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Heat percolation in many-body flat-band localizing systems
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We demonstrate robust ergodicity breaking in interacting many-body systems in arbitrary Euclidian dimension
based on disorder-free many-body localization. Translationally invariant fine-tuned single-particle lattice Hamil-
tonians can host dispersionless (flat) bands only. Suitable short-range many-body interactions enforce complete
suppression of particle transport due to local constraints and lead to ergodicity breaking termed many-body
flat-band localization. However, heat might still flow between spatially locked charges. We demonstrate that
heat transport is completely suppressed in one dimension. In higher dimensions we establish a universal bound
on the filling fraction below which the heat transport is suppressed. The bound is based on the mapping to a
classical percolation problem. Above the bound, the heat transport in percolation clusters is additionally affected
by emerging bulk disorder and edge scattering induced by local constraints, which work in favor of arresting the
heat flow and might keep the ergodicity breaking above the universal bound. We discuss explicit examples in
one and two dimensions.
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Introduction. The breaking of ergodicity in interacting
quantum many-body systems is an important open problem
and active topic of research. One example is many-body lo-
calization (MBL): The first studies [1–5] showed that MBL
and the exponential suppression of any transport arise in
one-dimensional (1D) interacting systems from the inter-
play of random fields and interactions. While the original
MBL framework has been widely developed both theoreti-
cally and experimentally [6,7], the need for random fields
as a key element for MBL has been later relaxed, and al-
ternative mechanisms for ergodicity breaking were proposed,
e.g., disorder-free MBL and Hilbert space shattering. Indeed,
MBL features have been observed in a variety of systems
without disorder [8–13]—particularly in interacting systems
featuring an extensive number of local constraints [14–19].
Computationally, interacting quantum systems face an expo-
nential divergence in complexity over the system size, which
limits most numerical efforts to one dimension. This, and the
lack of analytically treatable models and methods, renders the
crucial quest for ergodicity breaking in higher-dimensional
networks particularly challenging. Indeed, while signatures of
MBL in 2D systems have been reported [20,21], and results
from the avalanche framework [22,23] indicate persistence
of the transition in larger dimensions [24], it has also been
shown that in D > 1 the MBL regime is possibly unstable and
destabilized in the long-time limit [25].
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In this paper, we study the transport features of disorder-
free many-body systems with ergodicity breaking which are
based on Hamiltonian networks completely lacking single-
particle dispersion. In particular, we relate the existence of a
phase transition between conducting and insulating regimes
to the lattice profile and its dimensionality. In translation-
ally invariant lattices, the lack of single-particle dispersion
in, e.g., one Bloch band typically results in the presence
of a macroscopically degenerate set of compact localized
states (CLSs)—spatially compact eigenstates [26–28]. Hence
a complete lack of dispersion—i.e., when all Bloch bands are
flat, referred to as “all bands flat” (ABF) [29–31]—results
in the absence of extended states and strict single-particle
confinement in the network. Flat-band networks are in-
creasingly permeating the quantum many-body field. Indeed,
single-particle CLSs have been extended to many-body CLSs
[32–34], while quantum scars [35–37] and MBL-like dynam-
ics [38–40] have been reported very recently in flat-band
lattices. However, more importantly, it has been shown that
fine-tuning of the interaction in ABF networks induces an
extensive set of local constraints which completely suppress
charge transport in any spatial dimension—a phenomenon
called many-body flat-band localization (MBFBL) [41–43].
While MBFBL models originate from a fine-tuning protocol
(see Ref. [41] for details) which makes them conceptually
different with respect to conventional MBL systems, they
offer an innovative platform to study novel quantum ergodic-
ity breaking phenomena. In this paper, by recasting MBFBL
networks into a site-percolation problem we demonstrate the
robustness of the ergodicity-broken phase up to a certain
filling fraction, similar to the results obtained in Ref. [19]
for a different model. Our main finding is a universal lower
bound on the critical filling fraction that depends only on
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dimensionality and lattice geometry, but not on the details of
the Hamiltonian. More specifically, the transition is absent,
and any transport is suppressed in all such 1D networks,
whereas in D � 2 the presence of the transition is bounded by
the MBFBL geometry—highlighting high-dimensional many-
body systems where transport vanishes at any filling fraction.
However, we note that in the conducting phase above the
bound predicted by percolation theory, the local constraints
might hurdle this and potentially stop transport by generating
effective bulk and edge disorders. Furthermore, these disor-
ders are nonuniversal and depend on the microscopic details
of the Hamiltonian.

Setup. We study interacting many-body systems whose
Hamiltonians consist of D-dimensional networks with ν

strictly flat energy bands equipped with fine-tuned two-body
interactions. We consider spinless fermions, and following the
scheme outlined in Ref. [41], we focus on a set of Hamiltoni-
ans written as

Ĥ = Ĥsp + V Ĥint =
∑

l

Ĉ†T
l H0Ĉl + V

∑
〈l1,l2〉

∑
a,b

J l1,l2
a,b n̂l1,an̂l2,b,

(1)

where in Ĥsp the fermionic annihilation (creation) operators
ĉl,a (ĉ†

l,a) have been grouped in ν-dimensional vectors Ĉl

(Ĉ†
l ), while H0 is a Hermitian matrix, l is a D-dimensional

multi-index, and a, b label sites in unit cells. In Ref. [41],
this representation of Ĥsp has been named semidetangled
since Ĥsp consists of decoupled unit cells of ν lattice sites
each, whose profile is defined by H0. The interaction Ĥint

is set as products of particle-number operators n̂l,a = ĉ†
l,aĉl,a.

The multi-indices 〈l1, l2〉 account for neighboring unit cells
reflecting the geometry of the interaction network, while the
coefficients J l1,l2

a,b define the interaction between cells l1 and l2.
The addition of a fine-tuned density-density interaction

Ĥint to the semidetangled all-band-flat networks Ĥsp in Eq. (1)
results in strict particle localization—a phenomenon labeled
many-body flat-band localization (MBFBL) [41]. Indeed, the
local operators Îl = ∑ν

a=1 n̂l,a, which count the number of par-
ticles within each unit cell, commute with Ĥ (1) and prohibit
charge transport. The Hilbert space decomposes into dynami-
cally independent subspaces characterized by the eigenvalues
of {Îl}. In general, the local conserved quantities Îl do not
forbid global heat transport, since particles confined to neigh-
boring unit cells might still exchange energy locally via the
interaction Ĥint [44]. However, the local heat exchange van-
ishes if at least one of the two cells coupled by Ĥint is either
empty or full, i.e., Îl = {0, ν}. Consequently, unit cells of
Eq. (1) split according to their occupation number into block-
ing (empty or full cell, Îl = {0, ν}) or nonblocking (all other
cases, Îl �= {0, ν}). The impact of blocking cells on the global
heat transport in Eq. (1) depends on the network geometry
encoded by 〈l1, l2〉, its spatial dimension D, the number of
single-particle flat bands ν, and the filling fraction δ.

One-dimensional case. In 1D MBFBL networks (1), a
single blocking unit cell acts as a bottleneck, strictly dis-
connecting the left and right parts of a given state of the
Hilbert space and completely removing any global heat trans-
port. Consequently, subspaces labeled by {Îl} are separated
into (i) nonblocked channels, where every unit cell is non-

(a) (b)

(c) (d)

FIG. 1. (a) One-dimensional ν = 2 MBFBL network, Eq. (2),
with Ĥsp (black lines) and Ĥint (green curves). The black circles
indicate the unit cell choice. (b) Same as (a) with Ĥsp nondetangled
(cross-stitch). (c) Nonblocked islands (blue shaded areas) and block-
ing unit cells (orange shaded areas) in a generic state of the Hilbert
space of Ĥ. (d) Visualization of the mapping of Ĥ (2) to a transverse
field Ising spin chain ĤI (3) in the subspace of nonblocked channels
at δ = 0.5. The green horizontal line indicates the spin-interaction
terms.

blocked [hence there exists a continuous path of unblocked
(heat-exchanging) units which connect opposite ends of the
system], and (ii) nonconducting states, where at least one
unit cell is blocking. Within a nonconducting state, blocking
cells separate contiguous nonblocking unit cells, nonblocked
islands, where heat transport might be possible although non-
global. We remark, however, that the presence of continuous
paths of nonblocking or heat-exchanging units in nonblocked
channels might not be sufficient to allow for transport in
the corresponding subspace. The existence of nonblocked
channels—and the possibility of heat transport—in 1D net-
works (1) is controlled by the filling fraction δ. For 1/ν � δ �
(ν − 1)/ν, nonblocked and nonconducting channels coexist;
otherwise only nonconducting states are present.

The ν = 2 case is the minimal test-bed setup. In this case,
nonblocked channels are only present at exactly filling frac-
tion δ = 0.5 (Îl = 1 in all cells). An example network (1) is
shown in Fig. 1(a); the corresponding Hamiltonian Ĥ reads

Ĥ =
∑

l

(âl , b̂l )
†

(
s t
t s

)(
âl

b̂l

)
+ V

∑
l

n̂b,l n̂a,l+1, (2)

where âl , b̂l (â†
l , b̂†

l ) are the fermionic annihilation (creation)
operators, n̂a,l , n̂b,l are the respective particle-number oper-
ators, and s, t are on-site energies and intracell hopping,
respectively. Note that this network is related to the (non-
detangled) cross-stitch lattice in Fig. 1(b) by local unitary
transformations [45], which preserve Ĥint as a density-density
interaction [41].

A generic nonconducting state is shown in Fig. 1(c), where
nonblocked islands are separated by blocking unit cells. In-
stead, a sample nonblocked channel is shown in Fig. 1(d).
Within such channels that exist at δ = 0.5, the Hamiltonian
Ĥ (2) maps onto a spin- 1

2 transverse field Ising model [46].
The mapping is visualized in Fig. 1(d): We define local spin
basis | ↑〉 ≡ âl |0〉 (one fermion at site a) and | ↓〉 ≡ b̂l |0〉 (one
fermion at site b) for each unit cell l . In this representation, the
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on-site terms of Ĥ become an identity, the hopping terms turn
into σ x

l , and the interaction reads (1 − σ̂ z
l )(1 + σ̂ z

l+1)/4, where
σ̂ α

l are Pauli matrices. The effective spin- 1
2 Hamiltonian of the

conducting channels reads

ĤI = t
∑

l

σ̂ x
l − V

4

∑
l

σ̂ z
l σ̂ z

l+1 + V

4

(
σ̂ z

L − σ̂ z
1

)
, (3)

where the last term vanishes for periodic boundary conditions
[47]. Note that this mapping also holds within individual
nonblocked islands of nonconducting channels. In that case,
the boundary term in Eq. (3) depends on whether the blocking
cells at the edges of the island are empty or filled [48].

This mapping of Ĥ (2) to the transverse field Ising chain
ĤI (3) shows globally ballistic heat transport in the non-
blocked channel [49]. However, this does not imply that
Eq. (2) necessarily supports ballistic transport. In fact, the
nonblocked channel is a strict subset of the full Hilbert space
of Eq. (2), and the total dimension of nonconducting chan-
nels overpowers the dimension of the nonblocked channels
for diverging number L of unit cells. Indeed, the size of
the nonblocked channel is 2L, while the full Hilbert space
dimension is D = (2L

L

) ∼ 22L/
√

L for large L. Consequently,
the relative dimension R of the nonblocked channel with
respect to the full Hilbert space D is R ∼ 2−L

√
L, implying

an exponential suppression of heat transport for large L. Note
that the eigenenergies of the conducting subspace are spread
throughout the entire spectrum. These results are not specific
to the test-bed case, Eq. (2), but apply to any choice of Ĥsp

and Ĥint in Ĥ in Eq. (1) that leads to MBFBL.
In general, for ν � 3, nonblocked channels are present if

and only if the filling fraction is within the range 1/ν � δ �
(ν − 1)/ν. Similarly to the ν = 2 case, the ratio R between
the dimension of the nonblocked channels and the full Hilbert
space dimension decays exponentially in L, with the decay
rate depending on the number of bands and the filling fraction.
For example, for ν = 3 this ratio scales as

R ∼
{

(δ − 1/3)δ−1/3(2/3 − δ)2/3−δ

δδ (1 − δ)1−δ

}−3L

, (4)

where the expression in the braces is strictly larger than 1
for any 1/3 � δ � 2/3. Otherwise nonblocked channels are
completely absent.

For ν = 3 systems (1), nonblocked channels are given by
Îl = 1, 2 ∀l; namely, each unit cell contains either one or two
fermions. This corresponds to three degrees of freedom per
unit cell, leading to a mapping onto a spin-1 model. However,
the matrix H0 in (1), which translates into local fields, is
different for singly or doubly occupied cells [50]. Similarly,
the mapping of the interaction Ĥint depends on the filling
fraction of the neighboring unit cells Îl , Îl+1. Consequently,
an inhomogeneous distribution of charges in the nonblocked
channel generates an effective disorder in the interaction terms
of the effective spin-1 Hamiltonian, and, possibly, in its local
field components (according to H0). Such effects also persist
for ν � 4 networks, where in addition to the disorder in local
fields and the interactions, different possible fillings of the
unit cells 1 � Îl � ν − 1 produce spins of different lengths—
generating an effective disorder in the spin lengths. All these
effective disorders might hinder and potentially halt transport

(a) (b)

(c)

FIG. 2. (a) Mapping of nonblocking unit cells to spin-1 repre-
sentation of ν = 3 MBFBL networks separated in Îl = 1 and Îl =
2. Black and red colors indicate different spin field components.
(b) One-dimensional sample ν = 3 MBFBL network, Eq. (1), repre-
sented in the same way as in Fig. 1(a). Blue and black lines indicate
two different hoppings. (c) Recasting a nonblocked channel into spin
representation via the mapping in (a). Green and magenta horizontal
lines represent the spin-interaction terms between neighboring unit
cells with the same value or different values of Îl , respectively.

in nonblocked channels: It has been shown that disorder in the
interactions also can induce MBL [51]. This mapping is illus-
trated in Fig. 2(b) for a sample MBFBL network that extends
Eq. (2) to ν = 3. The details of the mapping are schemat-
ically represented in Fig. 2(a), where black and red colors
indicate the different field components of H0. The resulting
transformation from a sample nonblocked channel to a spin
chain is visualized in Fig. 2(c), where the green and magenta
horizontal lines indicate different interaction operators.

Higher dimensions. Unlike the one-dimensional case, a
single blocking unit cell is not a bottleneck and does not
completely halt global transport in D � 2. Thus a subspace
is a nonblocked channel if there is at least one path formed by
nonblocking cells connecting opposite ends of the network.
Otherwise, a subspace is nonconducting. For finite system
sizes, non-blocked channels exist only in a limited range
of filling fractions δ, which converges to the full available
interval 0 < δ < 1 for L → ∞; for example, for a square
lattice of size L, nonblocked channels exist for 1/(νL) �
δ � (νL − 1)/(νL). In the infinite-system-size limit, let us
consider a random state from the particle-number basis. The
probability p for a given unit cell in the state to be nonblock-
ing (e.g., neither empty, Îl = 0, nor full, Îl = ν) is p = 1 −
δν − (1 − δ)ν . However, because the sampling is performed
from the fermionic Hilbert space basis, the events of each
of the unit cells being nonblocking are correlated. However,
these correlations are inversely proportional to the system size
and become negligible as L → ∞ (as we verify numerically
below). Therefore counting the relative dimension of non-
blocked channels R with respect to the size of the Hilbert
space in a network (1) is equivalent to a site-percolation prob-
lem, which is covered by the standard Bernoulli percolation
theory [52]. In the site-percolation problem there exists al-
ways a critical value of probability pcr [53] which depends
on the network geometry, such that R −−−→

L→∞
0 for p < pcr

(nontransporting regime) while R −−−→
L→∞

1 for p > pcr (non-

blocked regime) [54].
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(a) (b)

= conducting unit-cell
= blocking unit-cell

Percolation transition(c)

Conducting channel Non-Conducting channel

FIG. 3. (a) Typical state from a nonblocked channel in an equi-
spaced square MBFBL network, Eq. (1), with fully detangled Ĥint

(green lines) and semidetangled Ĥsp (circles) distinguished in non-
blocking unit cells (blue) and blocking unit cells (yellow). (b) Same
as (a) for a nonconducting subspace. (c) Percolation probability vs
filling fraction δ for different system sizes L and numbers of sites
per unit cell ν calculated using 100 Monte Carlo samples for each
point. Vertical dashed lines indicate the critical filling fraction given
by Eq. (5). Inset: Comparison of Bernoulli and MBFBL percolation
models for ν = 3, L = 100.

In the MBFBL networks (1), the critical transition prob-
ability pcr depends on the network connectivity 〈l1, l2〉 that
links the detangled unit cells, together with the dimensionality
D. Instead, the particular choices of the matrix H0 and inter-
action coefficients J l1,l2

a,b in Eq. (1) are irrelevant for pcr (so
long as the network connectivity is unchanged). The critical
values of the filling fraction δcr where a transition between
nontransporting and nonblocked regimes occurs are related to
the critical probability pcr through

1 − δν
cr − (1 − δcr)

ν = pcr. (5)

We start with the simplest case and consider a D = 2
Hamiltonian Ĥ (1) arranged as a square lattice. In Fig. 3
we schematically illustrate nonblocked channels [Fig. 3(a)]
and states from nonconducting subspace [Fig. 3(b)]. The site-
percolation critical value in this network is pcr ∼ 0.59 [55].
In Fig. 3(c) we show the numerically computed percolation
probability as a function of the filling fraction δ for several
system sizes L and numbers of sites per unit cell ν. The
inset of Fig. 3(c) compares the percolation probabilities cal-
culated from the Bernoulli percolation model and from the
direct sampling of the fermionic Hilbert space. The results

are in excellent agreement, thus justifying the application of
the Bernoulli model. For ν = 2 the probability that a unit
cell is nonblocking is p � 0.5 for any δ, with the maximum
p = 0.5 being reached at δ = 0.5; hence the transition value
pcr ∼ 0.59 is never reached, the network never undergoes
percolation transition, and global transport is suppressed for
all filling fractions δ. Numerical simulations confirm this con-
clusion for ν = 2. For ν = 3, 4, numerical simulations give
clear evidence of a percolation transition upon varying δ,
again in excellent agreement with the critical values predicted
by Eq. (5).

In D = 2 the majority of lattices—kagome, honeycomb,
and octagon—have critical values pcr � 0.5 [56]. Exceptions
include networks with further than nearest-neighbor terms
[57], chimera [58], and triangular lattices [59]. Hence, in two
dimensions, most ν = 2 MBFBL networks Ĥ avoid percola-
tion transition (and therefore any transport is absent) since
the maximum probability of a unit cell to be nonblocking
is p = 0.5. As D increases, the critical transition pcr in a
given class of lattices typically decreases: For example, D � 3
hypercubic network Ĥ percolation transition occurs for any
ν � 2 [53]. However, there are exotic networks on which
Ĥ avoid percolation transition: For instance, ν = 2 MBFBL
networks on 3D cubic oxide or 3D silicon dioxide [60,61].

Geometric percolation theory yields regions of filling
fraction where the number of states from nonblocked chan-
nels is dominating over those from the nonconducting ones.
However, such results do not account for quantum effects
following the distribution of the local constraints {Îl}. Such
effects include the following: (i) disorder in the interaction
terms, the local spin fields (for ν � 3), and the spin lengths
(for ν � 4), as explained for 1D networks; (ii) edge scatter-
ing, as percolating clusters have in general a highly irregular
fractal structure [62] (effect already present in classical per-
colation, although further amplified by the inhomogeneous
arrangements of {Îl}); and (iii) possible dead-end bonds,
which fully reflect wave transmission. Such effects may po-
tentially hinder and halt transport in the percolating regimes
of Eq. (1). Whether they lead to an effective increase in the
percolation threshold with respect to the classical one for
MBFBL networks obtained via Eq. (5)—a phenomenon called
quantum percolation [63,64]—is one of the yet open issues
that needs to be faced in future works.

Conclusions and perspectives. In this paper we stud-
ied transport features of translationally invariant interact-
ing many-body flat-band localization (MBFBL) networks
[41–43]. While charges are strictly confined in these mod-
els due to local constraints, heat is in principle allowed to
flow along nonblocked channels—leading to a mapping onto
site-percolation problems. We found that in one dimension
the number of nonblocked channels either vanishes or decays
exponentially with the system size, hence always suppressing
any transport in the thermodynamic limit. In higher dimen-
sions, the number of nonblocked channels can undergo a
percolation transition upon tuning the filling fraction δ, pro-
viding a lower bound for the potential heat transport. The
presence of the transition depends on the network type, the
number of single-particle energy bands ν, and the dimen-
sionality D. While in this paper we focused on the case of
spinless fermions, these results hold for any type of many-
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body statistics, such as spinful fermions or bosons. Indeed,
the existence of nonconducting channels and the percolation
bound on the transition both rely on the presence of blocking
unit cells in the network. In Hamiltonian Ĥ (1), cells with
zero particles Îl = 0 are always blocking irrespective of the
statistics of the particles considered. This holds even in those
cases, e.g., bosons, where the maximum occupation of a cell
is not limited.

Our analysis—rooted in geometric percolation theory,
alongside recent findings of localization-delocalization tran-
sition in 2D quantum link models [19]—highlights classes of
disorder-free many-body quantum systems in one and higher
spatial dimensions where any type of transport is completely

suppressed for any filling fraction δ. Exploring these quan-
tum effects and investigating the distinction between classical
and quantum percolation transitions [63,64] are crucial fu-
ture developments, which may have important repercussions
for the research in the field of quantum transport. These
results and open quests emphasize MBFBL networks as ex-
perimentally realizable [65–67], valid platforms to explore
novel phenomena in quantum systems, highlighting jointly
with Refs. [32–43] the progressively growing relevance of flat
bands in the realm of many-body physics.
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