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Anderson localization of excitations in disordered Gross-Pitaevskii lattices
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We examine the one-dimensional Gross-Pitaevskii lattice at zero temperature in the presence of uncorre-
lated disorder. We obtain analytical expressions for the thermodynamic properties of the ground state field
and compare them with numerical simulations both in the low- and high-density regimes. We analyze weak
excitations above the ground state and compute the localization properties of Bogoliubov–de Gennes modes. In
the long-wavelength limit, these modes delocalize in accordance with the extended nature of the ground state. For
high densities, we observe and derive a divergence of their localization length at finite energy due to an effective
correlated disorder induced by the weak ground state field fluctuations. We derive effective high-density field
equations for the excitations and generalize to higher dimensions.
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I. INTRODUCTION

Trapped ultracold atoms have been used for many years
as an ideal playground to study the properties of a variety of
model classes of interacting bosons in the presence of external
potentials [1–5]. Periodic optical potentials, obtained with the
counterpropagating laser beams [6], allow for emulating the
physics of interacting particles in almost arbitrarily tunable
crystal fields. Artificially created random potentials enable
the direct observation of Anderson localization [7–9]. Such
systems allow for the observation of Bose-Einstein conden-
sation of ultracold atoms. The dynamics of the Bose-Einstein
condensate is successfully described by the Gross-Pitaevskii
(GP) model [10,11].

The thermodynamic properties of the GP lattice model
[12,13] are determined by two conserved quantities [12,14]:
the particle density a and the energy density h. The two
relevant energy scales are the interaction energy ga (here g is
the interaction induced nonlinearity strength g) and the kinetic
energy J due to the tunneling between adjacent lattice sites. In
Ref. [12] the complete phase diagram h-a has been obtained
for a one-dimensional (1D) GP chain in the absence of disor-
der. Various peculiar effects, e.g., a dynamical glass behavior
[14], non-Gibbsian phases [12], and long-lived spatially local-
ized rare fluctuations forming at high temperatures [15], have
been predicted and observed in extensive simulations.

An ordered GP model has a spatially homogeneous ground
state. Weak excitations above that ground state result in spa-
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tially extended Bogoliubov–de Gennes modes [16]. Their
properties have been studied for spatially continuous systems
using the Bogoliubov–de Gennes (BdG) theory [16–19]. The
spectrum of these excitations was verified in experiments with
atomic Bose-Einstein condensates (see the reviews [3,4]). The
interplay of nonlinearity, discreteness of the media, interac-
tion, and spatial disorder results in novel phenomena. Disorder
introduces an additional energy scale W . It induces long-time
relaxation dynamics and glass phases, the Anderson localiza-
tion [20], and the Lifshits glass phase [21–25], to name a few.
The presence of interactions strongly influences Anderson
localization (see, e.g., the reviews [26–28]). For bosons, repul-
sive interactions tend to delocalize excitations [26]. A number
of previous studies have analyzed the long-wavelength prop-
erties of BdG excitations in one-dimensional disordered GP
models [29–37] in order to address superfluidity and various
phase transitions.

In this work, we address the properties of the one-
dimensional disordered GP lattice by going beyond the
long-wavelength limit. We compute the ground state depen-
dence h(a) both in the low-density (ga � J,W ) and the
high-density (ga � J,W ) regimes. The low-density ground
state is characterized by rare regions with nonzero particle
density separated by large empty parts due to the Lifshits tail
states. The high-density ground state is almost homogeneous
with weak fluctuations induced by the disorder field. We com-
pute the ground state using efficient numerical schemes and
find quantitative agreement with analytical approximations.
We then proceed with computing the localization properties
(localization length ξ and participation number P) of BdG
excitations. Exact numerical diagonalization confirms the di-
vergence of ξ and P in the long-wavelength limit. This is
due to the fact that the BdG zero-energy eigenmode becomes
a copy of the ground state in that limit. We then report on
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a surprising anomalous enhancement of ξ and P of BdG
modes at finite energy in the high-density regime. We aim at
an analytical description by performing a systematic pertur-
bation approach using first the exact BdG equations and an
approximate ground state field. We then proceed with approx-
imating the equations as well and obtain the disordered BdG
equations in the leading order for the high-density regime.
These equations reduce the eigenvalue problem to a one-
dimensional chain with short-range correlated disorder, for
which the localization length can be computed analytically.
We find full agreement of our results between all stages of ap-
proximations. Most importantly, the analytical solution yields
a full divergence of the localization length at finite energy.
We conclude with a discussion of possible generalizations to
higher-dimensional lattice cases.

While our analysis is motivated by its direct application to
the Bose-Einstein condensation in systems of ultracold atoms,
it can also provide useful insight into the thermodynamic and
dynamic properties of the Bose-glass phase and the Bose-
glass-superfluid quantum phase transition [38–44] obtained
in strongly disordered or granular two-dimensional supercon-
ductors [45,46] and vortex lattices in layered superconductors
[47].

The paper is organized as follows. In Sec. II we introduce
the model. In Sec. III we study the ground state properties
by combining the analytical and numerical approaches. In
Sec. IV we compute the localization properties of the BdG
excitations. We conclude with Sec. V.

II. MODEL

We consider a disordered Gross-Pitaevskii (GP) model
on a one-dimensional lattice. The model describes, e.g., the
properties of a Bose-Einstein condensate of ultracold atoms
loaded onto an optical lattice formed by counterpropagating
laser beams. The dynamics of such a system is governed by
the Hamiltonian

H =
N∑

�=1

g

2
|ψ�|4 + ε�|ψ�|2 − J (ψ�ψ

∗
�+1 + ψ∗

� ψ�+1). (1)

ψ� is the condensate wave-function amplitude on lattice site
1 � � � N . The nonlinearity parameter g is related to the
strength of two-body interactions in the condensate on the
same site, and J is the hopping strength between neighboring
sites, which is related to the tunneling rate of a single particle.
The on-site energies ε� describe the spatial disorder imprinted
into the system, and take random uncorrelated values with a
probability distribution function ρ(ε) being constant in the
region [−W/2,W/2] and zero outside. Hence, its mean value
and variance are given by 〈ε�〉 = 0 and 〈ε2

� 〉 = W 2/12, respec-
tively.

The Hamiltonian equations of motion ψ̇� = ∂H/∂ (iψ�
∗)

result in

iψ̇� = ε�ψ� + g|ψ�|2ψ� − J (ψ�+1 + ψ�−1). (2)

The discrete GP equation possesses two integrals of motion:
the total energy H and norm A = ∑

� |ψ�|2. The energy can
be measured in units of J , and the uniform rescaling of the
average norm a = A/N tunes the nonlinearity g. Therefore we

fix J = 1 and g = 1 for the numerical computations to come,
but keep them explicitly in all analytical expressions.

III. GROUND STATE PROPERTIES

The dynamics of the system depends on the two energy and
norm densities h = H/N and a = A/N . For a fixed value of
a, the GP model has a ground state (GS) of minimum energy,
which is characterized by the lowest possible value of h. The
ground state can be obtained using the method of Lagrange
multipliers:

L = H − μA,
∂L

∂ψ�
∗ = ∂L

∂ψ�

= 0. (3)

It follows from Eqs. (1) and (3)

μψ� = ε�ψ� + g|ψ�|2ψ� − J (ψ�+1 + ψ�−1), (4)

where μ is the chemical potential (Lagrangian multiplier).
Comparing Eqs. (2) and (4) yields

ψ�(t ) = G�e−iμt , (5)

where G� = ψ�(0) � 0 can be chosen to be real and non-
negative. We then obtain the set of equations that determines
the ground state amplitude field G�

G2
� = (μ − ε� + Jζ�)/g, ζ� = (G�+1 + G�−1)/G� (6)

with the ground state correlation field ζ�.
We note that the ground state solution for the ordered

case W = 0 is simply G2
� = a. Using Eq. (1) we arrive at the

analytical dependence h = ga2/2 − 2aJ , which is shown as a
dotted black line in Fig. 1(a).

In the presence of disorder, there are three competing en-
ergy density scales: the kinetic J , disorder W , and interaction
ga energy densities, respectively. For all studied cases we use
W = 4. We distinguish the regime of low-density ga � W
and high-density ga � W . By fixing the norm density, we
numerically minimize the energy by varying the real and
non-negative variables G� for a given disorder realization as
in Ref. [24] (see also Appendix A). The resulting ground state
density distribution G2

� is plotted in Fig. 1 for two different
norm densities: a = 0.01 and a = 5, with one and the same
disorder realization. For each outcome, we compute the total
energy and the corresponding energy density. We then toss a
new disorder realization and repeat the process Nr times. We
finally compute the average energy density h and its standard
deviation. The resulting dependence h(a) is shown with red
circles in Fig. 1(a), where the error bars are the standard devi-
ation. We find that for nonzero W (here W = 4) the curve h(a)
shifts to lower energies as compared to the ordered W = 0
curve.

Averaging both sides of Eq. (6) over all sites in an infinite
system yields the chemical potential

μ = ga − J ζ̄ , (7)

with the average GS correlation field value ζ̄ = 〈ζ�〉. Inserting
Eq. (7) into Eq. (6) leads to

gG2
� = ga − ε� + Jδζ� � 0, (8)

where δζ� = ζ� − ζ describes the fluctuations of the GS cor-
relation field.
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FIG. 1. (a) The ground state energy density h versus norm den-
sity a. Red circles connected with lines are the results of the
numerical calculation for W = 4, N = 10000, Nr = 50, and the error
bars are the corresponding standard deviations due to disorder real-
ization averaging. The dotted black line corresponds to the ordered
case W = 0. Dashed-dotted blue line: low-density approximation
Eq. (16). Dashed black line: high-density approximation Eq. (19).
(b) G2

� versus l for one disorder realization with a = 0.01 and W = 4.
(c) Same as (b) but with G2

� on logarithmic scale to highlight ex-
ponential localization and non-negativity. (d) G2

� versus � for one
disorder realization with a = 5, and W = 4. Note that g = 1, J = 1
for all cases.

The inhomogeneity of the ground state is measured with its
participation number density

p = Na2∑N
� |G�|4

, 0 � p � 1. (9)

For p → 1 the GS turns homogeneous, while p → 0 indicates
a sparse GS. We varied the system size from N = 1000 to
N = 10000 to check and observe that p does not vary with
N . The independence of p on N provides evidence for the
delocalized GS and also excludes impact of multifractality
effects obtained in high-dimensional systems [48]. The nu-
merical evaluation of p(a) is shown in Fig. 2. We find that p
takes small values in the low-density regime as seen also by a
GS realization in Fig. 1(b). In the high-density regime, p tends
to one, thus indicating a more and more homogeneous GS
distribution as seen also by a GS realization in Fig. 1(c). The
inset in Fig. 2 shows the computed μ(a) dependence. In par-
ticular, μ(a → 0) → −2J − W/2 = −4, while μ = ga − 2J
in the high-density regime.

The GS correlation field ζl characteristics are captured by
its average ζ̄ and standard deviation σζ . Their dependence
on a is represented in Fig. 3. In the high-density regime, it
quickly approaches its asymptotic value ζ̄ = 2. The standard
deviation σζ ∼ 1/a tends to zero in the same high-density
limit (see also inset in Fig. 3). The same inset also shows
that the covariance cov(ε, ζ ) = 〈ε�δζ�〉 is tending to zero in
a similar way in the high-density regime. However, the rela-
tive correlation r(ε, ζ ) = cov(ε, ζ )/σεσζ ≈ 0.8 appears to be
almost constant and nonzero in the limit of high densities,

FIG. 2. The ground state participation number density p versus
the particle density a for N = 1000 (red circles) and N = 10000
(black crosses). Error bars represent the standard deviation of the
data. Dotted lines connect the data and guide the eye. The blue
dashed-dotted line is obtained from Eq. (14). Inset: The chemical
potential μ versus a (red circles). Error bars represent the standard
deviations of the data. Dotted lines connect the data and guide
the eye. The blue dashed-dotted line is obtained from Eq. (13).
N = 1000, Nr = 100, W = 4, g = 1, J = 1 for both plots.

indicating that whatever weak the GS correlation field fluctua-
tions may become, they still carry some nontrivial correlations
with the disorder field.

A. Low-density regime

In the low particle density regime, i.e., as ga � W the
ground state G� is a strongly inhomogeneous one. In order

0 1 2 3 4 5
a

0

1

2

3

4

� �
,

�

501 10a
0.01

0.1

1

r(���)
cov(���)
��

FIG. 3. The average GS correlation field value ζ̄ (red filled trian-
gles) and its variance σζ (blue filled diamonds) vs a. Inset: σζ (blue
filled diamonds), cov(ε, ζ ) (red open squares) and r(ε, ζ ) (black
filled squares) versus a on logarithmic scales. N = 1000, Nr = 100,
W = 4, g = 1, J = 1 for both plots. Connecting dotted lines guide
the eye.
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to satisfy Eq. (6), it has to be contained by a large amount of
well-separated particle clusters of size L � 1 [see Fig. 1(b)].
The particles concentrate in the deepest minima of the on-site
energy landscape, and the number of particles outside the
clusters is exponentially small. Let us perform a quantitative
analysis of these so-called Lifshits states [21]. Let ρ1 be the
probability of finding a particle on site �. The on-site energy
ε� has to satisfy the condition ε� < μ + Jζ�. We use the prob-
ability ρc(μ) to obtain particles in a connected cluster of size
L [49]

ρc(μ) = ρ1
L =

[∫ μ+2J

−W/2
ρdε

]L

=
[
μ + 2J + W/2

W

]L

. (10)

The cluster size L is obtained as follows. Inside a cluster, the
ground state G� satisfies the linearized Eq. (4) with minimal
on-site energy, ε� = −W/2. Therefore, G� 
 sin(q0�), where
q0 is determined as q0 = √

(μ + 2J + W/2)/J . Taking into
account that G� 
 0 outside the cluster, we obtain the explicit
expression

L(μ) = π

√
J

μ + 2J + W/2
. (11)

The total norm can be approximated as the product of the
total number of clusters N0, multiplied by their amplitudes A0,
and the cluster size L:

A =
∑

�

ψ�
2 = N0A0L = Nρc(μ)A0L. (12)

Using Eq. (12) it follows

ga = gA0Lρc(μ) ≈ 2

[
μ + 2J + W/2

W

]L

, (13)

where gA0L ≈ 2, as found numerically. Substituting (11) in
(13) and solving the resulting transcendent equation we obtain
the dependence of the chemical potential on the norm density
μ(a). This dependence is plotted in the inset of Fig. 2 by the
dashed-dotted line and shows very good agreement with the
numerically computed μ(a) dependence.

Similarly, we obtain the dependence of the ground state
participation number density p on the chemical potential μ as

p =
(∑

� ψ�
2
)2∑

� ψ�
4 = (A0Lρc(μ)N )2

A0
2Lρc(μ)N

= Nρc(μ)L. (14)

With Eq. (13) it follows

p = N
L

2
ga. (15)

Using (11) and (13) we obtain the p(a) dependence plotted
in Fig. 2, which shows good agreement with the numerically
computed result.

Finally, we can compute the ground state energy density by
substituting (14) into the exact relation h = μa − Nga2/2p:

h = μa − ga2

2ρc(μ)L
=

(
μ − 1

L

)
a. (16)

This dependence is plotted in Fig. 1 by the dashed-dotted blue
line and shows very good agreement with the numerical result
for small values of a < 1.

B. High-density regime

In the high-density regime, we have max{W, J} � ga.
First, we use Eq. (8) when J/(ga) � 1

G� 

√

a − εl

g
. (17)

This local density approximation of the ground state works
better for higher densities because the condensate healing
length becomes shorter and shorter. Using Eqs. (1) and (5)
and averaging over all sites with respect to disorder yield

h = 〈
ε�G2

�

〉 + g

2

〈
G4

�

〉 − 2J〈G�G�+1〉. (18)

This finally leads to the energy density of the ground state in
the high-density regime (see also Appendix B)

h ≈ g

2

(
a2 − w2

12

)
− 8J

9w2

[(
a + w

2

)3/2

−
(

a − w

2

)3/2]2

,

(19)

where we denote w = W/g. The corresponding black dashed
curve for W = 4 in Fig. 1 shows very good agreement with
the numerically computed ground state line h(a) in the high-
density regime.

Note that in the high-density regime we can further expand
Eq. (17) in small parameter W/(ga)

G� 
 √
a

[
1 − εl

2ga

]
. (20)

Then the resulting ground state energy is very close to that of
Eq. (19).

IV. ELEMENTARY EXCITATIONS

We consider weak (small amplitude) excitations above the
ground state by introducing a small perturbation to the ground
state G�:

ψ�(t ) = [G� + δ�(t )]e−iμt . (21)

Linearizing the equations of motion (2) with respect to δ, we
arrive at

iδ̇� = (ε� − μ)δ� + gG�
2(δ∗

� + 2δ�) − J (δ�+1 + δ�−1). (22)

With the choice

δ�(t ) = χ�e−iλt − ��
∗eiλt (23)

and the use of Eq. (6) we obtain the BdG eigenvalue equations
for the two interacting excitation fields χ and � as

λχ� = Jζ�χ� − J (χ�+1 + χ�−1) − gG2
� (�� − χ�),

λ�� = −Jζ��� + J (��+1 + ��−1) + gG2
� (χ� − ��). (24)

We stress that the right-hand side (RHS) of the above BdG
equations contains only the GS field Gl as input. The BdG
equations are particle-hole symmetric [λν, {χ�

ν,��
ν}] ←→

[−λν, {��
ν, χ�

ν}] (ν is the mode number). This yields the
solution χ� = �� ∝ Gl for λν = 0 as follows also readily
from inspecting (24), independently of the choice of the GS
field. The eigenvector to λ = 0 can be also obtained from the
observation that δ� is time independent by Eq. (23). Then it
follows from Eq. (21) that δ� is proportional to G�. Due to this
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proportionality, the BdG eigenvector to λ = 0 is delocalized
in space, just as G� is for any finite norm density a (see also
Ref. [19]).

Next we use the decomposition χ� = (S� + D�)/2 and
�� = (S� − D�)/2 we arrive at the (still) exact set of equa-
tions

λS� = (Jζ� + 2gG2
� )D� − J (D�+1 + D�−1), (25)

λD� = Jζ�S� − J (S�+1 + S�−1). (26)

Inserting (26) into (25) yields

λ2

J
S� = (Jζ� + 2gG2

� )(ζ�S� − S�+1 − S�−1)

− J (ζ�+1S�+1 + ζ�−1S�−1 − S�−2 − 2S� − S�+2).
(27)

BdG modes to nonzero values of λ are expected to be An-
derson localized due to the presence of disorder and the
one-dimensionality of the system.

A. Numerical results

We numerically calculate the participation number of each
mode as

Pν =
(∑N

� n�,ν

)2

∑N
� n2

�,ν

, n�,ν = |χ�,ν |2 + |��,ν |2, (28)

where ν = 1, . . . , 2N is the mode number. We divide the λ

axis into small bins of size 0.05, and average the participation
numbers in each bin to obtain the dependence P̄(λ). The
system size is N = 105, and we used three disorder realiza-
tions (except for a = 10 with only one disorder realization).
For smaller system size N = 104 we increased the number
of realizations, with results matching the plotted results very
well (not shown here). Essentially there is a tradeoff due to
the computational limitations on the CPU time. In addition
there is a limitation in the computation of large systems,
which comes from both the ground state computation, and the
diagonalization of large matrices for the BdG modes. Since
we intend to compute large participation numbers, we choose
the largest possible system sizes. The fact that the number of
realization is small does not impact the statistical fidelity of
the curves, since the λ axis is binned with a fixed bin size, and
larger system sizes lead to more data per bin and thus to more
statistical reliability.

The resulting curves are plotted in Fig. 4 for different
norm densities and W = 4. We observe symmetric curves
P̄(λ) = P̄(−λ) due to the above-mentioned particle-hole sym-
metry of the BdG eigenvalue problem. All curves show a clear
divergence P̄(|λ| → 0) → ∞, which is only limited due to
finite-size effects. This divergence agrees with the above result
that the BdG mode at zero energy λ = 0 must be delocalized
and thus have an infinite participation number. The divergence
has been addressed in a number of publications [19,25,29–32],
which results in P̄ ∼ 1/|λ|α with α = 2 in the high-density
regime [30,32,50].

The participation numbers at nonzero energies show an
expected finite height peak in the low-density regime, which
is a peak continuation from the zero interaction limit (Fig. 4).

-8 -6 -4 -2 0 2 4 6 8
�

10
0

10
1

10
2

10
3

10
4

10
5

P

FIG. 4. The bin average participation number P̄ of BdG modes
versus the energy λ. Solid lines - numerical computation with N =
105, W = 4 and a = 0, 0.5, 1, 2, 3, 5, 10 from bottom to top, and
Nr = 3. Thick dashed lines: transfer matrix calculation results of the
localization length 1.5 × ξ (λ) for a = 3, 5, 10 with 108 iterations of
(27) (see text for details). Note that all localization length data are
multiplied with one and the same scaling factor 1.5.

In that limit, the BdG eigenvalue equations decompose into
two copies of the tight-binding chain with on-site disorder.
The largest localization length and participation number are
then obtained in the centers of their spectra λ = ±μ, which
host the largest density of states [49]. Upon crossing over
from the low-density to the high-density regime, we observe
a second peak developing at larger absolute λ values, which
has a finite height, but which appears to grow swiftly (Fig. 4).
This new side peak results in an unexpected enhancement of
the participation number, localization length, and size of BdG
modes at finite energies λ in the high-density regime.

B. Finite energy localization length singularity for high densities

In order to analytically assess the observed side peak of the
BdG modes in the high-density regime ga � W , we use the
exact equations (27) with the approximated GS field (20) and
compute the localization length ξ (λ) with a transfer matrix
method (see Appendix C). The resulting curves are plotted
in Fig. 4 for a = 3, 4, 5, 10 and show almost full quantitative
agreement with the numerical results from the exact equations
and the numerically exact GS for a = 10, while the agreement
is less quantitative but still qualitative as the value of a is
reduced. Therefore we can use the approximate GS field (20)
with the exact equations (27) as a reliable reference for even
larger values of a > 10, which are not accessible by brute
force numerical computations due to system size limitations
and the increase of the participation number and localization
length with further density increase. The resulting dependence
ξ (λ) is shown in Fig. 5 for a = 100. The side peak is not only
remaining in place but is also increasing its height relative to
the background.

In the high-density limit, ga � W , deeper insight on the
localization properties of BdG modes can be obtained. We
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FIG. 5. The localization length ξ (λ) for a = 100, g = J = 1,
W = 4. Black solid line: exact BdG equations (27), approximate GS
field (20), transfer matrix calculation results with 108 iterations. Red
thick dashed line: approximate BdG equations (29), approximate GS
field (20), transfer matrix calculation results with 108 iterations. Blue
thick dotted line: analytical result (32) with (D7).

simplify the exact Eq. (27) keeping only the leading-order
term on the RHS of (27), and arrive at

λ2

J
S� = 2gG2

� (ζ�S� − S�−1 − S�+1). (29)

Note that λ = 0 and Sl = Gl is still a valid solution. We again
compute the localization length ξ (λ) using (29) and the GS
field approximation (20). The resulting curve for a = 100
agrees quantitatively with the exact equation result in Fig. 5,
confirming the validity of our equation approximation.

Defining the dimensionless energy E as E = λ2/(2gaJ ) we
cast Eq. (29) into the standard form

(Ẽ + κ�)S� = S�−1 + S�+1 (30)

with

Ẽ = 〈ζ�〉 − E
〈
a/G2

�

〉
, κ� = ζ� − E

a

G2
�

− Ẽ . (31)

In the high-density regime ga � W , Ẽ = 2 − E and the per-
turbing random potential κ� is small, with its expectation
value being zero: 〈κ�〉 = 0. The disorder field ε� is uncor-
related at different sites: 〈εnεm〉 = δnmW 2/12. This holds as
well for the ground state field (20) in the high-density regime.
However, the ground state correlation field ζ� has a finite
range of correlations due to the presence of nearest-neighbor
terms G�±1 in its definition (6). As a consequence, the random
potential κ� is also correlated. Anderson localization with
correlated disorder was studied in many publications (see
Ref. [51] for continuum models and Refs. [52–55] for lattice
models). The localization length of model (30) is calculated
following Sec. 5.2.1 of the review [56] (see Appendix D for
details):

ξ = 96g2a2

W 2

4 − E

E (2 − E )2
. (32)

In the vicinity of E = λ2/(2gaJ ) = 0, we reobtain the known
localization length divergence ξ 
 192g3a3J

W 2λ2 . Notably, we dis-
cover an additional divergence of the localization length at
finite energy E = 2, i.e., λ = ±2

√
gaJ , as

ξ 
 24g3a3J

W 2(2
√

gaJ ± λ)2
, |λ ± 2

√
gaJ| � 2

√
gaJ. (33)

The above singularity is the explanation for the observed side
peak. We plot (32) in Fig. 5 for a = 100 and find quantita-
tive agreement with the localization length data from transfer
matrix evaluations of the exact and approximate equations
while using the approximate GS field dependence as induced
by the disorder. In particular, the peak position for the large
density approximation from Eq. (27) agrees very well with
the singularity position. In accord with our derivations from
above, we expect the singularity to develop from the numeri-
cally observed finite height peak in the limit of infinite large
densities.

C. Generalizations

Let us generalize to any lattice dimension with some hop-
ping network or generalized discrete Laplacian:

iψ̇� = ε�ψ� + g|ψ�|2ψ� − D(ψ�). (34)

The discrete Laplacian

D(ψ�) =
∑

m

J (� − m)ψm. (35)

We assume J (m) � 0 to ensure the non-negativity of the
ground state field Gl . Note that the Hamiltonian (1) is obtained
with the choice J (m) = J (δm,1 + δm,−1). It follows from the
definition (35) that

gG2
� = ga − ε� + δζ̂� � 0 (36)

and

ζ̂� = 1

G�

D(G�). (37)

Note that with this definition the field ζ̂l includes the strength
of the hopping network, as opposed to previous notations.

The exact equations for S� and D� take the form

λS� = (
ζ̂� + 2gG2

�

)
D� − D(D�) (38)

λD� = ζ̂�S� − D(S�). (39)

The approximate expression for the field G� in the high-
density case is still given by Eq. (20), with all corrections due
to the change in the hopping network and even the dimension-
ality appearing in higher-order corrections.

Since both ζ̂ ∼ J and D ∼ J , we arrive at the generalized
high-density BdG equations similar to the above-considered
one-dimensional case with nearest-neighbor hopping as

λ2S� = 2gG2
� (ζ̂�S� − D(S�)). (40)

Equations (20), (35), (37), and (40) constitute the general-
ization of the BdG equations in the high-density limit to
any lattice dimension and hopping network. It remains to
be studied whether these equations also result in a strong
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enhancement of transport properties of disordered BdG modes
at certain finite energies and momenta due to ground state
correlations. An analysis of Eq. (40) for various 2D networks
would be of interest in order to compare to the study of
the Bose glass-superfluid quantum phase transitions in 2D
disordered superconductors, which are controlled by the spa-
tial localization of its excitations [42]. It remains an open
question as to whether (40) admits any similar delocalization
tendencies at finite energies in two-dimensional systems as
found here for one-dimensional systems, and whether any
delocalized phase can develop out of the mechanism studied
here in one-dimensional systems.

V. CONCLUSION

We have studied in detail the properties of the ground state
and small amplitude BdG excitations of the one-dimensional
Gross-Pitaevskii lattice model in the presence of spatial dis-
order. On the numerical side, we computed the ground state
energy density h as a function of the norm (particle) density
a throughout the low- and high-density regimes. We applied
perturbation approaches to both regimes and obtained ana-
lytical approximations of h(a), the chemical potential, and
the participation number density of the ground state, which
characterizes its spatial distribution properties. The obtained
analytical results agree quantitatively with full numerical
computations.

We then proceeded to numerically compute the localization
properties of small amplitude excitations above the ground
state, which are coined Bogoliubov–de Gennes modes. We
observe a divergence of their localization length for zero
energy in full accord with previous publications. However,
we also find an anomalous enhancement of the localization
length of excitations in a side peak for finite energies in the
high-density regime. We perform a systematic perturbation
approach, which results in approximate eigenvalue equations,
which are valid in the high-density regime. That eigenvalue
problem corresponds to a one-dimensional tight-binding chain
with nearest-neighbor hopping and correlated on-site disorder.
We derive analytical expressions for the localization length
as a function of energy. We then finally obtain a singularity
and length divergence at a finite energy, which precisely cor-
responds to the numerically observed side peak. Therefore we
conclude that a weakly excited disordered condensate in the
regime of high density will allow for almost ballistic transport
of excitations for selective finite energies and momenta. We
also generalize the high-density equations for Bogoliubov–de
Gennes modes for more complicated and higher-dimensional
networks.
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APPENDIX A: NUMERICAL DETAILS ON THE GROUND
STATE CALCULATION

The wave-function amplitude is defined as ψ� = √
a�eiφ� ,

where a� is the local norm density, and φ� is the phase of the
complex order parameter at each site with 0 � φ� � 2π . It
follows from Eq. (1) that the ground state is characterized
by a vanishing phase difference between neighboring sites,
φ� = φ, and all the phases evolve in time keeping their phase
difference zero [Eq. (5)]. Without loss of generality, we set
t = 0 when all phases are equal to zero and define G� as a real
variable.

Fixing the disorder realization and the desired average
norm density a, we start iterating with a real random initial
guess for G� in order to minimize the real function of H .
The iteration is performed on five neighboring sites at a time
using a function minimization algorithm [57], along with the
normalization of G� according to

∑
� G2

� = Na. We shift the
window of minimization by one site until all sites of the sys-
tem are iterated once. We repeat this procedure 10–40 times
until full convergence to the minimum energy is reached with
a tolerance <10−15. We then test the numerical ground state
G� such that the standard deviation of μ for each site found by
Eq. (6) is much smaller than its mean for each realization of a
system size N .

APPENDIX B: GROUND STATE AVERAGING
FOR HIGH DENSITIES

For a � W/2g, we can define the average interaction of the
neighboring sites as

〈G�G�+1〉 =
〈√(

a − ε�

g

)(
a − ε�+1

g

)〉
. (B1)

Different sites are uncorrelated, i.e., for arbitrary f (x):
〈 f (εi ) f (ε j )〉 = 〈 f (εi)〉〈 f (ε j )〉, for i �= j. Then

1

N

∑
i

〈 f (εi ) f (ε j )〉 =
(∫

dερ(ε) f (ε)

)2

. (B2)

By employing f (ε) = √
a − ε/g in Eq. (B2), we get

〈√(
a − ε�

g

)(
a − ε�+1

g

)〉

=
[

1

W

∫ W
2

− W
2

dε

√
a − ε

g

]2

=
{

2

3w

[(
a + w

2

)3/2

−
(

a − w

2

)3/2]}2

, (B3)

where w = W/g.
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APPENDIX C: LOCALIZATION LENGTH:
TRANSFER MATRIX METHOD

We solve Eq. (27) with the approximate GS field (20) with
the transfer matrix method:⎡

⎢⎣
S�+2

S�+1

S�

S�−1

⎤
⎥⎦ = T�

⎡
⎢⎣

S�+1

S�

S�−1

S�−2,

⎤
⎥⎦, (C1)

where the transfer matrix

T� =

⎡
⎢⎢⎣

u� + ζ�+1 λ2/J2 − 2 − uζ� u� + ζ�−1 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦,

(C2)

where u� = 2gG2
�/J + ζ�. Following Ref. [58], we start the

transfer matrix multiplication with

Q0 =

⎡
⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎦ (C3)

matrix with orthogonal columns, and multiply it by the trans-
fer matrices T1T2 . . . TN . To control the round-off error, after
each q = 5 iterations (number of multiplications by the trans-
fer matrix T̂ ), we apply QR decomposition, which gives two
vectors: a normalized 2×4 matrix Qj , and a 2×2 upper trian-
gular matrix Rj :

QjRj = T( j−1)q+1 . . . TjqQj−1 ( j = 1, . . . , N/q). (C4)

The smallest positive Lyapunov exponent can be estimated by

γ̃2 = 1

N

N/q∑
j=1

ln Rj (2, 2) (C5)

in the limit N → ∞. Here, in each QR factorization step, we
store the second diagonal element of Rj , which has the smaller
positive Lyapunov exponent. Practically, we need to use large
but finite number of iterations: N = 108

ξ = 1/γ2. (C6)

In addition, Eq. (29) can be solved by transfer matrix
method: [

S�+1

S�

]
= T�

[
S�

S�−1

]
, (C7)

where

T� =
[
ζ� − λ2/2JgG2

� −1
1 0

]
. (C8)

We start the transfer matrix multiplication with

V0 =
[

1
0

]
(C9)

vector, and multiply it by the transfer matrices: Vj =
TjVj−1 ( j = 1, . . . , N ). To deal with the round-off error,

after every five iterations, we normalize the vector Vj and
estimate the smallest positive Lyapunov exponent by

γ̃1 = 1

N

N/q∑
j=1

ln ‖Vj‖. (C10)

After N = 108 iterations, we find the localization length ξ as

ξ = 1/γ̃1. (C11)

APPENDIX D: LOCALIZATION LENGTH CALCULATION
DETAILS IN THE HIGH-DENSITY REGIME

In this Appendix, we outline the computation of the local-
ization length in the high-density regime as given by Eq. (32).
We start from Eqs. (30), (31). In leading order 1/(ga) we
obtain Ẽ = 2 − E and the on-site disorder potential

κ� = ε�(2 − 2E ) − ε�−1 − ε�+1

2ga
. (D1)

We define the on-site disorder correlation function

K (n − m) = K (m − n) = 〈κnκm〉. (D2)

The range of the correlations is finite because K (�) takes
nonzero values only for � = 0,±1,±2:

K (0) = 〈κ2
� 〉 = W 2

48g2a2

(
(2 − 2E )2 + 2

)
, (D3)

K (1) = 〈κ�κ�+1〉 = W 2

24g2a2
(2E − 2), (D4)

K (2) = 〈κ�κ�+2〉 = W 2

48g2a2
. (D5)

The Fourier transformed correlation function is then readily
obtained:

K (q) =
∑

�

K (�)eiq�

= K (0) + 2
∞∑

�=1

K (�) cos q�

= W 2

12g2a2

(
(1 − E )2 + 1

2
− 2(1 − E ) cos q

+ 1

2
cos 2q

)
. (D6)

Next we compute the above expression at double argument
value K (2q) and then use the dispersion relationship of the
homogeneous Eq. (30)

E = 2[1 − cos(q)] (D7)

to replace q by E . After some additional simple algebra, the
result reads

K (2q) = W 2

48g2a2
E2(2 − E )2. (D8)

Anderson localization with correlated disorder was studied
in many publications (see Ref. [51] for continuum models
and Refs. [52–55] for lattice models). The inverse correlation
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length in the model (30) is given by (see Sec. 5.2.1 of the
review [56])

1

ξ
= K (2q)

8 sin2 q
. (D9)

Substituting K (2q) from (D8) into Eq. (D9) and using
Eq. (D7) yield

ξ = 96g2a2

W 2

4 − E

E (2 − E )2
. (D10)
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