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1 Linear Bloch wave spectrum

The linear Hamiltonian of the two-band Chern insulator model considered in the main text is

ĤL(k) = d(k) · σ̂, dz = ∆ + 2J2(cos kx − cos ky) dx + idy = J1[e−iπ/4(1 + ei(ky−kx)) + eiπ/4(e−ikx + eiky )].

Its spectrum forms two bulk bands E± = ±|d| = ±
√
d2
x + d2

y + d2
z. Explicitly,

E±(k,∆) = ±
√

4J2
1 [1 + cos kx cos ky] + (∆ + 2J2 (cos kx − cos ky))

2
. (S1)

The Bloch wave eigenstates ĤL(k) |u±(k)〉 = E±(k) |u±(k)〉 are characterized by a topological invariant, the Chern
number [S1]

C± =
1

2π

∫∫
BZ

F±(k)d2k, (S2)

where the integral is computed over the Brillouin zone in the reciprocal space, and

F±(k) = i
[
〈∂kxu±|∂kyu±〉 − 〈∂kyu±|∂kxu±〉

]
(S3)

is the Berry curvature. In two band systems the Bloch functions |u±(k)〉 can be expressed as a real unit polarization
vector n̂ on the surface of the Bloch sphere. To see this, we use the Pauli matrix parameterization of the Bloch
Hamiltonian ĤL = d(k) · σ̂ and multiply the eigenvector equation below Eq. (S1) by 〈u±(k)|, yielding

d · 〈u±|σ̂|u±〉 = E± = ±|d| ⇒ n̂± ≡ 〈u±|σ̂|u±〉 = ±d/|d|.

Moreover, using the d vector parameterization, the Berry curvature takes the simplified form F± = ± 1
2
d
|d|3 [S2]. It

follows that the Berry curvature can be written in terms of the polarization vector as

F±(k) = −1

2
n̂± · [(∂kxn̂±)× (∂ky n̂±)], (S4)

with the Chern number counting the number of times n̂± covers the unit sphere [S1]. We note that the interpretation
of C± in terms of the wave polarization field can also be generalized to multi-band systems [S3].

The quantized Chern number can only change at topological transitions where the band gap closes. In our two-
band Chern insulator model the topological transition occurs when the gap between two bands closes and reopens at
∆ = ±4J2. This critical detuning separates phases with zero (|∆| > 4|J2|) and nonzero (|∆| < 4|J2|) Chern numbers,
as depicted in Fig. 1(b) in the main text. The bandgap closure takes place at the high-symmetry points of the Brillouin
zone: k0 = (π, 0) [for ∆J2 > 0, ∆ = 4J2] or (0, π) [for ∆J2 < 0, ∆ = −4J2], where the two bands touch forming a
spectral degeneracy, shown in Fig. S1.

2 Linear stability analysis

Here we consider the linear stability of nonlinear Bloch waves in a generic tight binding lattice described by the
nonlinear evolution equation

i∂t |ψ(r, t)〉 = (ĤL + ĤNL) |ψ(r, t)〉 . (S5)

We assume that the nonlinear part of the Hamiltonian ĤNL is a diagonal matrix with real elements dependent only on
the local on-site intensity, i.e. ĤNL = Γdiag[f(|ψa|2), f(|ψb|2), ...], where f describes the intensity-dependent nonlinear
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Figure S1: 3D representation of the dispersion E(kx, ky) for a square π-flux lattice with parameters J1 = 1, J2 =
J1/
√

2, ∆ = 2
√

2J1. Black dots mark the high-symmetry points of the first Brillouin zone traced with a black square.

frequency shift and a, b, ... indexes the sublattice degree of freedom. The linear part of the Hamiltonian ĤL can be
expanded in real space as

ĤL |ψ(r)〉 =
∑
δ

Ĉ(δ) |ψ(r + δ)〉 , (S6)

where summation δ is over neighbouring unit cells. Transforming to Fourier space, |ψ(r)〉 =
∑
k |ψ(k)〉 eik·r, we obtain

the Bloch Hamiltonian

Ĥ(k) |ψ(k)〉 =

(∑
δ

Ĉ(δ)eik·δ

)
|ψ(k)〉 . (S7)

Note that under the Fourier transform Ĥ∗L |ψ(r)〉 → Ĥ∗(−k) |ψ(k)〉.
To perform the linear stability analysis we consider small perturbations about some nonlinear steady state |φ(r)〉

with energy E, i.e. |ψ(r, t)〉 = (|φ(r)〉 + |δφ(r, t)〉)e−iEt. First, by Taylor expansion of the diagonal nonlinear term
and neglecting terms quadratic in the perturbation, we obtain a linearised evolution equation for the perturbation,

(i∂t + E) |p(r)〉 = ĤL |p(r)〉+ Γ
∑

j=a,b,...

[
(f(|φj |2) + f ′(|φj |2)|φj |2)pj(r) + f ′(|φj |2)φ2

jp
∗
j (r)

]
|j〉 , (S8)

The solution to this set of coupled first order linear differential equations can be expanded in terms of exponential
functions as |δφ(r, t)〉 = |w(r)〉 e−iλt + |v∗(r)〉 eiλ∗t. We collect terms with the same time dependence to obtain the
eigenvalue problem

λ |w(r)〉 = (ĤL − E) |w(r)〉+ Γ
∑

j=a,b,...

[
(f(|φj |2) + f ′(|φj |2)|φj |2)wj(r) + f ′(|φj |2)φ2

jvj(r)
]
|j〉 , (S9)

λ |v(r)〉 = −(Ĥ∗L − E) |v(r)〉 − Γ
∑

j=a,b,...

[
(f(|φj |2) + f ′(|φj |2)|φj |2)vj(r) + f ′(|φj |2)φ∗2j wj(r)

]
|j〉 . (S10)

Now we assume that steady state is a nonlinear Bloch wave such that |φ(r)〉 = |φ〉 eik0·r. Fourier transforming the above
equations, there is coupling between perturbation fields |w(k)〉 and |v(k − 2k0)〉. We obtain the coupled equations

λ |w(k + k0)〉 = (Ĥ(k0 + k)− E) |w〉+ Γ
∑

j=a,b,...

[
(f(|φj |2) + f ′(|φj |2)|φj |2])wj + f ′(|φj |2)φ2

jvj
]
|j〉 , (S11)

λ |v(k − k0)〉 = −(Ĥ∗(k0 − k)− E) |v〉 − Γ
∑

j=a,b,..

[
(f(|φj |2) + f ′(|φj |2)|φj |2])wj + f ′(|φj |2)φ∗2j wj

]
|j〉 . (S12)

This eigenvalue problem has a built-in particle hole symmetry: eigenvalues λ must occur in complex conjugate pairs.
Real λ correspond to stable perturbation modes, purely imaginary λ result in exponential instabilities, and complex λ
correspond to oscillatory instabilities.
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It is instructive to first consider the limit of weak nonlinearity Γ� 1. In this case, we can treat the terms arising
due to the nonlinearity as a weak perturbation, λ = λ0 + Γλ1. The unperturbed eigenvalue problem is

λ0

(
|w〉
|v〉

)
=

(
Ĥ(k0 + k)− E 0

0 −Ĥ∗(k0 − k) + E

)(
|w〉
|v〉

)
. (S13)

The eigenvalues are λ0 = En(k0 + k) − E,−En(k0 + k) + E, with Bloch wave eigenvectors (|un(k0 + k)〉 , 0)T ,
(0, |u∗n(k0 − k)〉)T , respectively. Assuming non-degenerate eigenvalues, the first order corrections due to the terms
arising from the nonlinearity are

λ1 =
∑

j=a,b,...

[f(|φj |2) + f ′(|φj |2)|φj |2]| 〈un(k0 ± k)|j〉 |2 = geff . (S14)

Thus, in this perturbative limit the perturbation modes maintain the same polarization as the lattice’s Bloch waves,
and their energy shifts are proportional to the squared overlap between linear Bloch waves and the nonlinear stationary
state, which justifies the arguments used in the main text.

In two band tight binding models the Bloch Hamiltonian can be parameterized using the Pauli matrices as Ĥ(k) =
d(k) · σ̂, where d(k) is a real 3 component vector. We obtain the explicit matrix form of the linear stability equations,

λ

(
|w〉
|v〉

)
=

(
d(k0 + k) · σ̂ − E + Γ

∑
j(fj + f ′j |φj |2) |j〉 〈j| Γ

∑
j f
′
jφ

2
j |j〉 〈j|

−Γ
∑
j f
′
jφ
∗2
j |j〉 〈j| −d(k0 − k) · σ̂∗ + E − Γ

∑
j(fj + f ′j |φj |2) |j〉 〈j|

)(
|w〉
|v〉

)
,

(S15)
where fj = f(|φj |2) and f ′j = f ′(|φj |2).

For the case of a nonlinear Bloch wave with intensity I0 localized to the a sublattice analyzed in the main text,
we have |φ〉 = (

√
I0, 0), dx,y(k0) = 0, dz(k0) = ∆− 4J2, and E = dz(k0) + Γf(I0), and the k = 0 eigenvalue problem

takes the particularly simple form

λ


wa
wb
va
vb

 =


Γf ′I0 0 Γf ′I0 0

0 −2dz(k0)− Γf 0 0
−Γf ′I0 0 −Γf ′I0 0

0 0 0 2dz(k0) + Γf




wa
wb
va
vb

 , (S16)

yielding λ = 0, 0,±[2dz(k0) + Γf(I0)] and a fourfold degeneracy when Γf(I0)/2 = −dz(k0), i.e. when the nonlinear
energy shift on the a sublattice is sufficient to close the band gap. Complex instability eigenvalues emerge beyond this
threshold intensity.

The threshold intensity is independent of f ′(I0), i.e. the precise form of the nonlinear response function. For exam-
ple, Fig. S2 shows the dependence of the maximal growth rate on Γf(I0) and the ratio r = I0f

′(I0)/f(I0). The former
describes the nonlinearity-induced change to the sublattice depths, while the latter describes the relative strength of
nonlinearity-induced mixing between different perturbation wavevectors. r interpolates between a completely saturated
nonlinearity (r = 0, corresponding to effectively linear propagation dynamics), and pure Kerr nonlinearity (r = 1). We
observe that tuning r does not affect the position of the critical stable line, and merely rescales instability growth rate.
Thus, the linear stability eigenvalue spectra for the pure Kerr and saturable cases are qualitatively similar, exhibiting
the same re-emergence of stability.

3 Nonlinear Dirac model

In this section we examine the dispersion and linear stability of the nonlinear Bloch waves in the vicinity of the high-
symmetry point with in-plane wave vector k0 = (π, 0), which can be described by an effective continuum model. In
the vicinity of k0, k = k0 +p, the series expansion in the Bloch Hamiltonian ĤL(k) for |p| � 1 leads to the Dirac-like
Hamiltonian

ĤD(k0 = (0, π)) = −J1

√
2 (−pxσ̂x + pyσ̂y) +

(
∆− 4J2 + J2

[
p2
x + p2

y

])
σ̂z , (S17a)

ĤD(k0 = (π, 0)) = −J1

√
2 (−pxσ̂y + pyσ̂x) +

(
∆− 4J2 + J2

[
p2
x + p2

y

])
σ̂z. (S17b)

The corresponding evolution equations including the local Kerr nonlinearity f(I) = I can be formulated in the real
space in terms of spatial derivatives by substituting px,y = −i∂x,y into Eq. (S17b):

i∂tψ=

(
∆− 4J2 − J2

[
∂2
x + ∂2

y

]
+ Γ|ψ2

1 | J1

√
2 (i∂y − ∂x)

J1

√
2 (i∂y + ∂x) −∆ + 4J2 + J2

[
∂2
x + ∂2

y

]
+ Γ|ψ2

2 |

)
ψ. (S18)
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Figure S2: Growth rate of the most unstable perturbation wavevector kc as a function of the nonlinear frequency shift
Γf(I0) and the relative nonlinear wave mixing strength I0f

′(I0)/f(I0), for the ∆ = 0 (a) and ∆ = 2J1 (b) lattices.
Purple dashed line in (b) marks the nonlinearity-induced gap closure at k = k0, which is only sensitive to the nonlinear
frequency shift.

3.1 Nonlinear dispersion of bulk modes

We search for the solution of (S18) in the form of weakly nonlinear Bloch waves:(
ψ1

ψ2

)
=

(
A
B

)
e−iEt+ipxx+ipyy. (S19)

Plugging the spinor (S19) into Eq.(S18) results in the system of equations for the amplitudes A and B{
(−E + ∆− 4J2 + J2

[
p2
x + p2

y

]
+ Γ|A2|)A− J1

√
2 (py + ipx)B = 0 ,

(E + ∆− 4J2 + J2

[
p2
x + p2

y

]
− Γ|B2|)B + J1

√
2 (py − ipx)A = 0 ,

(S20)

where the wave vector p = (px, py) = p(cos θ, sin θ) can be defined in the polar coordinate system, py + ipx = ipe−iθ.
Denoting the total wave intensity |A|2 + |B|2 = I0, we first find the solutions for the lower and upper bands at the

zero wave vector p = 0:

A(0) = 0, |B(0)|2 = I0, E
(0)
2 = −∆ + 4J2 + Γ|B(0)|2 = −∆ + 4J2 + ΓI0, (S21)

B(0) = 0, |A(0)|2 = I0, E
(0)
1 = ∆− 4J2 + Γ|A(0)|2 = ∆− 4J2 + ΓI0. (S22)

At the intensities above the critical value I0 ≥ ±2 (∆−4J2)
Γ , we get the additional doubly degenerate solution

|A(0)|2 =
I0
2
− ∆− 4J2

Γ
, |B(0)|2 =

I0
2

+
∆− 4J2

Γ
, E

(0)
3 =

ΓI0
2

(S23)

with the eigenvectors: (
A(0)

B(0)

)
=

1√
2

 eiϕ
√
I0 −

2 (∆− 4J2)

Γ

±
√
I0 +

2 (∆− 4J2)

Γ

 , (S24)

where ϕ is an arbitrary phase depending on which direction we approach the degeneracy point p = 0. Specifically, this
phase uncertainty is lifted if we consider the limit transition to the point p = 0 along different directions p0(p0 → 0) =
(p0x, p0y) = p0(cos θ0, sin θ0). According to (S20), the phase shift in spinor (S24) is given by ϕ = π/2−arctan(p0y/p0x) =
π/2− θ0.

To find the dispersion in the neighborhood of the point px = py = 0, we employ the perturbation theory. Treating px
and py as small perturbations, we expand all quantities to the first order E = E(0)+E(1)+...; A = A(0)+A(1)+...; B =
B(0) +B(1) + .... We obtain a cross-like solution describing the nonlinear Dirac cone:

E = E
(0)
3 + E(1) =

ΓI0
2
±

√
2J1

√
p2
x + p2

y√
1− 4(∆−4J2)2

I20Γ2

. (S25)
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Thus, at Γ2I2
0 > 4 (∆− 4J2)

2
one of the dispersion curves develops a loop.

The intensities of two components nearby the cross point are corrected as follows

|A|2 =
I0
2
− ∆− 4J2

Γ

1∓
2
√

2J1

√
p2
x + p2

y√
I2
0 Γ2 − 4(∆− 4J2)2

 , |B|2 =
I0
2

+
∆− 4J2

Γ

1∓
2
√

2J1

√
p2
x + p2

y√
I2
0 Γ2 − 4(∆− 4J2)2

 . (S26)

Substituting amplitudes (S26) and energy (S25) into the system (S20), we may introduce the local effective Hamiltonian
as: ±2

√
2J1

(∆−4J2)
√
p2x+p2y√

I20Γ2−4(∆−4J2)2
−
√

2J1(py + ipx)

−
√

2J1(py − ipx) ∓2
√

2J1
(∆−4J2)

√
p2x+p2y√

I20Γ2−4(∆−4J2)2

(ψ1

ψ2

)
= E(1)

(
ψ1

ψ2

)
= ±

√
2J1

√
p2
x + p2

y√
1− 4(∆−4J2)2

I20Γ2

(
ψ1

ψ2

)
. (S27)

Next, we derive the exact implicit expression for the nonlinear dispersion E(px, py). To simplify our derivations,
we set px = 0 and rewrite the system in the form:(

En −Mn J1

√
2py

J1

√
2py En +Mn

)(
A
B

)
= 0 , (S28)

denoting En = E − ΓI0/2, Mn = ∆− 4J2 +
ΓI0

(
∆− 4J2 + J2p

2
y

)
2(E − ΓI0)

+ J2p
2
y. The nonlinear dispersion is then given by

E2
n = 2J2

1p
2
y +M2

n(p2
y). (S29)

The eigenvectors’ intensities on the two sublattices satisfy

|A|2 =
I0
2

+
(∆− 4J2) I0
2(−ΓI0 + E)

+
J2p

2
yI0

2(−ΓI0 + E)
, (S30)

|B|2 =
I0
2
− (∆− 4J2) I0

2(−ΓI0 + E)
−

J2p
2
yI0

2(−ΓI0 + E)
. (S31)

The implicit relation (S29) can be posed as

((E − ΓI0/2)2 − 2J2
1p

2
y) (E − ΓI0)

2
=
(
∆− 4J2 + J2p

2
y

)2(
E − ΓI0

2

)2

. (S32)

Note, this dispersion relation supports the existence of 2 more loops in addition to the loop at the point py = pI = 0,
described above. This bifurcation occurs at dz(p) = 0:

py = ±pII = ±
√

4J2 −∆

J2
, (S33)

in the nontrivial phase only, |∆| < 4J2. The energies at the points py = ±pII are:

E
(0)II
3 = ΓI0, (S34)

E
(0)II
2,1 = ΓI0/2±

√
2J2

1 (4J2 −∆)

J2
. (S35)

Specifically, the energy E
(0)II
3 corresponds to two additional cross points, which appear only in the nontrivial case with

the eigenvectors

(
A(0)II

B(0)II

)
=


eiϕ

√
I0
2

+

√
I2
0

4
− 2J2

1 (pII
y )2/Γ2

±

√
I0
2
−
√
I2
0

4
− 2J2

1 (pII
y )2/Γ2

 . (S36)

The additional crosses appear at the intensities higher ΓI0/2 = ±

√
2J2

1 (4J2 −∆)

J2
(the sign is chosen depending on

sign of the nonlinearity Γ), which is defined by the degeneracy of the cross point and one of the bands at py = ±pII.
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3.2 Modulation instability

To examine linear stability of the nonlinear Bloch modes, we introduce small complex-valued perturbations to the
amplitudes: A = A0 + δa, B = B0 + δb and look for the solution in the form:(

ψ1

ψ2

)
=

(
A0 + δa
B0 + δb

)
e−iEt+ipxx+ipyy. (S37)

The equations for deviations δa, δb can be recast as

i
∂

∂t


δa
δb
δa∗

δb∗

 = L̂


δa
δb
δa∗

δb∗

 , (S38)

where operator L̂ is the 4× 4 matrix

L̂ =

ĤD(∂x, ∂y) +HD(px, py)− EÎ + 2Γ

(
|A0|2 0

0 |B0|2
)

Γ

(
A2

0 0
0 B2

0

)
−Γ

(
A∗20 0
0 B∗20

)
−Ĥ∗D(∂x, ∂y)−H∗D(px, py) + EÎ − 2Γ

(
|A0|2 0

0 |B0|2
)
 ,

(S39)
where

HD(px, py) =

(
J2

(
p2
x + p2

y

)
−J1

√
2 (py + ipx)

−J1

√
2 (py − ipx) −J2

(
p2
x + p2

y

) )
, (S40)

ĤD(∂x, ∂y) =

(
∆− 4J2 − J2

(
∂2
x + ∂2

y

)
J1

√
2 (i∂y − ∂x)

J1

√
2 (i∂y + ∂x) −∆ + 4J2J2

(
∂2
x + ∂2

y

)) . (S41)

To study modulational instability, we take [δa; δa∗; δb; δb∗] = [C̄1; C̄2; C̄3; C̄4]e−iλt+iκxx+iκyy = C̄e−iλt+iκxx+iκyy

and set κx = 0 to simplify further considerations. Eq. (S38) leads to the system of equations for amplitudes C̄:(
L̂− λÎ

)
C̄ = 0. The positive imaginary part of λ, found from det

(
L̂− λÎ

)
= 0, indicates instability.

For the cross point at px = py = 0, existing at the intensities ΓI0 > ±2 (∆− 4J2) at the energy E(0) = ΓI0
2 , with

the amplitudes |A0|2 =
I0
2
− ∆− 4J2

Γ
, |B0|2 =

I0
2

+
∆− 4J2

Γ
, we find the energy detuning λ along the straight lines

I0Γ + C = −2(∆− 4J2) in the parameter plane (Γ,∆):

λ = ±

√√√√√
±

√
e−2iϕκ2

y

(
C2 (−1 + e2iϕ)

2
J2

1 + 2C (−1 + e2iϕ)
2

ΓI0J2
1

)
+ 2Γ2I2

0J
2
2κ

4
y

√
2

+ CJ2κ
2
y + ΓI0J2κ

2
y + 2J2

1κ
2
y + J2

2κ
4
y.

(S42)
We analyse Eq. (S42) for C = 0 at the line I0Γ = −2(∆− 4J2), which is the negatively inclined existence boundary

of the cross solution:

λ1,2 = ±
√
J2

2κ
4
y + 2κ2

yJ
2
1 , (S43)

λ3,4 = ±
√
−4(∆− 4J2)J2κ2

y + J2
2κ

4
y + 2J2

1κ
2
y. (S44)

The imaginary part Im(λ1,2) is zero for all values of the wave number κy, therefore, λ1,2 do not show any instability.

The area of the stability can be determined from λ3,4: it is a purely real quantity for Γ > − J2
1

I0J2
or equivalently

2J2
1 ≥ 4 (∆− 4J2) J2. In the nontrivial case, since J2 (∆− 4J2) < 0, we conclude that 2J2

1 ≥ 4 (∆− 4J2) J2 for any
J2,∆. Therefore, the cross point is stable. But in the trivial case, the area of parameters J2, J1 exists, for which
Im(λ3,4) > 0, and the cross point becomes unstable. The boundary value of the detuning in the trivial phase is

∆c = 4J2 +
J2

1

2J2
. (S45)

Note, for the given intensity, −ΓI0/2 = ∆− 4J2, the upper branch and the point of the cross are degenerate. Hence,
the line of stability I0Γ = −2(∆ − 4J2) appears in Fig. 1 in the main text for the upper branch at ∆ < ∆c. For
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∆ > ∆c, we analytically obtain the maximum growth rate maxκy
Im[λ3,4] achieved at the wavenumber κmax

y :

max
κy

Im[λ3,4] =
|J2

1 + ΓI0J2|
|J2|

; (S46)

κmax
y = ±

√
|ΓI0J2 + J2

1 |
J2

2

. (S47)

Equation (S42) at the other boundary of the existence of the cross solution (with C = −2ΓI0) takes the form:

λ1,2,3,4 = ±
√
±κ2

yΓI0J2 − ΓI0J2κ2
y + 2J2

1κ
2
y + J2

2κ
4
y, (S48)

from which we obtain the area of stability Γ <
J2

1

I0J2
.

Let us consider Eq. (S42) for the case ϕ = πn, n ∈ Z:

λ1,2 = ±
√
J2

2κ
4
y + CJ2κ2

y + 2J2
1κ

2
y, (S49)

λ3,4 = ±
√
J2

2κ
4
y + CJ2κ2

y + 2J2ΓI0κ2
y + 2J2

1κ
2
y. (S50)

The boundaries of the cross stability are located on lines with C = −2J2
1

J2
− 2ΓI0 and C = −2J2

1

J2
. These are the

straight lines I0Γ = ±2(∆− 4J2 − J2
1

J2
).

Figure S3: The maximum increment value maxλ[Im(λ)] color-coded in the plane of parameters ∆/J1, ΓI0/J1 for
the cross point E = ΓI0/2 at p = 0. Parameters are J2 = J1/

√
2, (a) ϕ = 0, (b) ϕ = π/2. Red dashed lines

Γ = ±2 (4J2 −∆) /I0 highlight the boundaries of the existence of the cross solution. On these lines, the cross point
is stable in the nontrivial domain, |∆| < 2

√
2, whose upper boundary is marked with the green dashed line. In the

trivial domain, the cross point is unstable at detunings larger ∆ = J2
1/2J2 + 4J2 marked with a solid green line. The

boundaries of the cross point stability for ϕ = 0 are black straight lines I0Γ = ±2(∆ − 4J2 − J2
1/J2). At ϕ = 0,

the intersection point of the black lines with the boundary of the trivial phase at Γ = ±2J2
1/(J2I0) (straight blue

lines) defines the intensity, for which, by changing ∆, we can distinguish the trivial phase from the nontrivial one by
observing a transition from stability to instability.

The color maps of the maximum increment value maxλ[Im(λ)] in the parameter space for the cross solution E =
ΓI0/2 are plotted in Fig. S3 by using Eq. (S42). On our notations, linear stability of perturbation in y direction depends
on the spinor phase angle ϕ. Making a generalization about this feature, we note that stability is conditional on the
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mutual orientation ∆θ = θp− θ0 of the symmetry-broken solution with p0 and perturbation with pp. In the nontrivial
phase, it remains stable at ∆θ = 0 (ϕ = 0, θp = π/2, θ0 = π/2) and exhibits the maximum transverse modulational
instability at ∆θ = π/2 (ϕ = π/2, θp = π/2, θ0 = 0).

Next, we describe modulational instability of the the background state px = py = 0 with a uniform intensity
ΓI0 < ±2 (∆− 4J2). For definiteness, we consider the nonlinear mode from the band with energy E = (∆− 4J2)+ΓI0,

and spinor components B(0) = 0, |A(0)|2 = I0 [see Eq. (S21)]. The solutions of equation det
(
L̂− λÎ

)
= 0 along the

lines I0Γ + C = −2(∆− 4J2) recast as

λ1,2 = ±
√
−F +D , (S51)

λ3,4 = ±
√
F +D , (S52)

being expressed through the auxiliary functions

F =
√
C4/4 + (C + ΓI0)2J2

2κ
4
y + κ2

y(−J2C2(C + ΓI0) + 4J1CΓI0 + 2C2J2
1 ) , (S53)

D = J2
2κ

4
y + κ2

y(J2I0Γ + 2J2
1 − CJ2) + C2/2. (S54)

At C = 0 we recover (S43) and (S44) for the cusp bifurcation point. Varying parameter C, one can reproduce the
numerically-obtained map of instability shown in Fig. 1(c) of the main text. In the linear limit ΓI0 → 0, we obtain the
spectrum

λ = ±
[
−meff ±

√
(meff + J2κ2

y)2 + 2J2
1κ

2
y

]
, (S55)

where meff = ∆ − 4J2. Assuming |λ| ∼ I0 ∼ κ2
y ∼ µ � 1, where µ is the smallness parameter, from the determinant

calculated to quadratic accuracy ∼ µ2, we get

λ2 =

(
ΓI0 + J2κ

2
y +

J2
1κ

2
y

meff

)2

− Γ2I2
0 = κ2

y

(
J2 +

J2
1

meff

)[
2ΓI0 +

(
J2 +

J2
1

meff

)
κ2
y

]
. (S56)

In the trivial phase meff > 0, similar to the nonlinear Schrödinger equation, instability only occurs for the self-focusing
nonlinearity (Γ < 0), and the maximum increment of instability is achieved at κ2

y = −ΓI0/
(
J2 + J2

1/meff

)
with purely

imaginary λ = ±i|Γ|I0. On the other hand, in the nontrivial phase meff < 0, for a fixed Γ the state can either be stable
or unstable, depending on |meff |.

Figs. S4 and S5 illustrate dispersion and polarization of perturbation modes as a function of κy in the trivial and
nontrivial phases in the weakly nonlinear regime. We characterize the perturbation modes’ polarization by computing
their time-averaged overlap with the linear Bloch waves | 〈δψ|ψ(0)〉 |2 and their sublattice imbalance sz = |δa|2−|δb|2 =
〈σz〉. In the trivial phase the perturbation modes maintain a moderate to large overlap with the linear Bloch waves,
and |sz| remains large, indicating the perturbation modes are preferentially localized to a single sublattice. On the
other hand, in the nontrivial phase |sz| rotates to the opposite pole of the Bloch sphere at large κy, reducing the
effective strength of the nonlinearity-induced wave mixing.
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Figure S4: (a) Real and (b) imaginary parts of linear perturbation eigenvalues λ, (c) squared magnitude of the overlap
between the perturbation modes and linear Bloch waves, (d) spin sz projection of perturbation eigenvectors for the
modulational instability in the weakly nonlinear regime, focusing nonlinearity Γ = −1, I0 = 0.1, meff = 1 (trivial).
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Figure S5: (a) Real and (b) imaginary parts of linear perturbation eigenvalues λ, (c) squared magnitude of the overlap
between the perturbation modes and linear Bloch waves, (d) spin sz projection of perturbation eigenvectors in the
weakly nonlinear regime, focusing nonlinearity Γ = −1, I0 = 0.1, meff = −1 (nontrivial).
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4 Modulational instability dynamics and soliton formation

In this section we present additional details of the modulational instability dynamics summarised in Fig. 3 of the main
text. We further characterize the dynamics by providing snapshots of the field intensity profiles in real and Fourier
space at various times, as well as computing the linear and nonlinear parts of the conserved total energy H = HL+HNL,

HL(t) =

∫
dk 〈ψ(k, t)|ĤL(k)|ψ(k, t)〉 , HNL(t) =

∫
dr 〈ψ(r, t)|ĤNL(r)|ψ(r, t)〉 . (S57)

HL provides a measure of which linear modes are excited by the wave field, while HNL is sensitive to the field’s
localization.

Fig. S6 illustrates the dynamics of a perturbed nonlinear Bloch wave in the focusing instability regime (∆ = 0,
Γ = −1.25). For this choice of ∆ the nonlinear Bloch wave lies at the lower edge of the lower band. At short times
there is a clear amplification of the linearly unstable perturbation modes, which have wavevectors close to k0. As the
instability continues to develop, a significant amount of energy is transferred to other wavevectors throughout the entire
Brillouin zone, resulting in an increase of HL. At the same time, strongly-localized soliton-like structures develop in
real space, increasing |ĤNL|, as required for conservation of H. Thus, under the focusing nonlinearity the entire band
becomes excited.

Next, we show in Fig. S7 the dynamics in the defocusing instability regime (∆ = 0, Γ = 2.5). For short times
we see a similar amplification of wavevectors close to k0. At longer times, there is a significant transfer of energy
throughout the entire Brillouin zone, increasing HL. However, in this case the dynamics decrease |HNL|, indicating
the field delocalizes in real space, distributing energy between both of the sublattices, and does not form any soliton-like
structures. Interestingly, despite the qualitative differences between the real space field distribution in the focusing
and defocusing cases, both exhibit a spreading of energy in Fourier space throughout the entire lower band, generating
a large purity gap and allowing measurement of the band’s Chern number.

Finally, Fig. S8 shows the dynamics in the oscillatory instability regime (∆ = 2, Γ = 2.5). Again, at short times
there is an amplification of wavevectors close to k0, before the entire Brillouin zone becomes populated at long times.
For this ∆ the initial Bloch wave lies at the upper edge of the lower band. Thus, the initial increase in HL indicates
a significant transfer of energy to the upper band. As the instability progresses, however, the spreading of energy
within the lower band begins to dominate, leading to a decrease of HL. In this case neither HL nor HNL converge to
a stationary value and no stationary soliton-like structures are visible in the real space intensity profile.

As a further check, we also quantified the strength of interband mixing by calculating the time-dependent population
of the upper band,

∫
dk| 〈u+(k|ψ(k, t)〉 |2, with results shown in Fig. S9. In the focusing and defocusing instability

examples, the interband mixing is negligible (≈ 1% of the total field energy), whereas in the case of oscillatory instability
there is a significant transfer of energy into the upper band, which persists for long times. This strong energy transfer
occurs due to the nonlinearity-induced band inversion, which enables resonant inter-band wave mixing.
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Figure S6: Dynamics of the modulational instability in the focusing regime, ∆ = 0,Γ = −1.25. (a) Time evolution of
the linear HL, nonlinear HNL, and total H = HL +HNL energies of the weakly-perturbed nonlinear Bloch wave. (b)
Snapshots of the real space intensity I(r) = |ψa(r)|2 + |ψb(r)|2 at different propagation times. (c) Snapshots of the
Fourier space intensity I(k) = |ψa(k)|2 + |ψb(k)|2 at different propagation times. In (b,c) the maximum of the colour
scale is chosen to be 50% of the peak intensity at J1t = 40 in order to enhance the visibility of the field at the shorter
times. Other parameters are the same as in Fig. 3 of the main text.
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Figure S7: Dynamics of the modulational instability in the defocusing regime, ∆ = 0,Γ = 2.5. (a) Time evolution of
the linear HL, nonlinear HNL, and total H = HL +HNL energies of the weakly-perturbed nonlinear Bloch wave. (b)
Snapshots of the real space intensity I(r) = |ψa(r)|2 + |ψb(r)|2 at different propagation times. (c) Snapshots of the
Fourier space intensity I(k) = |ψa(k)|2 + |ψb(k)|2 at different propagation times. In (b,c) the maximum of the colour
scale is chosen to be 50% of the peak intensity at J1t = 40 in order to enhance the visibility of the field at the shorter
times. Other parameters are the same as in Fig. 3 of the main text.
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Figure S8: Dynamics of the modulational instability in the oscillatory instability regime, ∆ = 2,Γ = 2.5. (a) Time
evolution of the linear HL, nonlinear HNL, and total H = HL+HNL energies of the weakly-perturbed nonlinear Bloch
wave. (b) Snapshots of the real space intensity I(r) = |ψa(r)|2 + |ψb(r)|2 at different propagation times. (c) Snapshots
of the Fourier space intensity I(k) = |ψa(k)|2 + |ψb(k)|2 at different propagation times. In (b,c) the maximum of the
colour scale is chosen to be 50% of the peak intensity at J1t = 40 in order to enhance the visibility of the field at the
shorter times. Other parameters are the same as in Fig. 3 of the main text.
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Figure S9: Dynamics of the upper band populations
∫
dk| 〈u+(k)|ψ(k, t)〉 |2 in the three regimes shown in Fig. 3 of

the main text.

13



References

[S1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).

[S2] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
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