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Metal-insulator transition in infinitesimally weakly disordered flat bands
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We study the effect of infinitesimal onsite disorder on d-dimensional all bands flat lattices. The lattices are
generated from diagonal Hamiltonians by a sequence of (d + 1) local unitary transformations parametrized
by angles θi. Without loss of generality, we consider the case of two flat bands separated by a finite gap, �.
The perturbed states originating from the flat bands are described by an effective tight-binding network with
finite on- and off-diagonal disorder strength which depends on the manifold angles θi. The original infinitesimal
on-site disorder strength W is only affecting the overall scale of the effective Hamiltonian. Upon variation of the
manifold angles for d = 1 and d = 2 we find that localization persists for any choice of local unitaries, and the
localization length can be maximized for specific values of θi. Instead, in d = 3 we identify a nonperturbative
metal-insulator transition upon varying all bands’ flat manifold angles.
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Introduction. A peculiar feature of some tight-binding
Hamiltonian systems is the existence of dispersionless bands
known as flat bands [1–5]. Due to destructive interference and
macroscopic degeneracy of such systems one can construct
eigenstates which occupy only a finite number of lattice sites,
called compact localized states (CLSs) [6,7]. The interest in
flat-band systems is motivated by their high sensitivity to
perturbations, such as interactions or disorder, that can lead
to various interesting physical phenomena in their presence:
ground state ferromagnetism [1,8–11], superfluidity and su-
perconductivity [12–16], many-body localization [17,18], and
unconventional Anderson localization [19,20].

In this Letter we consider the impact of infinitesimally
weak disorder on flat bands. Localization in weakly disor-
dered flat-band systems has been previously studied by several
authors [20–27]. When some of the bands have been disper-
sive and flat bands have been gapped away from the dispersive
bands, the independence of localization properties on a weak
disorder strength has been reported [21–25,27] and effective
low-energy models have been derived for the case of the
two-dimensional T3 (dice) lattice [21] and planar pyrochlore
lattice [23]. On the other hand, when a flat band is immersed
into a dispersive band, weak disorder leads to a diverging
localization length, with a variety of unconventional expo-
nents [20,24,25]. The particular case, when a dispersive band
touches a flat band, might lead to the emergence of critical
states arising from the flat-band states [23].
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What happens when all bands turn flat—all bands flat
(ABF) systems—where all bands are dispersionless? In the
presence of disorder there are three distinct regimes of disor-
der strength: the (infinitesimally) weak—the disorder strength
is much smaller than the gaps between the flat-band energies,
and the intermediate one—the two energy scales are com-
parable and the strong disorder regime. In the intermediate
regime the flat bands hybridize due to the disorder and this
can lead to delocalization and an inverse Anderson transition
[28], whereas the strong regime always leads to Anderson
localization. For weak disorder we expect nonperturbative
effects due to the interplay of the disorder and the macroscopic
degeneracy of the flat band. A metallic phase and a mobility
edge around the flat-band energy has been numerically ob-
served for weak disorder in a fine-tuned three-dimensional
eight-band ABF system [22].

We systematically construct ABF systems in one, two, and
three dimensions through local unitary transformations. We
then reveal the effect of (infinitesimally) weak on-site disorder
by deriving the underlying scale-free effective Hamiltonian.
We illustrate for the simplest case of two bands that in-
finitesimally weak disorder in one and two dimensions does
not lead to delocalization. In three-dimensional systems we
demonstrate a metal-insulator transition, which is driven by
the variation of the parameters of the local unitary transfor-
mations. There is, in general, a mobility edge in the metallic
phase.

Construction of all bands flat Hamiltonians. A systematic
way to generate ABF lattices is based on the observation that
any ν-band ABF system is represented by a macroscopically
degenerate diagonal matrix HFD [20,29] after diagonalization.
Since unitary transformations do not change the spectrum,
any (local or nonlocal) unitary transformation applied to HFD
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produces an ABF Hamiltonian with the same spectrum. We
denote the basis where the Hamiltonian is diagonal as fully
detangled (FD), while the basis after the unitary transforma-
tion is denoted as fully entangled (FE) [20]. We limit our
consideration to local unitary transformations (LUTs)—in the
one-dimensional (1D) case the LUT based construction is
exhaustive for short-range hopping ABF Hamiltonians [29].
In the simplest setting LUTs connect the ν bands in either one
or, at most, two adjacent unit cells. In that case the general
local unitary transformations are given by SU(ν) matrices,
each of which is parametrized by ν2 − 1 real parameters. In
a d-dimensional system one would need at least d + 1 LUT
in order to ensure connectivity of the final Hamiltonian. We
denote the corresponding total unitary transformation by U
and the transformed Hamiltonian H is then given as

H = UHFDU†. (1)

In the examples presented below, we focus on the simplest
nontrivial, ν = 2 band case. The Hamiltonian in the FD basis
is diagonal and given by

HFD = �/2
∑

e

∣∣a(0)
e

〉〈
a(0)

e

∣∣ − ∣∣b(0)
e

〉〈
b(0)

e

∣∣,

where the sum runs over all the unit cells e = nex, e = nex +
mey, and e = nex + mey + lez for d = 1, 2, and 3 and integers
n, m, and l , respectively. Each LUT can then be written as

Ui =
∑

e

(
zi

∣∣a(i)
e

〉〈
a(i−1)

e

∣∣ + wi

∣∣a(i)
e

〉〈
b(i−1)

e′
∣∣

−w∗
i

∣∣b(i)
e′

〉〈
a(i−1)

e

∣∣ + z∗
i

∣∣b(i)
e′

〉〈
b(i−1)

e′
∣∣), (2)

where i denotes the ith LUT, a(i)
e and b(i)

e are the two orbitals
within a unit cell e in a basis after the ith LUT, e′ = e for
i = 1, e′ = e − ex for i = 2, e′ = e − ey for i = 3, e′ = e − ez

for i = 4, zi = cos θi eiϕi , and wi = sin θi eiϕ̄i .
The one-dimensional case construction is schematically

shown in Figs. 1(a)–1(c). Figure 1(a) shows the FD basis,
with circles representing disconnected sites. The CLSs in this
basis occupy a single site. We first apply the LUT U1 within a
unit cell as shown in Fig. 1(a) and then apply a second LUT,
U2—the sites affected by the LUT are indicated by the blue
shaded areas on the panels. This procedure introduces hopping
matrix elements within and between the adjacent unit cells, as
schematically shown in Fig. 1(c). In this case we then have
U = U2U1. This construction includes the well-known Creutz
ladder in a magnetic field [30] where ABF appear at half
flux quantum per plaquette. It is obtained [29] for � = 4tc,
θ1 = θ2 = π/4, ϕ1 = −ϕ̄1 and ϕ2 = π/2, ϕ̄2 = 0. Here tc is
the diagonal hopping element in the Creutz ladder.

In a two-dimensional case the procedure is a natural ex-
tension of the one-dimensional case, with the second LUT
connecting the adjacent unit cells along one direction (here
chosen as the x direction). Then one applies a third LUT, U3,
which connects the adjacent unit cells along the y direction
and U = U3U2U1. Similarly in the three-dimensional case one
adds the fourth LUT, U4, to obtain U = U4U3U2U1.

Scale-free model in weak disorder. In the fully entangled
basis we add a random on-site potential disorder, εe,o, in the
orbital o = p and f of the unit cell e and we use the fully
entangled basis labels as p = a(d+1)

e and f = b(d+1)
e —for sim-

FIG. 1. One-dimensional two-band ABF system. (a) FD basis
with disconnected sites. The first LUT, U1, applied within a unit cell
(indicated by blue shaded area) leads to panel (b) where the second
LUT, U2, is applied between two nearest unit cells (again indicated by
the blue shaded area), leading to panel (c). We apply on-site potential
disorder on the sites marked by arrows and then disentangle with
U†

2 as indicated in panel (d). This leads to panel (e) and gives rise
to an effective dimerized one-dimensional chain, with every second
hopping element (dashed lines) being random; further disentangling
with U†

1 brings us back to an initial FD basis, but due to disorder
random hopping matrix elements of the order of disorder strength
W appear within and between the nearest unit cells. (f) In a weakly
disordered case we project to one of the flat bands (as marked by
the blue dashed line and scissors) and obtain an effective scale-free
single-band model.

plicity we consider box disorder, that is, εe,o ∈ [−W/2,W/2],
where W is the strength of the disorder. Our conclusions hold
for other distributions with finite support as well. The Hamil-
tonian for the on-site disorder is then Hd = W D, where D is
a diagonal matrix with all nonzero elements drawn at random
from [−1/2, 1/2]. This is schematically depicted in Fig. 1(c)
by red arrows. Next we perform the inverse transformation
U† into the original FD basis and write the total Hamiltonian
in the FD basis as Htot = HFD + W U†DU . We are interested
in the (infinitesimally) weak disorder W � �. Therefore the
first term HFD in the total Hamiltonian is much larger than
the second term, while at the same time it is composed of two
flat bands. It follows from degenerate perturbation theory that
weak perturbations will keep the eigenvalues close to a flat
band and the eigenstates will in leading order be composed
of the eigenvectors from the unperturbed Hilbert subspace
which corresponds to the chosen flat-band energy. Hence, we
can project onto one of the flat bands using the projection
operator Pa = ∑

e |ae〉〈ae|, effectively removing the other flat
band completely. It is worth pointing out that this projector is
compact in our case [31]. We introduce a shorthand notation
of |ae〉 ≡ |a(0)

e 〉 for states in the FD basis. After the projection
the HFD term in the total Hamiltonian becomes a trivial con-
stant shift of energy, corresponding to the chosen flat-band
energy. Thus all we are left with is the second term due to
the on-site disorder. The projected Hamiltonian can thus be
written as

HP = W Hsf, (3)
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where we defined the scale-free Hamiltonian Hsf =
PaU†DUPa—the only remaining energy scale W appears just
as a total prefactor. This scale-free form of the projected
Hamiltonian explains the independence of the localization
properties reported in previous studies of flat-band systems
in the weak disorder regime [21–25,27] and is one of the
main results of this work. This scale-free model is the base
for the analysis of the localization properties of the weakly
disordered models discussed below.

Weak disorder effects in d = 1 and d = 2. For the one-
dimensional case the inverse transformation after introducing
the on-site disorder W is schematically shown in Figs. 1(d)
and 1(e), while the projection onto the chosen flat band is
depicted in Fig. 1(f). The scale-free Hamiltonian in this case
corresponds to the 1D Anderson model with correlated dis-
order in both on-site energies and nearest-neighbor hoppings
and is

Hsf =
∑

n

(Vn|an〉〈an| + tn|an+1〉〈an| + H.c.), (4)

where Vn and tn are functions of LUT manifold angles and the
disorder realization.

We evaluate the impact of infinitesimal disorder on the
ABF model and study the localization properties of the scale-
free Hamiltonians (4). As a check we also make sure that the
results match those obtained from the full Hamiltonian Htot.
We analyze the participation number (PN) of an eigenstate,
which contains information on the localization properties of
that eigenstate. The PN of an eigenstate μ is defined as
[32–34] PNμ = (

∑
e ψ4

μ,e)−1, where ψμ,e is the coefficient of
the eigenstate in a chosen basis. We calculate it via the exact
diagonalization (ED) in the FD real space basis [as presented
in Fig. 1(f) for the 1D case]. The localization properties are
extracted from the scaling of the average PN with the system
size 〈PN〉 ∼ Lα , where α = 0 and α = d (d being the dimen-
sion of the system) indicate localized and extended states,
respectively.

The on-site potential energies and hopping elements
in Eq. (4) are Vn = (εn,p cos2 θ2 + εn, f sin2 θ2) cos2 θ1 +
(εn+1, f cos2 θ2 + εn+1,p sin2 θ2) sin2 θ1 and tn = 1/4 (εn+1, f −
εn+1,p) sin(2θ1) sin(2θ2)ei(ϕ1+ϕ̄1−ϕ2+ϕ̄2 ), where we use the
fully entangled basis labels as p = a(2) and f = b(2). We can
see that the angles ϕi and ϕ̄i only change the overall global
phase of the hoppings and can thus be set to 0, so that there are
only two relevant LUT manifold angles left. Moreover, since
εn,p and εn, f are uncorrelated random numbers, it follows from
Eq. (4) that disorder-averaged properties are symmetric with
respect to θi → π/2 − θi → π/2 + θi, and thus it suffices
to consider θi ∈ [0, π/4]. We have scanned the entire angle
control parameter space and observed that the strongest en-
hancement of the average PN is obtained for θ1 = θ2 = π/4.
For presentation purposes we set θ ≡ θ1 = θ2.

In the absence of disorder the PN of a CLS is equal to 1
in the FD basis. In contrast the average PN of the eigenstates
〈PN〉 differs significantly from this CLS result, as shown in
Fig. 2(a). The absolute maximum is reached for θ = π/4,
which maximizes the hopping matrix elements in Eq. (4). The
energy dependence of the average PN shows that the largest
values are obtained at the flat-band energy, as shown in the
inset of Fig. 2(a). However, even in this case the average PN

!

FIG. 2. Weakly disordered ABF in d = 1 and 2. Numbers of unit
cells used are L and L2 for d = 1 and d = 2, respectively. (a) Average
participation number 〈PN〉 of the 1D effective model (4) as a function
of the manifold angle θ . Inset: Energy dependence of 〈PN〉 for θ =
π/4, where the flat-band energy is equal to 1. All the other panels
refer to the d = 2 case. (b) 〈PN〉 for the effective model as a function
of θ . (c) Average ratio of adjacent gaps for different manifold angles
θ . With the increasing system size the average ROAG tends to its
Poisson value, indicated by a dashed blue line. (d) Scaling of 〈PN〉
with the system size 〈PN〉 ∼ Lα , θ increases from 0 to π/4 from
bottom to top along the arrow direction. The exponent α → 0 for
larger system sizes for all values of θ .

remains constant with the increase of the system size (α ≈ 0),
indicating localized eigenstates [35].

Similarly to the one-dimensional case we construct the
scale-free model in two dimensions. It corresponds to the
two-dimensional Anderson model with correlated on-site en-
ergies and hopping. The d = 2 scale-free model has all
eigenstates being localized for all θ , although we observe
much stronger finite size effects as compared to d = 1. As in
d = 1 we present results for a reduced number of manifold
angles by choosing θ ≡ θ1 = θ2 = θ3 and set ϕi = ϕ̄i = 0
and observe that the maximum average PN is reached for
θ = π/4 [see Fig. 2(b)]. The localization is confirmed by
observing that the finite size scaling of the exponent α of
the average PN is vanishing, as can be seen in Fig. 2(d).
We also analyze the localization properties through spec-
tral statistics analysis and the ratio of adjacent gaps [36,37]
(ROAG). The latter is calculated from the consecutive level
spacing si = Ei − Ei−1, where the set of energies Ei is or-
dered by their ascending value. The ROAG is then given as
ri = min(si, si+1)/max(si, si+1) and its distributions can be
compared to the random matrix theory predictions [36,37].
For ergodic systems the average ROAG 〈r〉 is given by a value
determined by the symmetry class of the system, while in the
localized regime 〈r〉 ∼ 0.386, corresponding to the Poisson
distribution of energies. As shown in Fig. 2(c), we observe that
the level statistics is in agreement with the Poisson distribution
of energies, confirming that the eigenstates stay localized for
d = 2.

Metal-insulator transition in d = 3. As in lower-
dimensional cases, here we again reduce the number of LUT
manifold parameters to one: θ ≡ θi for i = 1, 2, 3, and 4.
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FIG. 3. Panels (a) and (b) show the energy-resolved exponent
α (〈PN〉 ∼ Lα) and the average ratio of adjacent gaps 〈r〉 at weak
disorder as a function of the ABF manifold angle θ . Two distinct
phases are clearly identified, with a white region denoting the metal-
insulator transition. Panels (c) and (d) show α and 〈r〉 as a function of
the manifold angle θ at the flat-band energy, respectively. The inset
in panel (d) shows the zoom into the transition region which occurs
at a critical value of the manifold angle, θc/π = 0.1. The number of
unit cells used is L3.

The scale-free Hamiltonian is a nearest neighbor and diagonal
unit cell hopping cubic lattice model, which we construct and
study numerically using the ED to obtain the eigenstates and
eigenenergies.

We show the energy-resolved average PN exponent α and
the average ROAG as a function of the ABF manifold angle
θ in Figs. 3(a) and 3(b), respectively. The results clearly show
two distinct regions: first with 〈PN〉 not scaling with system
size (α → 0) and 〈r〉 ∼ 0.386, which correspond to localized
eigenstates and Poisson distribution of energies; and second
with 〈PN〉 increasing with the system size (α → d = 3) and
〈r〉 ∼ 0.531, corresponding to extended eigenstates and the
level statistics of the Gaussian orthogonal ensemble. Thus we
identify the former as an insulator and the latter as a metal.
From Figs. 3(a) and 3(b) we also observe a mobility edge—the
states at the band edge and the center of the band are localized
and extended, respectively. Figures 3(c) and 3(d) show the
exponent α and the average ROAG as a function of the ABF
manifold angle at the flat-band energy for different system
sizes, confirming the existence of the metal-insulator transi-
tion in the weakly perturbed three-dimensional ABF system,
driven by varying the ABF manifold parameter.

Conclusions. In this work we have studied all band flat
systems in the presence of weak on-site potential disorder.
Our construction of ABF systems in the continuous manifold
of LUT angles enables a systematic study of effects of pertur-
bations. By constructing the scale-free models we explain the
independence of localization properties for the weak disorder
in ABF systems. We demonstrate that in the cases of d = 1
and d = 2, two-band ABF systems, the eigenstates are always
localized. In the case of d = 3 ABF lattices at infinitesimal
disorder we observe a metal-insulator transition, driven by
the change in the LUT manifold angles. It follows that ABF

models respond qualitatively different to infinitesimally weak
perturbations, allowing for phase transitions within the ABF
manifold. This substantiates the strong need to explore the
manifold of flat-band models beyond the commonly known
examples (e.g., Lieb and kagome lattices) to search for novel
physical phenomena.

In addition to weak uncorrelated on-site disorder, weak
randomizations of hoppings, weak random magnetic fields
and fluxes, and weak hopping detuning off the ABF model
pool can be considered as additional important perturbations
which can lead to novel phases and physics. In particular the
randomization of hoppings and the deviation from the ABF
pool seem to be relevant issues for experimental attempts
to first realize ABFs and then to perturb them. Additional
perturbations—say slight detunings of the hoppings away
from the ABF pool—will be characterized by an additional
small energy scale V . The value of the ratio of V to the
weak on-site disorder energy scale W will be decisive. If both
scales are much smaller than the FB gap �, and if W is still
much larger than V , the experimental realization is expected
to demonstrate our predictions. For practical purposes it seems
to suffice to request V/� � 10−2 and W/� ≈ 10−1.

The approach used and the results obtained in this work
generalize to the case of ν > 2 all bands flat lattices, with
ν distinct U = 1 flat bands, or models with a mixture of
dispersive and U = 1 flat bands, provided the flat bands are
gapped away from the other bands and the gap is much larger
than the disorder strength. The latter condition ensures that
the disorder can be treated as weak. The U = 1 flat bands can
all be generated with LUTs [20]. Then the effective model
(3) description is valid and is derived following the steps
outlined above, e.g., using the projection Pa on the flat band.
Therefore, results similar to the above are expected in these
model generalizations: no metallic phase in d = 1 and 2, and
a metal-insulator transition in d = 3. The presence and the
details of the transition will depend on the details of the LUTs
used. For other gapped flat bands with nonorthogonal CLS
sets (U > 1), the scale-free model can still be constructed
using the projector Pa on the flat band. However, the projector
might no longer be compact and show exponentially decaying
entries. That is expected to produce disorder with exponen-
tially decaying correlations in the scale-free model, which
again should not affect the predictions qualitatively [38]. The
results are expected to change qualitatively in the case of
flat bands with band touchings to dispersive bands, when
the CLS set ceases to be linearly independent and complete
[23]. Finally an interesting question is how different flat-band
systems react to infinitesimal quasiperiodic disorder, which is
a subject of ongoing work.

In the past years remarkable experimental progress
has been achieved with realizations and manipulations of
flat-band systems in superconducting networks, engineered
atomic lattices, cold-atomic systems, femtosecond laser writ-
ten waveguide arrays, optically induced lattices, and exciton-
polariton condensates (for recent reviews see Refs. [4,5]).
In the context of fine-tuning and designing of various tight-
binding models, cold atoms in optical lattices represent an
outstanding physical platform. Using either stationary lattices
or Floquet engineering [39,40], various lattice systems have
been realized, such as a one-dimensional two-band flat-band
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system—the Creutz ladder [41,42]—and the two-dimensional
kagome [43] and Lieb [44] lattices. Furthermore synthetic
gauge fields were realized experimentally, e.g., with the Hal-
dane model [45] as well as with fine-tuned interactions to
realize a three-dimensional Hubbard model [46]. Localization
and metal-insulator transitions were also studied experimen-
tally in d = 1 optical lattices with uncorrelated [47] and
correlated [48,49] on-site disorder, respectively. Experimental
observations of the Anderson transition [50] are also feasible
with a driven d = 1 system with several incommensurate fre-

quencies to generate additional synthetic lattice dimensions
[51]. The high tunability of the experimental platforms sug-
gests that localization phenomena in flat-band systems such
as the ones we discuss in this work can be experimentally
realized and studied.
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