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We generate translationally invariant systems exhibiting many-body localization from all-bands-flat single-
particle lattice Hamiltonians dressed with suitable short-range many-body interactions. This phenomenon,
dubbed many-body flatband localization, is based on symmetries of both single-particle and interaction terms in
the Hamiltonian, and it holds for any interaction strength. We propose a generator of corresponding Hamiltonians
which covers both interacting bosons and fermions for arbitrary lattice dimensions, and we provide explicit
examples of such models in one and two lattice dimensions. We also explicitly construct an extensive set of local
integrals of motion for this set of models. Our results can be further generalized to long-range interactions as
well as to systems lacking translational invariance.

DOI: 10.1103/PhysRevB.102.041116

Introduction. Understanding the lack of thermalization in
quantum interacting systems has been an active topic since
Anderson predicted in 1958 the absence of transport in single-
particle lattices due to spatial disorder [1]. This localization
phenomenon has been extensively studied theoretically and
experimentally [2], with the impact of interaction between
localized particles as one of the main open questions. Weak in-
teractions were predicted to preserve the absence of transport
of interacting particles [3,4] about 50 years after Anderson’s
original work, leading to the phenomenon of many-body
localization (MBL). The study of MBL systems and their
properties is nowadays a very active topic of research with
several open issues and active fronts (for a survey of the state
of the art, see [5,6]).

MBL was initially predicted for interacting disordered
systems emerging as an interplay of disorder and weak in-
teractions. However, it was later realized that the presence of
disorder is not essential, launching the search for disorder-free
MBL systems. Several possible scenarios emerged as a result:
from nonergodic behavior in networks of Josephson junctions
[7] to one-dimensional (1D) fermionic lattices involving dif-
ferent species of particles [8] or the presence of DC field [9],
local constraints due to gauge invariance [10], the presence of
a large number of conserved quantities [11,12], quasiperiodic
long-range interactions [13], among others. Some proposals
also explored the connection to glasses, predicting many-
body localization in glassy systems [14–17], kinetically con-
strained models [18], and geometrically frustrated models
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[19]. However, the validity of some of the proposals was
later doubted, as it was shown that several disorder-free MBL
systems rely on vastly different energy scales and finite-size
constraints [20]. In other cases instead (e.g., [7]), disorder-free
MBL requires high temperatures or specific strong interaction
regimes; likewise the original MBL requests weak interaction
regimes.

In this Rapid Communication, we propose a generator
of disorder-free MBL systems which is free of the above-
mentioned requirements (specific interaction or temperature
regimes, finite-size constraints, type of many-body statistics,
among others) and applies for arbitrary spatial dimensions.
This generator relies on geometrical frustration of the trans-
lationally invariant single-particle Hamiltonians which yields
no single-particle dispersion, i.e., all Bloch bands are disper-
sionless (or flat), and suitably chosen many-body interactions.
The resulting models exhibit nonergodic behavior with lack
of transport of particles for any interaction strength, and
this phenomenon is dubbed many-body flatband localization
(MBFBL). The study of networks with one or several flat-
bands is an active topic of research on its own. They were
first discussed in the context of ground-state ferromagnetism
[21], but were later identified in various other systems [22,23]
and they have been experimentally realized in several setups,
using, e.g., ultracold atoms [24] and photonic lattices [25–27].
An important property of flatband systems is the presence
of compact localized states—eigenstates with strictly finite
support. These were used to systematically construct flatbands
[28–30] along with other methods [31–35]. Their fine-tuned
character makes flatband systems an ideal platform to study
diverse localization phenomena in the presence of on-site
disorder [36–39], DC fields [40], and nonlinearities [41,42],
among many others.

We introduce MBFBL networks formed by single-particle
all-bands-flat lattice Hamiltonians dressed with suitable short-
range many-body interactions, and provide explicit examples
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in one and two spatial dimensions. We also discuss distinct
interaction terms (including long-range interactions) in order
to cover different types of particle statistics. We construct an
extensive set of local integrals of motion present in MBFBL
networks, and explicitly derive these integrals for some of
the examples presented. We extend our generator scheme
by removing the assumption of translation invariance of the
lattice.

Setup. We consider a translationally invariant many-body
Hamiltonian Ĥ on a lattice

Ĥ = Ĥsp + Ĥint, Ĥsp =
∑

k

f̂k, Ĥint =
∑

κ

ĝκ (1)

with both single-particle part Ĥsp and interaction Ĥint written
as sums of local operators f̂k and ĝκ . The integers k and κ label
unit cells of the lattice in a direct space for two different unit
cell choices A and B. We assume that the sites from one unit
cell of, e.g., choice A belong to different unit cells of choice B.
Regardless of the choice, each unit cell contains ν lattice sites
or single-particle levels. The operators are expressed through
creation and annihilation operators ĉ†

k,a, ĉk,a which create or
annihilate a single particle on a given lattice site k, a with 1 �
a � ν. Then the local operators read

f̂k =
ν∑

a,b=1

tabĉ†
k,aĉk,b + H.c. (2)

We assume the interaction Hamiltonian Ĥint to be two-body,
so that the local operators are

ĝκ =
ν∑

α,β,γ ,δ=1

Jαβγ δ ĉ†
κ,α ĉ†

κ,β ĉκ,γ ĉκ,δ + H.c. (3)

By the above definitions both single-particle and inter-
action Hamiltonians are semidetangled (SD) as [ f̂k, f̂k′ ] =
[ĝκ , ĝκ ′ ] = 0 for any k, k′, κ, κ ′. The spectrum of the single-
particle eigenvalue problem with Ĥsp yields ν flatbands with
each being an eigenenergy of any of the local operators fk .
It follows that Ĥsp enforces full localization and absence of
transport. The same is true for Ĥint. However, because of
the different unit cell choices A, B, in general it follows that
[ f̂k, ĝκ ] �= 0 for any given k and at least a pair of different
values of κ (and vice versa). Consequently, the combination
of both Ĥsp and Ĥint into H in general yields transporting
many-body eigenstates [43–46].

If tab = taaδa,b (with the Kronecker symbol δa,b), the Ĥsp

is coined fully detangled (FD) [31] since it depends on the
particle number operators n̂ = ĉ†ĉ only, and does not move
any particles from any lattice site to any other one. Together
with Ĥint being SD, the full Hamiltonian H preserves full
localization of particles, which is an example of MBFBL.
Likewise, if we assume that Jαβγ δ = Jαβαβδα,γ δβ,δ it follows
that Ĥint is FD and does not move any particles from site to
site. Together with Ĥsp being SD, we again arrive at the result
that the full Hamiltonian H lacks transporting eigenstates and
is MBFBL. The relation between the character of the Hamil-
tonians Ĥsp, Ĥint and the presence of MBFBL is summarized
in Table I. We refer to all the other types of Hamiltonians as
nondetangled.

TABLE I. Existence of MBFBL for different types of single-
particle Hamiltonian Ĥsp and interaction Hamiltonian Ĥint as dis-
cussed in the main text.

Ĥsp/Ĥint SD FD

SD MBFBL
FD MBFBL MBFBL

We generate MBFBL Hamiltonians by choosing any of the
three available combinations from Table I. We then perform
a unitary transformation (rotation) on each unit cell in either
of the two unit cell choices A, B. This results in general in
some complicated Hamiltonian with Ĥsp being nondetangled
and Ĥint being fully or semidetangled, or vice versa [47]
depending on which unit cell type the transformation was
applied to. Furthermore these transformations can be chosen
unit cell dependent resulting in nontranslationally invariant
Hamiltonians.

Conventional disordered MBL systems are known to pos-
sess an extensive set of local integrals of motion [5,48,49],
though explicit derivations are complicated. These integrals
are used to explain relevant properties of these systems. Local
integrals of motion can be explicitly derived for MBFBL net-
works. With our proposed scheme and considering a semide-
tangled single-particle Hamiltonian Ĥsp in H (1), it follows
that the expectation values of the operators Îk = ∑ν

a=1 n̂k,a

measure the number of particles in each local unit f̂k of
Ĥsp. These numbers are conserved in the presence of a fully
detangled interaction Ĥint (since Ĥint does not move particles
from one to another site). It follows that each Îk commutes
with the full Hamiltonian.

The unitary transformations used to recast Ĥsp as non-
detangled yield N local integrals of motion Îk expressed
in the new basis for the generated lattice. The very same
follows if a pair of FD single-particle Ĥsp and a SD inter-
action Ĥint is picked from Table I. In this case, the oper-
ators Îκ = ∑ν

α=1 n̂κ,α defined in each local unit ĝκ of Ĥint

as well lead to N local integrals of motion of the generated
lattice after the unitary transformations have been applied.
In the third case of Table I with both Ĥsp, Ĥint fully detan-
gled, the extensive set of local integrals of motion contains
ν × N elements, since each particle number operator n̂k,a

commutes with the full Hamiltonian H. In that third case
neither particles nor heat (energy) are transported across the
system.

Most of the generated MBFBL models, while being ap-
pealing from a mathematical point of view, could be hard to
implement in experiments due to the complicated structure of
the interaction Ĥint spanning several unit cells. Experimental
feasibility instead favors fully detangled Ĥint, which result,
e.g., from Coulomb interactions between density operators in
real space [50]. Therefore we refine our scheme by choosing
semidetangled single-particle Ĥsp and fully detangled inter-
action Ĥint, and recast Ĥsp to a nondetangled Hamiltonian via
unitary transformations that keep Ĥint fully detangled. This
algorithm works for any number of bands ν of Ĥsp, in any
dimension, and any type of many-body statistics.
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Results. We will now discuss concrete examples in one
and two spatial dimensions. We consider the semidetangled
Hamiltonian Ĥsp and conveniently restate it in the unit cell
representation B of Ĥint. We then apply the subsequent unitary
transformations. This change of unit cell introduces hopping
terms between neighboring unit cells in each local Hamil-
tonian f̂κ . Without loss of generality, we assume nonzero
hoppings between nearest-neighboring unit cells only, and
we adopt the conventions used in Refs. [28,29] for flatband
network generators. Then a possible D = 1 Hamiltonian Ĥsp

reads

Ĥsp =
∑

κ

f̂κ =
∑

κ

[
1
2Ĉ†T

κ H0Ĉκ + Ĉ†T
κ H1Ĉκ+1 + H.c.

]
, (4)

where we grouped the annihilation (creation) operators ĉκ,a

(ĉ†
κ,a) in ν-dimensional vectors Ĉκ (Ĉ†

κ ). The matrices H0, H1

describe intra- and intercell hopping, respectively, and are
chosen so as to enforce the SD condition [ f̂κ , f̂κ ′ ] = 0 for all
κ, κ ′. We remark that this Ĥsp is only one of the infinitely
many realizations of a SD single-particle Hamiltonian.

The fully detangled two-body interaction Hamiltonian Ĥint

introduced above [(1), (3)] is taken with the coefficients
Jαβγ δ = Jαβαβδα,γ δβ,δ for each local component ĝκ : Jαβαβ = 1
for α = β and Jαβαβ = 2 for α �= β. Then Ĥint is preserved as
fully detangled with the same coefficients Jαβγ δ by any 2 × 2
unitary transformation

Uab :

{
ĉκ,a = zd̂κ,a + wd̂κ,b

ĉκ,b = −w∗d̂κ,a + z∗d̂κ,b
(5)

parametrized by two complex numbers z,w such that |z|2 +
|w|2 = 1 and any pair of sites ĉκ,a, ĉκ,b.

The resulting Hamiltonian Ĥint for ν = 2 bands describes
a two-body interaction among the sites âκ = ĉκ,a, b̂κ = ĉκ,b,

Ĥint =
∑

κ

[â†
κ â†

κ âκ âκ + b̂†
κ b̂†

κ b̂κ b̂κ + 2â†
κ âκ b̂†

κ b̂κ ]

=
∑

κ

[n̂a,κ + n̂b,κ − 1][n̂a,κ + n̂b,κ ] (6)

with n̂a,κ = â†
κ âκ and n̂b,κ = b̂†

κ b̂κ . We refer to such interac-
tion as an extended Hubbard interaction, which applies to both
bosons and fermions with spin.

1D networks. We now present two concrete examples.
We first start with the simplest MBFBL network with ν = 2
bands. It is based on the Hamiltonian Ĥsp in Eq. (4) with

H0 =
(

1 0
0 0

)
, H1 =

(
0 t
0 0

)
, (7)

and a free complex parameter t . It is straightforward to check
that this Hamiltonian is semidetangled and has all bands flat.
Next we pick the extended Hubbard interaction Ĥint (6). The
structure of Ĥsp and Ĥint is shown in Fig. 1(a) with solid lines
and red-shaded rods, respectively. The rotation Uab (5) recasts
H0, H1 (7) as

H0 =
( |z|2 z∗w

zw∗ |w|2
)

, H1 = t

(−z∗w∗ (z∗)2

−(w∗)2 z∗w∗

)
, (8)

and makes Hamiltonian Ĥsp nondetangled while Ĥint remains
fully detangled. The resulting MBFBL network is shown in

(a) (b)

FIG. 1. One-dimensional two-band MBFBL network with Ĥsp

SD (a) and with the cross-stitch lattice profile (b). The black circles
indicate the unit cell choice, the solid lines correspond to sites
connected by Ĥsp before (a) and after (b) the rotation, and the red-
shaded rods indicate the sites connected by the extended Hubbard
terms (6) of Ĥint.

Fig. 1(b). The local integrals of motion read (after the rotation)

Îκ = |z|2(n̂a,κ−1 + n̂b,κ ) + |w|2(n̂a,κ + n̂b,κ−1)

+ z∗w(â†
κ−1b̂κ−1 − â†

κ b̂κ ) + H.c. (9)

For three bands ν = 3 with operators aκ , bκ , cκ corre-
sponding to the three sites of the unit cell, the semidetangled
Hamiltonian Ĥsp (6) has the following hopping matrices:

H0 =
⎛
⎝1 0 0

0 0 t1
0 t∗

1 μ

⎞
⎠, H1 =

⎛
⎝0 0 t2

0 0 0
0 0 0

⎞
⎠, (10)

with two free complex (t1, t2) and one free real (μ) parameters.
This network is shown in Fig. 2(a) with gray solid lines. The
interaction Ĥint consists of the extended Hubbard interaction
(6) between the top and the bottom sites (aκ , bκ ) of each
plaquette [red-shaded rods in Fig. 2(a)] and an additional
optional on-site Hubbard interaction for the central site cκ .
Then the rotation Uab (5) is applied to the pair (aκ , bκ ) only
while leaving the sites cκ untouched. This recasts H0, H1 (10)
into

H0 =
⎛
⎝ |z|2 z∗w −t1w

zw∗ |w|2 t1z
−t∗

1 w∗ t∗
1 z∗ μ

⎞
⎠, H1 = t2

⎛
⎝0 0 z∗

0 0 w∗
0 0 0

⎞
⎠

(11)

defining a nondetangled Hamiltonian Ĥsp while the interac-
tion Ĥint remains fully detangled. The resulting diamond-
shaped MBFBL network is shown in Fig. 2(b). That diamond-
shape profile has been realized in diverse experimental setups
for flatband and compact localized state studies [51–55].
Experimentally, the selective extended Hubbard interaction
involving only the top and bottom sites âκ , b̂κ of the diamond

(a) (b)

FIG. 2. One-dimensional three-band MBFBL network with Ĥsp

SD (a) and with the diamond-shaped lattice profile (b). The black
circles indicate the unit cell choice, the solid lines correspond to Ĥsp

before (a) and after (b) the rotations, and the red-shaded rods indicate
the extended Hubbard terms (6) of Ĥint.
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(a) (b)

FIG. 3. Two-dimensional five-band MBFBL network with Ĥsp

SD (a) and with the decorated Lieb lattice profile (b). The black
circles indicate the unit cell choice, the solid lines correspond to Ĥsp

before (a) and after (b) the rotations, and the red-shaded rods indicate
the extended Hubbard terms (6) of Ĥint.

plaquette might be achieved by reducing the distance between
these sites as compared to the distance to the middle site
ĉκ . The parameter t1 could be used to adjust the hoppings.
The local integrals of motion Îκ for this model are given by
Eq. (9) plus the additional particle number operator n̂c,κ for
the central site ĉκ of the lattice, since it is unaffected by the
rotation.

2D networks. The construction of higher-dimensional
MBFBL networks follows a procedure similar to that of 1D
systems. In the simplest setting, the single-particle Hamil-
tonian Ĥsp can be taken as a straightforward extension of
Eq. (4), where matrices H1 are replaced with matrices H0 and
H (1)

1 , . . . , H (D)
1 describing the intercell hopping along differ-

ent spatial directions. The matrices are chosen to ensure that
Ĥsp is semidetangled. Now taking a suitable FD interaction
Ĥint, Eq. (6) or its generalizations, and picking a unitary
transformation that leaves this Ĥint fully detangled, the full
Hamiltonian H exhibits MBFBL [56].

A notable two-dimensional lattice exhibiting MBFBL ob-
tained is the decorated Lieb lattice [57]. This is a five-band
ν = 5 network, whose SD Hamiltonian Ĥsp is shown in
Fig. 3(a), and defined with matrices H0, H (1)

1 , H (2)
1 . In each

unit cell, we use the extended Hubbard Hamiltonians Ĥint (6)
for the two site pairs indicated by red-shaded rods in Fig. 3(a),
and an on-site Hubbard interaction for the central site. The
two rotations Uab (5) applied to the highlighted pairs (leaving
the central site untouched) yield a nondetangled Ĥsp shown
in Fig. 3(b), and the resulting full Hamiltonian H is MBFBL.
The local integrals of motion for the decorated Lieb lattice
can be easily derived and have similar but more involved
expressions to those of the previous models (9).

Perspectives. The proposed scheme relies on the two-body
Hamiltonian Ĥint with on-site terms in the interaction, restrict-
ing the interacting particles to bosons or spinful fermions.
However, the same construction can be implemented for
spinless fermions by, e.g., choosing local operators ĝσ

κ =∑ν
α,β,γ ,δ=1 Jσ

αβγ δ ĉ†
κ,α ĉ†

κ+σ,β ĉκ,γ ĉκ+σ,δ + H.c. with exclusively
intersite interaction terms between unit cell κ and unit cell κ +
σ . In particular, Ĥint is fully detangled for Jσ

αβγ δ = Jδα,γ δβ,δ

and it is preserved as such by the same transformation (5).

This yields a generator of D-dimensional ν-band MBFBL
lattices for spinless fermions, with the recent work of Kuno
et al. [58] being a particular D = 1, ν = 2 band example. The
construction can be further extended to long-range all-to-all
interaction Hamiltonians Ĥint by setting ĝκ = ∑

σ vσ ĝσ
κ and

even infinite-range interactions Ĥint = J/N
∑

κ �=κ ′,a n̂κ,an̂κ ′,a.
The latter example is valid because the interaction is a func-
tion of the total density ρ̂ = ∑

κ,a n̂κ,a only and is therefore
invariant under the transformation (5).

We note that it is possible to extend the generator by
abandoning the translational invariance of the Hamiltonian H.
We can choose the hopping parameters tab and the interaction
matrix elements Jαβγ δ in the starting Hamiltonians Ĥsp and
Ĥint, respectively, to be unit cell dependent. To stick with the
proposed scheme where Ĥint is fully detangled and is pre-
served by unitary transformations (5), the unit-cell-dependent
terms are restrained to the semidetangled Ĥsp only (e.g., on-
site or hopping disorder). The unitary transformations (5) used
to recast Ĥsp as nondetangled induce correlations between the
on-site energies of the pairs of sites involved. In the models
presented [Figs. 1(b), 2(b), and 3(b)] these correlations are
between the sites within the same red-shaded area. These
correlations depend on the parameters z,w defining Ua,b in
Eq. (5). These parameters may also be chosen to vary upon
changing κ if the unitary transformations considered differ
from unit cell to unit cell. Let us additionally observe that
the breaking of translation invariance does not destroy the
existence of the extensive set of local integrals of motion;
they are given by the same operators as in the translationally
invariant case.

Conclusions. We have introduced a generator of many-
body localized disorder-free Hamiltonians by applying uni-
tary transformations to suitably detangled Hamiltonians—a
feature that assumes all-band-flat single-particle Hamiltoni-
ans. This phenomenon, coined many-body flatband localiza-
tion, implies strict localization of particles (interaction or
single-particle Hamiltonian is semidetangled) and in addition
heat (both are fully detangled) irrespective of dimensionality
or interaction strength, and it does not require vastly different
energy scales similar to some models supposed to exhibit
disorder-free MBL. Our work substantially extends previous
studies of localization phenomena of interacting quantum
many-body platforms with all-band-flat lattice single-particle
Hamiltonians [44,46,58–64]. In particular, we propose a flex-
ible and general set of many-body localized systems which
may be experimentally feasible. A novel and unique feature
of these systems is the existence of unitary mappings that
recast them into a detangled form. This very property can
be employed to study the impact of additional perturbations
of the proposed networks which lift MBFBL and modify
the proposed local integrals of motion in a systematic and
analytical form. Hence, these systems offer innovative and
powerful tools to potentially perform systematic analytical
studies of conventional properties of MBL networks which
typically relay on heavy numerical studies.

Acknowledgments. This work was supported by the In-
stitute for Basic Science (Project No. IBS-R024-D1). S.F.
acknowledges support by the New Zealand Institute for Ad-
vanced Study where part of this work was completed.

041116-4



MANY-BODY FLATBAND LOCALIZATION PHYSICAL REVIEW B 102, 041116(R) (2020)

[1] P. W. Anderson, Absence of Diffusion in Certain Random
Lattices, Phys. Rev. 109, 1492 (1958).

[2] B. Kramer and A. MacKinnon, Localization: Theory and exper-
iment, Rep. Prog. Phys. 56, 1469 (1993).

[3] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–
insulator transition in a weakly interacting many-electron sys-
tem with localized single-particle states, Ann. Phys. 321, 1126
(2006).

[4] I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov,
A finite-temperature phase transition for disordered weakly
interacting bosons in one dimension, Nat. Phys. 6, 900
(2010).
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