AAL
with quasiperiodic potentials showed an unexpected transition
from localization (zero interaction) to delocalization (nonzero
interaction) [13]. These findings were later confirmed in
Ref. [14], which provided additional indications for the fractal
nature of the delocalized eigenstates.

Are these the seeds of a bad metal and the MBL transition
from above? A hint might be obtained from the striking

similarity of the phase diagram of correlated metallic two-
particle bound states in Fig. 4 of Ref. [13] and the phase dia-
gram of an MBL phase, which was experimentally assessed
for interacting fermions in optical quasiperiodic potentials
in Fig. 4 of Schreiber et al. in Ref. [15]. In the present
study, we attempt to add more conclusive arguments that
are aimed at a positive answer for the above question for
quasiperiodic potentials. We confirm the fractal character of
the two-particle spectrum and the fractality of some of the
two-particle states. We rely on the projected Green function
method [16], originally developed to analyze the localization
length of two interacting particles in the AL case. The paper
is organized as follows: We introduce the tools and other
necessary means in Sec. II. Section III benchmarks these
tools in the single-particle case against the exact results and
exact diagonalization. In Sec. IV we analyze the case of two
interacting particles. This is followed by conclusions.

II. SETTING THE STAGE

The starting point is a single particle placed in a quasiperi-
odic potential with the Aubry-André Hamiltonian [7]

H0 =
∑

n

(|n〉 〈n + 1| + H.c.) +
∑

m

hm |m〉 〈m| ,

hn = λ cos(2παn + β ), (1)

where λ is the strength of the potential, and α is an irrational
number ensuring quasiperiodicity of the potential. We choose
α = (

√
5 − 1)/2, the golden ratio, and we fix the hopping

strength t = 1. Depending on the strength of the potential λ,
the eigenstates are all delocalized (λ < 2) or localized (λ > 2)
with localization length ξ1 = 1/ ln(λ/2), which is the same
for all the eigenstates [7]. Finally, β is a phase that can be
varied to generate different realizations of the quasiperiodic
potential. In numerical studies with a finite system size, the
choice of β will affect localized and sparse, fractal or multi-
fractal extended states. In the present study involving critical
states, we use averaging over different values of β, which we
denote as · · ·, to improve statistics.
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We now add the interactions and consider two interacting
bosons. We choose the on-site Hubbard interaction of strength
u. The total Hamiltonian is given by

H = H0 ⊗ H0 + uP

=
∑
n,m

(|n, m〉 〈n + 1, m| + |n, m〉 〈n, m + 1| + H.c.)

+
∑
n,m

(hn + hm) |n, m〉 〈n, m| + uP, (2)

where |n, m〉 is a basis state with two particles at site n, m,
and hn is the on-site Aubry-André potential at site n given
by Eq. (1). P is the projection operator defined as P|n, m〉 =
δnm|n, m〉 that enforces the on-site Hubbard interaction.

The authors of the work Ref. [13] used exact diagonal-
ization and unitary evolution of wave packets to study the
two-particle properties of the model (2). The exact diagonal-
ization limited the largest system sizes achievable to N ≈ 250,
imposed by the efficiency of full diagonalization of the Hamil-
tonian matrix (2). Later, Frahm in Ref. [14] implemented a
dedicated sparse diagonalization algorithm based on Green
functions [16,17] to handle large sizes, up to N = 10 946,
of the Hamiltonian (2). We follow the original approach of
Ref. [16]. We extract the relevant two-particle properties from
the projected two-particle Green function, which is obtained
as a projection of the full Green function G = (E − H)−1 onto
doubly occupied states (relying crucially on the fact that the
Hubbard interaction is proportional to the projector P):

G̃ = G̃0

1 − uG̃0
. (3)

Here G̃ = PGP and G̃0 = PG0P; G0 is the noninteracting
two-particle GF, which can be obtained by straightforward
diagonalization of the single-particle Hamiltonian (1). Know-
ing the single-particle eigenenergies {Eμ} and eigenfunctions
{φμ(n)}, we compute G0 as follows:

〈n, n|G0(E )|m, m〉 =
∑
μ,ν

φμ(n)φν (n)φ∗
μ(m)φ∗

ν (m)

E − Eμ − Eν

=
∑

μ

φμ(n)g0(E − Eμ)φμ(m),

g0(E ) = 1

E − H0
=

∑
ν

φ∗
ν (n)φν (m)

E − Eν

. (4)

The reordering of the terms in the second line is done to
reduce the complexity of the computation from the original
O(N4) to O(N3) [9], since the single-particle Green function
g0 can be efficiently evaluated using tridiagonal matrix in-
version of the single-particle Hamiltonian (1). This approach
allows us achieve system sizes as large as N = 7000.

In the insulating regime, the exponential decay of the
projected Green’s function G̃ was used to extract the local-
ization length of two interacting particles (TIPs) [11,16,18].
Here we are aiming to investigate TIP eigenstates that we
expect to be extended in a predominantly insulating region
[13], therefore G̃ might not decay or the decay might not be
exponential. Consequently, we adopt a different measure [11]:
Interpreting the projected Green function G̃ as a probability

density function, we define the participation number Iq=2 and
its higher moments Iq>2 as

Iq =
(∑

k

|g̃(k)|
)q/ ∑

k

|g̃(k)|q, (5)

where g̃(k) = 〈n, n|G̃|n + k, n + k〉. We shall use I2 and
higher moments that are always well defined to analyze the
TIP states. To distinguish Iq from the conventional partic-
ipation number, we will refer to it as the Green function
participation number (GPN). However, before we can proceed
to the two-particle case, we need to confirm that I2 is a valid
measure of localization of an eigenstate 
, similar to the
conventional participation number:

PNq =
∑
nm

|
nm|2q, (6)

e.g., that I2 can distinguish between extended, (multi)fractal,
and localized states.

III. SINGLE-PARTICLE: BENCHMARKING

To confirm that the above-defined participation number
Iq is a valid probe of localization properties of eigenstates,
we first consider the single-particle case. To achieve this,
we benchmark two single-particle quantities: localization
length—analytical and numerical,

ξ1 = 1

ln
(

λ
2

) , (7)

1

ξ1
= − lim

|n−m|→∞
ln |〈n|g0|m〉|

|n − m| , (8)

and participation number I2, which is defined similarly to its
two-particle version Eq. (5):

Iq =
(∑

k

|g(k)|
)q/ ∑

k

|g(k)|q, (9)

where g(k) = 〈n|g0|n + k〉. Our aim is to confirm that I2 is
a valid substitute for ξ1 for localized states, and it behaves
like the conventional participation number for localized and
extended states.

To prove that, we consider three different values of the
potential strength λ = 1, 2, and 2.5, which correspond to
the delocalized, critical, and localized regimes, respectively.
For each λ, we compute single-particle eigenstates ψ and
the Green function g0 for energies E ∈ [−3, 3] in steps of
�E = 0.05, scanning the entire single-particle spectrum. This
step size of 0.05 is chosen to be slightly bigger than the
level spacing δ(N = 250) = 0.004 and δ(N = 500) = 0.002
for the data presented in Fig. 1. From the Green function g0

we evaluate ξ1 and I2, and from the eigenstates ψ we compute
PN2. Figure 1(a) shows the results for λ = 1 for which all the
single-particle eigenstates are extended. The plot of Fig. 1(a)
shows I2 and PN2 versus E for system sizes N = 250, 500.
The bottom circular/blue points of Fig. 1(a) show the single-
particle spectrum obtained from the full diagonalization of H0

for N = 500. We see that both participation numbers PN2 and
I2 drop to zero in the gaps of the spectrum of H0, and they
increase with the system size for energies where eigenstates
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(a)

(b)

FIG. 1. Benchmarking of a single particle in the AA model:
(a) λ = 1: I2 and PN2 for N = 250, 500. (b) λ = 2.5: Localization
length ξ1 and I2 for N = 250, 500. The black line represents the
analytical value ξ1 = 4.48. The participation number PN2 behaves
similarly to I2 (not shown). The bottom blue/circular points in both
(a) and (b) represent the spectrum of H0 for N = 500 and show the
locations of the eigenstates.

are present. We observe I2 > PN2 in general [11]. Figure 1(b)
compares the same quantities for λ = 2.5, where the entire
spectrum is localized. Figure 1(b) shows I2 and ξ1 against E
for N = 250, 500. The eigenenergies are plotted at the bottom
of Fig. 1(b) (light blue points). The black line is the exact lo-
calization length ξ

(e)
1 = 1/ ln(1.25) ≈ 4.48. The localization

length ξ1 evaluated from the Green function (8) is close to
the exact value ξ

(e)
1 for energies close to the eigenenergies of

the system, while I2 is systematically larger than ξ1, but is
roughly of the same order, and does not scale with the system
size N . In the gaps of the exact spectrum, I2 drops to zero,
which is expected since there are no eigenstates corresponding
to these energies, and contributions from the eigenstates are
negligible. However ξ1, defined by Eq. (8), gives a completely
wrong value in the gaps of the single-particle spectrum as seen
in Fig. 1(b). This is clearly an artefact of the exponential fitting
of g0 that does not decay exponentially inside the gaps of the
spectrum of H0. The behavior of the participation number PN2

is very similar to I2 (not shown). For the critical case λ = 2,
the behavior of ξ1 and I2 is similar to that of the delocalized
λ = 1 case.

This rough comparison lends support to the validity of I2 as
a substitute for the participation number PN2. To strengthen
this support, we look into the scaling of the participation

FIG. 2. Participation number Iq(N ) (symbols) vs system size
N = 250–3000 for q = 2, 3, 4, 5, 6 and the power-law fits Iq(N ) =
aNb (dashed lines) for λ = 1. The power-law fit works well also for
λ = 2, 2.5 (not shown).

numbers PNq with the power q, which also distinguishes ex-
tended, localized, and (multi)fractal states: PNq = aNDq (q−1),
where Dq is the fractal dimension of the state, and Dq = 0
corresponds to localized states, Dq = 1 corresponds to delo-
calized states, and 0 < Dq < 1 corresponds to (multi)fractal
states. We verify whether a similar scaling holds for Iq, and we
try the fit Iq = aNDq (q−1) for all three regimes: λ = 1, 2, 2.5.
We pick the energy Emax corresponding to the maximum of I2

for the largest system size considered, N = 3000, since we
want to probe the most delocalized states in an otherwise
localized regime (this choice is only relevant for λ = 2.5,
where all eigenstates are localized), and we use this value
Emax to evaluate Dq for smaller system sizes. For every λ we
compute Iq for q = 2, 3, 4, 5, 6 and for a range of system sizes

FIG. 3. Fractal dimension Dq vs q obtained from the Green’s
function (GF) and exact diagonalization (ED) in extended
(red/yellow), critical (blue/cyan), and localized (green/magenta)
regimes for the single-particle case. The dimension Dq is q-
independent and equal to 0 (1) in the extended (localized) regime
and has a nontrivial dependence on q at the criticality, λ = 2. This a
similar behavior to the dimension Dq computed from the PNq.
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FIG. 4. Participation number I2 vs energy E for two interacting
particles. The peaks signal the emergence of delocalized states in the
otherwise localized spectrum.

N = 250–3000. The results are shown in Fig. 2: we see a clear
power-law scaling of Iq with N for every individual value of
q. Next we fit these data for several system sizes to extract
Dq for the values of λ = 1, 2, 2.5. Similarly we evaluate
the Dq from the scaling of PNq with system size. The PNq

are computed from exact diagonalization of a single-particle
Hamiltonian (1). The results are summarized in Fig. 3: both
methods agree—Dq ≈ Dq ≈ 1 for λ = 1.0, as it should be for
extended states; Dq ≈ Dq ≈ 0.0 for the localized case λ =
2.5; and q-dependent Dq, Dq for the critical value λ = 2.0,
where multifractality is expected.

These results indicate that I2 can be used as a substitute for
the localization length ξ1 and the participation number PNq in
the single-particle case. We assume that this is also the case
for two interacting particles, and we verify this assumption
self-consistently. Therefore, in what follows we will study the
behavior of I2 and higher moments Iq>2.

IV. TWO INTERACTING PARTICLES: SELF-SIMILARITY
OF THE SPECTRUM AND FRACTALITY

OF THE EIGENSTATES

We now turn to the case of two particles with the on-
site Hubbard interaction. Earlier work [13] has reported the

emergence of metallic states in the single-particle insulating
regime (λ > 2). This conclusion was based on exact diago-
nalization of systems up to N = 250 (up to N = 1000 with
sparse diagonalization) sites and analysis of the spreading of
time-evolved wave packets scanned in the entire range of in-
teractions 0 < u < 12 for several values of potential strength
λ ∈ [1.8, 3]. These results were enhanced by Frahm [14], who
performed diagonalization of systems up to N = 10 946 sites
and confirmed the presence of delocalized states.

We start our analysis with a cross-check of Ref. [13] and
evaluate the participation number I2 from G̃nm (5) for λ = 2.5,
u = 7.9, and 1000 values of energy E ∈ [−5, 10]. The results
are averaged over 10 disorder realizations, e.g., values of β;
see Eq. (1). In Fig. 4 we see a miniband structure with the
few energies where the value of I2 is relatively large, similarly
to the findings of Ref. [13], thereby lending further support
to the use of I2 as a probe of the extent of the eigenstates.
We identified two values of energy, E1 ≈ 1.8, E2 ≈ −2.8,
where I2 achieves its local maximum (Fig. 4), suggesting the
emergence of delocalized states at these energies.

To get a better insight into the nature of these emerging
states, we study the fine structure in the vicinity of the I2

peaks. To extract this fine structure, we start with a small
system size and identify the peaks of I2 by discretizing the
energy range. Next we zoom into the energy range around
one of the peaks by using a finer energy discretization. This
procedure is repeated several times for increasing system sizes
N . Such analysis of fine details of the structure of I2 is possible
thanks to the usage of the projected Green functions. To be
specific for the peak of I2 at E1 ≈ 1.8, we started with a range
or energies [1.821 : 1.8225] for the smallest system size N =
250. We observe the emergence of new peaks, which become
prominent as the size is increased to N = 500 and 1000
[Fig. 5(a)]. Zooming in the energy range around one peak
(E ∈ [1.8212, 1.8215], marked by black rectangular boxes in
Fig. 5), the original peak resolves into several peaks for larger
system size N = 3000, Fig. 5(b). Repeating this procedure
two more times for the peaks marked by the black boxes,
we obtain Figs. 5(c) and 5(d) for Nmax = 7000. The largest
I2 is observed at E1 = 1.821 406 3 for N = 7000. Upon every
iteration, we observe the emergence of finer structure in I2 as
we are zooming in energy. This strongly suggests the fractal
nature of participation number I2 as a function of energy E and
consequently the spectrum of the delocalized states at these
energies.

(a) (b) (c) (d)

FIG. 5. Average Green’s function participation number I2 around energy E1 ≈ 1.8 at u = 7.9. The energy range is zoomed in from left
to right, with the maximum system size increasing from N = 1000 (left) to N = 7000 (right) and the resolution in energy reaching �E =
3 × 10−7 for the rightmost plot. The errorbars correspond to the disorder average. The peaks of I2 resolve into fine structure with subpeaks
upon every iteration of zooming in.
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(a) (b) (c) (d)

FIG. 6. Average Green’s function participation number I2 around energy E2 ≈ −2.8 at u = 7.9. The energy range is zoomed in from left to
right, with the maximum system size increasing from N = 1000 (left) to N = 6000 (right) and the resolution in energy reaching �E = 10−6

for the rightmost plot. The errorbars correspond to the disorder average. The peaks of I2 resolve into fine structure with subpeaks upon every
iteration of zooming in.

In the original work, Ref. [13], these states were assumed
delocalized based on the analysis of wave-packet spreading.
Subsequent work in Ref. [14] performed a more detailed anal-
ysis and confirmed this conclusion and also provided some
indications of fractality of these states based on the fitting
(i) inverse participation ratio in position representation de-
noted as ξx, (ii) inverse participation ratio in energy represen-
tations, ξE (for details, see Ref. [14]). To clarify the fractal
nature of these states, we consider the largest I2 at energy
E = E1 and compute Iq(N ) for q = 2, 3, 4, 5, 6 and several
system sizes N at this energy. Assuming the multifractal
ansatz for the participation number Iq(N ) ∼ aNDq (q−1), we
extract the fractal dimension Dq from numerical values Iq(N ),
similarly to how it was done in the single-particle case; see
Fig. 2. The extracted values of Dq are shown as red points
(circles) in Fig. 7 with the error bars of the fit. We observe that
Dq < 1 and is q-dependent, suggesting that the corresponding
eigenstates at this energy are multifractal. In Ref. [14], a
power-law fit of ξx and ξE with system size N with Nmax ≈
10 000 was computed. The extracted values of the power-
law exponents ax,E < 1 for energies E = −2.787, 1.817 and
interaction u = 7.9 suggested that these states were fractal.

FIG. 7. Fractal dimensions Dq (extracted from the Green func-
tion participation number Iq) and Dq (extracted from the participation
number PNq) vs q at energies E1 ≈ 1.8 and E2 ≈ −2.8. For E1 both
methods predict multifractality, while for E2 the projected Green
function method underestimates the fractality of the eigenstate.

In the same way, energies around E2 ≈ −2.8 were an-
alyzed, up to system size Nmax = 6000. The results were
averaged over 10 disorder samples, e.g., values of β [see
Eq. (1)]. The results are shown in Fig. 6. We observe larger
fluctuations in participation number I2 as compared to E1 ≈
1.8, which are shown with the error bars. Also the dependence
of I2 on system size N is less prominent as compared to the
global maximum of I2 located at E1 ≈ 1.8 when the energy
is zoomed in, even for the largest system size considered
[Figs. 6(c) and 6(d)]. The fractal dimension Dq extracted from
Iq shows an almost flat dependence on q (green circles in
Fig. 7), suggesting only fractal but not multifractal character
of the state at this energy.

The Green function participation number results are indi-
rect, since they do not probe the eigenstates directly. Their
advantage is the much lower computational cost for larger sys-
tem sizes as compared to the exact diagonalization. Therefore,
to check our predictions on the fractality of the eigenstates
independently, we performed sparse diagonalization around
energies E1 = 1.821 406 3 and E2 = −2.782 783, correspond-
ing to the local maxima of I2 for Nmax = 7000 and 6000,
respectively. Among the eigenstates extracted around these
two energies, we systematically picked the ones with the
largest PN2 for all system sizes N since we aimed at the
most delocalized eigenstates embedded in the predominantly
localized ones. The power-law fits of the participation number
moments, PNq(N ) ∝ NDq (q−1), were calculated. The resulting
values of Dq are shown in Fig. 7 as blue (E = 1.8) and green
(E = −2.8) solid lines with triangular points. The dashed
lines with points show Dq evaluated from the Green function
participation numbers, red for E1 = 1.8 and yellow for E2 =
−2.8. We see that although the values of Dq and Dq do not
always agree perfectly, nevertheless Dq and Dq imply at least
fractality of the eigenstates that were previously considered
delocalized [13]. This also provides still more evidence for
the validity of Iq as a measure of localization of eigenstates.

We elaborate further on the character of these fractal states
appearing around E1,2. Since the appearance of these states
relies crucially on the interaction, we expect them to have
a peculiar spatial pattern of the wave-function amplitudes.
Indeed we can construct many approximate localized eigen-
states with two particles separated by one or more localization
lengths ξ1. Therefore, the fractal states should have the two
particles separated by at most the single-particles localization
length ξ1. If we visualize the amplitudes of the two-particle
eigenfunction |
(x1, x2)| on a square lattice with coordinates
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FIG. 8. The amplitudes |
(x1, x2)| of eigenstates computed for
N = 3000 at u = 7.9 and corresponding to the local maxima of PN2.
The X -axis and Y -axis denote the positions of the two particles: x1

and x2, respectively. The larger amplitudes correspond to brighter
color. Values smaller than 10−8 were discarded. The energies are
E1 ≈ 1.8 (top) and E2 = −2.782 77 (bottom). Left column: The
eigenstate is localized along the main diagonal, e.g., the two particles
stick together, but the pattern of the amplitudes along the diagonal is
multifractal. Right column: the zoom into the left figure, highlighting
the complex, multifractal pattern of the eigenfunction along the
diagonal.

x1, x2, which correspond to the positions of the two particles,
we expect the fractal states to be localized along the main
diagonal x1 = x2, the fractal structure translating into some
complicated pattern along the main diagonal. To verify this
hypothesis, we plotted two exact eigenstates with the largest
PN2 for N = 3000 in Fig. 8 [u = 7.9 and E1 ≈ 1.8 (top) and
E2 ≈ −2.78]. The axes denote the position of each of the two
particles. We truncated amplitudes |
(x1, x2)| < 10−8 on the
plots. These plots fully confirm our hypothesis outlined above,
with most weight concentrated along the main diagonal, i.e.,
both particles being close to each other.

V. CONCLUSIONS

To conclude, we have shown that previously discovered
metallic states of two interacting particles in an AA chain in
the insulating single-particle region have a fractal structure.
Furthermore, unlike previous claims, we find that these states
are multifractal. This is verified by computing participation
numbers from the projected GF as well as from exact di-
agonalization. An interesting open problem is the fate of
these multifractal states at finite density where many-body
localization was reported at half-filling [19].

As a side effect, we demonstrated that the projected Green
functions can be used as a first probe to check the nature of
eigenstates in an interacting Hamiltonian system having the
advantage that larger system sizes can be targeted as compared
to the computationally challenging exact diagonalization.
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