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We systematically construct flatbands (FB) for tight-binding models on simple Bravais lattices in space
dimension d � 2 in the presence of a static uniform DC field. Commensurate DC field directions yield
irreducible Wannier-Stark (WS) bands in perpendicular dimension d − 1 with d-dimensional eigenfunctions.
The irreducible bands turn into dispersionless flatbands in the absence of nearest neighbor hoppings between
lattice sites in any direction perpendicular to the DC field. The number of commensurate directions which yield
flatbands is of measure one. We arrive at a complete halt of transport, with the DC field prohibiting transport
along the field direction, and the flatbands prohibiting transport in all perpendicular directions as well. The
anisotropic flatband eigenstates are localizing at least factorially (faster than exponential).
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I. INTRODUCTION

Systems with macroscopic degeneracies have been at-
tracting attention due to their high sensitivity to weak
perturbations, making them an ideal platform to study effects
of perturbations and search for unconventional and exotic
phases. One class of systems with macroscopic degeneracies
are flatband (FB) systems [1–4]. FBs are dispersionless energy
bands of translational invariant tight-binding networks which
occur due to destructive interference. In the past decades
flatband systems have been widely studied both theoretically
and experimentally with realizations in one-dimensional (1D),
two-dimensional (2D) and three-dimensional (3D) setups
[2–4]. Flatbands are by their very definition macroscopically
degenerate and highly sensitive to perturbations. Different
perturbations lead to different phenomena such as unconven-
tional Anderson localization in presence of disorder [5–10],
the appearance of compact breathers in presence of nonlin-
earity [8,11,12–18], flatband ferromagnetism in the Hubbard
model [19–23], Landau-Zener-Bloch oscillations in an ex-
ternal dc field [24,25], enhanced superfluidity in presence
of attractive interaction [26–28], enhanced superconductivity
[29], etc.

All these phenomena originate from perturbations lifting
the macroscopic degeneracy and breaking the destructive in-
terference, which is at the origin of flatbands. Appearance
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of destructive interference requires either fine-tuning or sym-
metries that enforce the interference [30]. A marked feature
of FB models with short-range hopping are strictly compact
eigenstates, called compact localized states (CLS) [31]. Their
presence greatly simplifies the analysis of the FB models
[32,33], and can be used as a foundation for their systematic
classification [34–37].

A completely different scenario unfolds when a Bravais
lattice is exposed to a dc field, which generates an infinity of
(d − 1)-dimensional bands each supporting eigenstates em-
bedded into d-dimensional spaces. In this work we analyze
models with applied dc fields that do not need fine-tuning
to achieve band flatness, and FB eigenstates that cannot be
arranged into CLS. Applying a static field to a 1D tightbind-
ing chain leads to the appearance of a Wannier-Stark (WS)
ladder of equidistant eigenenergies for the spectrum of the
chain, with all eigenstates being localized and the dynam-
ics of observables in general displaying time-periodic Bloch
oscillations [38]. The quest for nontrivial states in higher-
dimensional lattices with magnetic and electric fields resulted
in the observation of flatbands for a square lattice for certain
electric field directions [39]. Similar dispersionless features
were later identified for a rectangular lattice [40,41]. Here we
present a systematic construction of WS flatbands for the five
two-dimensional Bravais lattices: Oblique, rectangular, cen-
tered rectangular, triangular, and square lattices. We obtain the
dependence of the band structure of the static field direction,
analyze the localization properties of the flatband eigenstates,
and demonstrate that, unlike conventional FB systems which
host CLS, WS flatband states cannot host CLS and are at
least factorially localized instead. We then generalize these
results to higher lattice dimensions and discuss the impact of
longer-range hoppings.

The paper is organized as follows: Section II introduces the
model for 2D lattices and the definitions that are used later in
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FIG. 1. Schematics of the five two-dimensional Bravais lattices
with nearest neighbor hoppings: (a) square; (b) triangular; (c) rect-
angular; (d) centered rectangular; (e) oblique. t1, t2 are the hopping
strengths.

Sec. III to derive the band structure of the models for different
directions of the field. Conditions for the bands flatness are
also discussed in Sec. III, while the eigenstates are analyzed
in Sec. IV. We extend our analysis to higher lattice dimensions
in Sec. V. We conclude with a summary and open issues.

II. SETTING THE STAGE

We consider a 2D Bravais lattice (see Fig. 1):

�rnm = nâ0 + mâ1, (1)

where â0,1 are the lattice basis vectors and (n, m) are the
translation indices of the lattice point. The vectors need not be
orthogonal, for example in the case of the triangular lattice,
and can be expressed in terms of Euclidean basis vectors (ê0,
ê1) as

â0 = γ0ê0, â1 = γ1(cos θ ê0 + sin θ ê1) . (2)

Here 0 < θ � π/2 is a tilting angle of the axis, and γ0,1 are the
lengths of the basis vectors of the lattice unit cell. For square
and triangular lattices γ0 = γ1. For all other cases (oblique,
rectangular and centered rectangular) they are not equal. For
rectangular and square lattices θ = π

2 , for the triangular lattice
θ = π

3 , and for oblique and centered rectangular lattices θ can
take any value except π

2 and π
3 .

Next we define a tight-binding Hamiltonian on the lattice
in the presence of a static dc field �E :

H =
∑
n,m

[
−

∑
l, j

tl j |n − l, m − j〉〈n, m|

+ �E · �rnm|n, m〉〈n, m|
]
, (3)

which acts on the Hilbert space spanned by the basis vectors
{|n, m〉: (n, m) ∈ Z × Z}. The indices l, j denote the hopping
range.

Our main goal is to compute and analyze the spectrum of
this Hamiltonian. Because of the presence of the dc field,
discrete translation invariance is in general broken and we
do not expect any eigenenergy band structure. However the
character of the spectrum depends on the direction of the dc
field, which we set to

�E = F �n‖ = F
(xâ0 + yâ1)

|xâ0 + yâ1| . (4)

Here F is the strength of the field and x, y ∈ R. Then, parallel
and perpendicular directions to the field are encoded by the
respective unit vectors

�n‖ = (xγ0 + yγ1 cos θ )ê0 + (yγ1 sin θ )ê1√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ

,

�n⊥ = (yγ1 sin θ )ê0 − (xγ0 + yγ1 cos θ )ê1√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ

. (5)

We choose the direction of the field such that �n⊥ is parallel to
one of the lattice vectors p1â0 + p2â1 with p1, p2 ∈ Z. This
ensures that the translational invariance of the lattice persists
in the perpendicular direction �n⊥, albeit with a different lattice
spacing than the original lattice. In what follows we coin such
field directions as commensurate directions. They ensure the
existence of a 1D band structure in the spectrum of the model.
Commensurate field directions constrain the possible values
of x, y and θ to either of the two possibilities{|xγ0| = |yγ1| and x

y ,
γ0

γ1
are rational

cos θ = − p1xγ 2
0 +p2yγ 2

1
(p2x+p1y)γ0γ1

, (6)

as discussed in Appendix A.
In order to diagonalize the Hamiltonian [Eq. (3)], we ex-

ploit the partial translation invariance and introduce a new
rotated coordinate system (see Fig. 2): The z coordinate along
the dc field, and the w coordinate perpendicular to the dc field
that we define as follows

z = α

√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ �rnm · �n‖

= nxα + myα, (7a)

w = β

√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ �rnm · �n⊥

= ny − mx, (7b)

with

xα = α
(
xγ 2

0 + yγ0γ1 cos θ
)
, (8a)

yα = α
(
xγ0γ1 cos θ + γ 2

1 y
)
, (8b)

and β = (γ0γ1 sin θ )−1. For any commensurate field direction
there exists a value of the coefficient α such that both xα, yα

become mutually prime integers [as can be directly verified by
computing the ratio yα/xα using the conditions in Eq. (6), see
Appendix B]. Then we can parametrize the new coordinates as

(z,w) = (z,w0(z) + η(xxα + yyα )), z, η ∈ Z. (9)

with a function w0(z), see Appendix B for details. Finally we
note that for any coprime (x, y) (as happens for any dc field
commensurate direction on a square lattice) the distances �z
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FIG. 2. Pictorial representation of the two coordinate systems for
the square lattice: (n, m) shown as numbers within parenthesis (green
color), and (z,w) shown as numbers within square brackets (blue
color). The unit cell is the green shaded area formed by the vertices:
{n = 1, 2; m = 2, 3}. The direction of the dc field is (x, y) = (2, 1)
along the z axis. The red solid and red dashed lines represent, respec-
tively, the lines of constant w and z.

and �w in real space covered by changing respectively, z to
z + 1 and η to η + 1, amount to

�z =
√

γ 2
0 x2 + γ 2

1 y2 + 2γ0γ1xy cos θ,

�w = α

β

√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ. (10)

III. THE 2D SPECTRUM

The convenience of the z,w basis is that now the partial
translation invariance of the Hamiltonian H (3) in the direc-
tion perpendicular to the field is made explicit:

H =
∑
(z,w)

(
Fz|z,w〉〈z,w|

−
∑
l, j

tl j |z − lxα − jyα,w − ly + jx〉〈z,w|
)
. (11)

In the above we have also defined

F = F

α

√
γ 2

0 x2 + γ 2
1 y2 + 2γ0γ1xy cos θ

. (12)

The Hamiltonian is invariant under the shifts w → w′, but not
under the shifts z → z′. Therefore we can apply the Bloch’s
theorem in the direction perpendicular to the field. For that we
define a complete orthonormal set of basis vectors

|φ(z, k)〉 = |z〉 ⊗
∑
η∈Z

eikη|w0(z) + η(xxα + yyα )〉,

〈φ(z′, k′)||φ(z, k)〉 = 2πδz,z′δ(k − k′), (13)

where z ∈ Z and k ∈ [0, 2π ), the quasimomentum in the
direction perpendicular to the field. Then the action of the
Hamiltonian H in Eq. (3) on a basis vector is given by

H|φ(z, k)〉 =Fz|φ(z, k)〉
−

∑
l, j

tl j eikεl j |φ(z − lxα − jyα, k)〉,

εl j = − ( jτ2 − lτ1), (14)

where we have used Eq. (B6) to simplify the expression. The
Hamiltonian does not couple different values of k and the
basis states [ Eq. (13)] for fixed k form invariant subspaces of
the Hamiltonian. Therefore we can use the following ansatz
for the eigenstates of H:

|ψE (k)〉 =
∑

z

ψE (z, k)|φ(z, k)〉 (15)

which correspond to an eigenvalue E . The eigenvalue is a
function of the quasimomentum k:

H |ψE (k)〉 = E |ψE (k)〉. (16)

A. Generating function method

Using Eq. (14) we write the eigenproblem

(Fz − E )ψE (z, k) =
∑
l, j

tl j eikεl j ψE (z + lxα + jyα, k),

(17)

and solve it by introducing a generating function

gE (q, k) =
∑
z∈Z

e−iqzψE (z, k), (18)

gE (q + 2π, k) = gE (q, k + 2π ) = gE (q, k). (19)

We note that the generating function gE (q, k) is nothing but
the Fourier transformed ψE (z, k) from z space to q space. The
eigenproblem, Eq. (17), transforms into an ordinary differen-
tial equation

iF ∂

∂q
gE (q, k) − EgE (q, k) =

∑
l, j

tl je
ikεl j eiq(lxα+ jyα )gE (q, k).

(20)

This equation can be solved for any pair of (E , k). The so-
lutions are not periodic functions in q for generic E , k. The
periodicity in the q requirement from Eq. (19) imposes a
dispersion relation of WS bands between E and k.

We assume that the hopping networks on each of the five
Bravais lattices respect inversion symmetry:

tl, j = t−l,− j ∀ j, l. (21)

This assumption is made for convenience only, the conclu-
sions presented below hold as well if the symmetry is broken.
Then, defining λE = E/F , sl j = tl j/F we arrive at

∂ ln[gE (q, k)]

∂q
= −iλE − i

∑
l, j

sl j cos[kεl j + q(lxα + jyα )].

(22)

This differential equation can be easily integrated, and we
discuss in the next section the possible solutions.
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B. Flatbands and Dispersive Bands

The set of commensurate field directions splits into a subset of flatband directions and the complementary subset of dispersive
directions. All flatband directions satisfy the condition

lxα + jyα �= 0 , for all l, j . (23)

This condition is equivalent to requesting the absence of any direct hopping connection between two lattice sites perpendicular
to the chosen commensurate field direction in Eq. (11). Indeed, for this case the solution of Eq. (22) reads as

gE (q, k) = A(k)e−iλE q exp

(
− i

∑
l, j

sl j

lxα + jyα

sin[kεl j + q(lxα + jyα )]

)
. (24)

Enforcing 2π periodicity of gE in q results in

λE = a ∈ Z ⇒ E = Fa, (25)

i.e., all bands are flat, equidistant, and labeled by an integer index a. We note that the generating function remains periodic in q
and the bands remain flat even in the absence of the inversion symmetry (21).

For a dispersive field direction lxα + jyα = 0 for at least one pair (l = l ′, j = j′), it follows

gE (q, k) = A(k) exp

⎛
⎝−i{λE +

∑
l ′, j′

sl ′ j′ cos[kεl ′ j′]}q
⎞
⎠ exp

⎛
⎝−i

∑
(l, j)�=(l ′, j′ )

sl j

lxα + jyα

sin[kεl j + q(lxα + jyα )]

⎞
⎠. (26)

Again enforcing the 2π periodicity of gE in q we get:

λE +
∑
l ′, j′

sl ′ j′ cos[kεl ′ j′] = a ∈ Z, ⇒ E = Fa −
∑
l ′, j′

tl ′ j′ cos[kεl ′ j′ ]. (27)

All bands turn dispersive, equidistant and labeled by an integer index a. For both cases the band gap between two consecutive
energy bands is equal to F for any k. The prefactor A(k) is periodic in k: A(k) = A(k + 2π ).

It is instructive to observe that the dc field strength enters
completely additive in the dispersion relation (27), leaving the
irreducible E (k) dependence invariant. Also, for any short-
range network the number of flatband directions is infinite,
while the number of dispersive ones is always finite and equal
to the number of hopping connections on the network. Adding
more hoppings to a given Bravais lattice network will add
more dispersive field directions on the expense of the flatband
directions. The limiting case of connecting all sites with all
(even though the hopping strength may decrease in a suitable
way with increasing distance between sites), will eliminate all
flatband directions and leave us with dispersive field direc-
tions only.

IV. LOCALIZATION OF 2D FLATBAND EIGENSTATES

We next turn to the analysis of the eigenstates of the WS
flatbands. Flatbands enjoy macroscopic degeneracy as there
is no unique choice of the eigenstate basis. Eigenstates of
flatbands in short-range translationally invariant Hamiltonians
can be typically arranged into compact localized states [2,31].
We note that in such translationally invariant cases the number
of eigenstates of one flatband equals the embedding space
dimension of its eigenvectors. For WS flatbands the situation
differs, as the embedding space dimension for eigenvectors
is infinitely larger than the number of eigenstates of one flat-
band. It appears impossible to assemble a linear combination
of WS flatband eigenstates, which turns compact in real space.
Indeed, let us assume that a compact localized state does exist.
Then, the generating function g(q, k) can be expanded into a
double Fourier series with a finite number of components in

both q and k. This contradicts the general solution obtained in
Eq. (24). Therefore, compact localized states are ruled out—
see Appendix E for details. What is then the best localization
which can be achieved with WS flatbands?

Let us attempt to identify the most localized eigenstates.
The eigenstates are extracted from the generating function
gE (q, k) for a fixed band a. We set a = 0 and E = 0 without
loss of generality. Using the property of the Bessel function of
first kind

eiμ sin ξ =
∑
ν∈Z

Jν (μ)eiνξ , (28)

we can express the generating function as

g(q, k) = A(k)
∏

(l, j)∈R

∑
ν(l, j)∈Z

Jν(l, j)

(
− 2sl j

lxα + jyα

)

× eiν(l, j)[kεl j+qlxα+q jyα ]

=
∑

{ν∈Z}

⎡
⎣ ∏

(l, j)∈R
Jν(l, j)

(
− 2sl j

lxα + jyα

)⎤
⎦

× ei
∑

(l, j)∈R ν(l, j)[kεl j+qlxα+q jyα ], (29)

where R denotes the set of the hoppings l, j up to the
inversion/reflection symmetry (21), e.g., for nearest neigh-
bor (n.n.) hopping these sets are {(1, 0), (0, 1), (1,−1)} and
{(1, 0), (0, 1)}, respectively, in the case of triangular or cen-
tered rectangular lattices and all the other lattices. In this
case ν denotes the set of all possible integers ν(l, j) for all the
hoppings (l, j) ∈ R. Next we write the flatband basis states in
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the z, k representation

|ψ (k)〉 = A(k)
∑
z∈Z

1

2π

∫ 2π

q=0
gE (q, k)eiqzdq|φ(z, k)〉 . (30)

It follows

|ψ (k)〉 = A(k)
∑
z∈Z

∑
{ν∈Z}

⎡
⎣ ∏

(l, j)∈R
Jν(l, j)

(
− 2sl j

lxα + jyα

)⎤
⎦

× exp

⎛
⎝ik

∑
(l, j)∈R

ν(l, j)εl j

⎞
⎠|φ(z, k)〉, (31)

subject to the constraint∑
(l, j)∈R

ν(l, j) (lxα + jyα ) = −z . (32)

Because the Wannier-Stark band is flat, any linear combina-
tion of the basis vectors (31)

|�〉 =
∫ 2π

k=0
ck|ψ (k)〉dk (33)

is an eigenstate of the Hamiltonian H (3). Let us choose ck =
[2πA(k)]−1 to remove the normalization factor. It follows

|�〉 =
∑
z∈Z

∑
η∈Z

∏
(l, j)∈R

⎡
⎣ ∑

ν(l, j)∈Z
Jν(l, j)

(
− 2sl j

lxα + jyα

)⎤
⎦

× |z〉 ⊗ |w0(z) + η(xxα + yyα )〉, (34)

subject to the constraints∑
(l, j)∈R

ν(l, j)(lxα + jyα ) = −z,
∑

(l, j)∈R
ν(l, j)εl j = −η. (35)

For the five Bravais lattices with n.n. hopping and either four
or six n.n. neighbors the above generic expressions can be fur-
ther simplified. The case of four nearest neighbors—square,
oblique, and rectangular lattices—the real space wavefunction
is given by products of pairs of Bessel functions

|�〉 =
∑

(n,m)∈Z2

Jm

(
2s0,1

yα

)
Jn

(
2s1,0

xα

)
|n, m〉. (36)

The eigenfunctions on triangular and centered rectangular
lattices are given by sums over products of triplets of Bessel
functions:

|�〉 =
∑

(n,m)∈Z2

∑
ν∈Z

Jν

(
− 2s1,−1

xα − yα

)

× Jm−ν

(
2s0,1

yα

)
Jn+ν

(
2s1,0

xα

)
|n, m〉. (37)

The details of the derivations are given in Appendix D.
We are interested in the decay properties of the above wave

functions along and perpendicular to the field direction. Recall
the asymptotics of Bessel functions Jν (t ) ∼ 1

|ν|! | t
2 ||ν| for large

order integer |ν|. Since the above wave functions involve
products of Bessel functions, we conclude that the spatial
decay will be at least factorial 1/r! in any lattice direction,
which is faster than any exponential decay. Let us consider

the square lattice with s = t/F and t as the nearest hopping
strength. From Eq. (10) it follows

�(z = 0,w = ζ�w ) = J−ζx

(
2s

y

)
Jζy

(
2s

x

)
, (38)

�(z = ζ�z,w = 0) = Jζy

(
2s

y

)
Jζx

(
2s

x

)
, (39)

with ζ ∈ Z. We therefore arrive at the wavefunction asymp-
totics for |ζ | → ∞

|�(z = 0,w = ζ�w )| ≈ 1

|ζx|!|ζy|!
∣∣∣∣ |s||x|+|y|

|y||x||x||y|
∣∣∣∣
|ζ |

, (40)

|�(z = ζ�z,w = 0)| ≈ 1

|ζx|!|ζy|!
∣∣∣∣ |s||x|+|y|

|y||y||x||x|
∣∣∣∣
|ζ |

, (41)

|�(z = 0,w = ζ�w )|
|�(z = ζ�z,w = 0)| ≈

(∣∣∣∣x

y

∣∣∣∣
|x|−|y|)|ζ |

. (42)

Since �w = �z and for nonzero integers |x| �= |y| the term
|x/y||x|−|y| > 1, the flatband eigenstates always decay faster
along the field direction as compared to the perpendicular one.
The only exception is |x| = |y| = 1, for which the decay in
both directions is the same.

We plot the wave function profile for the square lattice and
field direction x = 2, y = 1 in Fig. 3(a) in log-linear scale.
The wavefunction decays faster along the field direction than
in the perpendicular one. The inset shows that the gradient is
monotonically decreasing as a function of position for both
directions, i.e., the decay is faster than exponential (for expo-
nential decay it would be a step-function around the origin).

We analyzed numerically a similar case for the triangular
lattice, which is shown in Fig. 3(b). The field direction is
again x = 2, y = 1. Again we observe that the wavefunction
is decaying faster along the field direction than in the per-
pendicular one, and in both directions faster than exponential
(see inset). We therefore expect that other Bravais lattices and
commensurate field directions will yield similar localization
properties of flatband eigenstates. It appears reasonable that
the decay in the perpendicular direction is slower than in the
field direction, as the onsite energies of the original lattice
vary linearly with distance along the field direction as opposed
to the perpendicular one.

V. DIMENSION d � 3

It is straightforward to observe that we can define com-
mensurate field directions for higher d-dimensional Bravais
lattice in the same way: Choose any two points on the lattice
separated by a finite distance, then the connecting line corre-
sponds to an allowed perpendicular direction. In this case the
quasimomentum along the perpendicular direction k will be
replaced by a d − 1 dimensional vector �k in the generating
function in Eq. (18), keeping the 2π periodicity of the gen-
erating function with respect to q: gE (q + 2π, �k) = gE (q, �k).
The differential equation [Eq. (22)] will remain similar after
replacing k by �k. In the absence of hopping connections along
the perpendicular direction, the solution of the differential
equation [Eq. (22)] turns

gE (q, �k) = A(�k)e−iλE qe−i f (q,�k), (43)
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FIG. 3. Absolute values of the probability amplitude |�(z,w)|
for the (a) square lattice and (b) triangular lattice—as functions
of z or w positions in log-linear scale. The static field is along
(x, y) = (2, 1) direction. Insets are the gradients of log10(|�(z,w)|)
with respect to z or w. The position ticks are scaled according to the
physical distances.

where A(�k) and f (q, �k) are periodic functions of �k and q, and
λE = E/F . Therefore, similar to the 2D case, the periodicity
condition gE (q + 2π, �k) = gE (q, �k) implies that λE takes all
possible integer values, and hence the entire spectrum degen-
erates into an infinite set of WS flatbands. In the presence
of hopping connections along the chosen perpendicular direc-
tion, the bands will acquire nonzero dispersion.

For all commensurate field directions each band is char-
acterized by (d − 1)-dimensional wavevectors �k, while the
wavefunctions are embedded into a d-dimensional space. We
expect that flatband eigenstates will be localizing faster than
exponential in all directions, and slower in the perpendicular
directions as compared to the field direction.

As an example, we consider the case of the cubic lattice
with nearest-neighbor hopping t that respects the inversion
symmetry, Eq. (21). The Hamiltonian then is a 3D version
of Eq. (3). The derivation of the generating function, and the
spectrum in this case, is a straightforward generalization of

that for the square lattice. Therefore, we only provide the final
results. For a commensurate field direction �E ∝ F (x1, x2, x3)T

with x1x2x3 �= 0 and gcd(x1, x2) = gcd(x1, x3) = 1, the gener-
ating function reads (�k = (k1, k2)),

gE (q, �k) = A(�k) exp

[
− iλE q − i

∑
( j1, j2, j3 )∈R3

2s

× sin [q( j1x2 + j2x2 + j3x3) + k1ε1 + k2ε2]

j1x2 + j2x2 + j3x3

]
,

R3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
ε1 = j3 − ( j1x1 + j2x2 + j3x3), ε2 = j1τ1 − j2τ2,

where λE = E/F , s = t/F , and τ2x1 + τ1x2 = 1 for fixed
integer values of x1, x2. Similarly, to the 2D case the 2π

periodicity in q of the generating function fixes the eigenen-
ergies and implies that the spectrum consists of 2D flatbands
E (�k) = aF with a ∈ Z. The inverse Fourier transform of gE

yields the eigenfunction (a = 0),

|�〉 =
∑

(n,m,l )∈Z3

Jn

(
2s

x1

)
Jm

(
2s

x2

)
Jl

(
2s

x3

)
|n, m, l〉,

that clearly displays factorial decay in the lattice coordinates
(n, m, l ).

VI. DISCUSSION AND CONCLUSIONS

We considered the impact of a dc field on the spectra of
tight-binding models on d-dimensional Bravais lattices. For
commensurate field directions (for which the perpendicular
direction is parallel to some lattice vector) the spectrum con-
sists of an infinite number of equidistant (d − 1)-dimensional
bands. A finite number of commensurate directions yields
dispersive bands. The remaining infinite set of commensurate
directions leads to dispersionless Wannier-Stark flatbands.
The flatband wavefunctions are embedded in a d-dimensional
vector space, and cease to form compact localized states,
which is the usual scenario for translationally invariant lattices
with short-range hoppings. As a result, Wannier-Stark flat-
band eigenfunctions decay factorially in space, and typically
faster along the field direction than perpendicular to it.

Our results are applicable for ultracold atoms in optical
lattices, where the electric field is substituted by a tilt of the
lattice in the gravitational field [42] or acceleration of the
whole lattice [43]. Notably, the same type of perturbations
can be arranged in optical waveguide arrays where the electric
field is modeled by a curved geometry of the waveguides [44].
In both cases experimental platforms for two-dimensional
settings have been developed. Such experiments can test the
sensitivity of choosing commensurate field directions, the ex-
istence of flatband field directions, Bloch oscillations, and the
factorial localization of flatband eigenstates. Another intrigu-
ing set of potential applications could be related to electronic
transport in strained two-dimensional materials, which is, e.g.,
a hot topic in graphene research [45].

Some open problems for Wannier-Stark flatbands on Bra-
vais lattices are their fate in the presence of perturbations such
as disorder, magnetic fields, and many-body interactions. The
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method used in this work might not be applicable in these
cases, and one would need to resort to the generic analytical
and numerical methods. However, a possible way to analyze
the impact of the perturbations is to perform perturbation
calculations around the limit of strong dc field strength, which
allows the approximation of the factorially localized eigen-
states by compact ones and use of the methods developed for
the analysis of disordered and/or interacting flatband models
[8,32,33,46]. An even more interesting problem is the case of
non-Bravais lattices where there is more than one site per unit
cell. The generating function approach extends naturally to
non-Bravais lattices [47] and again leads to a Wannier-Stark
ladder of an irreducible band structure, now consisting of
several bands. Can some of these bands be tuned to become
flat? A positive answer exists for some chiral lattices, which
transport the chiral symmetry into the generating function and
the irreducible band structure [47]. Similar to translationally
invariant chiral flatbands [30], the irreducible Wannier-Stark
band structure will contain a chiral flatband. The eigenfunc-
tions will be noncompact as in the Bravais lattice case. At
variance to the Bravais case they were observed to localize
only exponentially [47], perhaps due to the presence of other
dispersive nonflat bands in the irreducible spectrum. Can we
finetune non-Bravais lattice hoppings such that the irreducible
Wannier-Stark band structure turns one, or several, or even all,
bands flat—without imposing a symmetry like the chiral one?
We think these are exciting questions for future research.
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APPENDIX A: COMMENSURATE FIELD DIRECTIONS

A commensurate field direction is defined by requiring that
the direction perpendicular to the dc field,

�n⊥ ∝ −yγ1 sin θ ê0 + (xγ0 + yγ1 cos θ )ê1,

is parallel to some lattice vector indexed by p1, p2 ∈ Z:

p1â0 + p2â1 = (p1γ0 + p2γ1 cos θ )ê0 + p2γ1 sin θ ê1.

The condition of these two vectors being parallel reads

(p1γ0 + p2γ1 cos θ )

−yγ1 sin θ
= p2γ1 sin θ

xγ0 + yγ1 cos θ
,

and can be rewritten as(
p1xγ 2

0 + p2yγ 2
1

) = −(p1y + p2x)γ0γ1 cos θ.

This implies that either of the following conditions on x and y
hold:

(1) p1y + p2x = p2yγ 2
1 + p1xγ 2

0 = 0 implying

p1

p2
= −x

y
= −yγ 2

1

xγ 2
0

.

From the above it follows that both x
y and γ1

γ0
are rational, and

|xγ0| = |yγ1|.

(2) p1y + p2x �= 0 implying

cos θ = − p2yγ 2
1 + p1xγ 2

0

(p1y + p2x)γ0γ1
.

APPENDIX B: PARAMETRIZATION OF THE ROTATED
COORDINATES z,w IN 2D

In the main text, Eq. (7), we defined our new coordinates
as

z = nxα + myα, w = ny − mx, (B1)

where xα and yα were defined as

xα = α
(
xγ 2

0 + yγ0γ1 cos θ
)
,

yα = α
(
xγ0γ1 cos θ + yγ 2

1

)
. (B2)

The conditions for a commensurate field direction given by
Eq. (6) imply the existence of a rescaling parameter α �= 0 for
which xα and yα are integers, i.e., either xαyα = 0 or xα/yα is
rational.

Plugging the first condition given by Eq. (6) in Eq. (B2) we
get

xα = αxγ 2
0 (1 ± cos θ ), yα = αyγ1(1 ± cos θ )

⇒ xα

yα

= ±γ0

γ1
, (B3)

and xα

yα
is rational since γ0

γ1
is rational.

Putting the second condition of Eq. (6) in Eq. (B2) we find

xα = α

[
xγ 2

0 − y
p2yγ 2

1 + p1xγ 2
0

(p1y + p2x)

]
,

yα = α

[
yγ 2

1 − x
p2yγ 2

1 + p1xγ 2
0

(p1y + p2x)

]
.

After some simple algebra one arrives at the required result:

xα

yα

= − p2

p1
.

For xαyα �= 0, we absorb gcd(xα, yα ) in α to make xα ,
yα coprime for the convenience of our analysis. In the case
xαyα = 0, we can choose either xα = 1 while yα = 0 or yα = 1
while xα = 0.

Therefore z is integer for all (n, m) ∈ Z × Z. On the other
hand, w takes discrete values, that are not necessarily integer
or cannot be made integer by rescaling of w = ny − mx by a
constant factor, since x/y is not a rational number in general.
Let us denote the set of all possible pairs (z,w) by S and
construct its parametrization. We show that z can take any
integer value, and we can parametrize w for a fixed value of z.
As mentioned before, either xαyα = 0 (for which we can make
either xα = 1 or yα = 1) or xα and yα are mutually prime. For
fixed z, we pick one lattice point that corresponds to z, w0(z),
and is indexed by (n0, m0)

n0 = τ2λ, m0 = τ1λ, (B4)

with τ1, τ2, λ ∈ Z,

z = λ(τ1yα + τ2xα ). (B5)
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According to Bézout’s identity from number theory [48], there
is always a choice of τ1, τ2 such that

τ1yα + τ2xα = 1. (B6)

This implies z = λ, and it takes any integer value. The values
of τ1, τ2 can be determined for example using the Euclidean
division algorithm [49]. Note that despite the fact that the
choice of τ1, τ2 is not unique, the condition (B6) remains un-
changed under the simultaneous change of τ1 by τ1 − pxα and
τ2 by τ2 + pyα , where p can be any integer. The corresponding
value of the perpendicular coordinate is

w0(z) = n0y − m0x = λ(τ2y − τ1x). (B7)

For a given integer value of z all the other values of w are
generated by simultaneous shifts of n from n0 and m from m0

by the following:

n = n0 + ηyα, m = m0 − ηxα, η ∈ Z,

w = ny − mx = w0(z) + η(yαy + xαx) . (B8)

Therefore the entire set S of valid lattice points is parameter-
ized as [50]

(z,w) = (z,w0(z) + η(xxα + yyα )), z, η ∈ Z. (B9)

We use the parametrization (B9) in the main text. In the
following we provide the values of parameters τ1, τ2 for some
special cases.

(i) if yα = 0, xα = 1, then τ1 = 0, τ2 = 1.
(ii) if xα = 0, yα = 1, then τ2 = 0, τ1 = 1.
(iii) if xα = ±yα, yα = 1, then τ2 = ±1, τ1 = 0.

For some simple cases we can even guess restrictions on
the set S. For example, when x, y are integers the set S is only
a subset of Z × Z and does not contain all of its elements.
One can check that by simply looking at the square lattice
case, where z = nx + my, w = ny − mx. In that case for the
field direction x = 2, y = 1 the point (z,w) = (0, 1) does not
exist in the original lattice since it corresponds to fractional
indices (n, m) = (1/5,−2/5).

APPENDIX C: THE ACTION OF H ON BASIS STATES
|φ(z, k)〉 FOR THE 2D SYSTEM

We use the identities:

�w := (xxα + yyα ), τ1yα + τ2xα = 1.

The action of the Hamiltonian on the basis vector is given by:

H|φ(z, k)〉 = Fz|φ(z, k)〉 −
∑

l j

tl j |z − lxα − jyα〉

⊗
∑

η

eikη|w0(z) + η�w − ly + jx〉.

In the right-hand side of the above equation the w coordinate
value is

w0(z) + η�w − ly + jx

= λ(τ2y − τ1x) + η�w − ly + jx

= (λ − lxα − jyα )(τ2y − τ1x)

+ (lxα + jyα )(τ2y − τ1x) + η�w − ly + jx

= w0(z − lxα − jyα ) + η′�w,

with

η′ = η + l

�w
[τ2yxα − τ1xxα − y]

+ j

�w
[τ2yyα − τ1xyα + x]

= η − τ1l + τ2 j = η − εl j,

where we have defined

εl j = τ1l − τ2 j.

Then∑
l j

tl j |z − lxα − jyα〉 ⊗
∑

η

eikη|w0(z) + η�w − ly + jx〉

=
∑

l j

tl j |z − lxα − jyα〉

⊗
∑
η′

eikη′
e−ik(τ2 j−τ1l )|w0(z − lxα − jyα ) + η′�w〉

=
∑

l j

tl je
ikεl j |φ(z − lxα − jyα, k)〉.

Therefore,

H|φ(z, k)〉 = Fz|φ(z, k)〉 −
∑

l j

tl je
ikεl j |φ(z − lxα − jyα, k)〉.

The basis states 〈φ(z′, k′)||φ(z, k)〉 = 2πδz,z′δ(k − k′) form
an orthonormal set and a complete basis for the Hilbert space
on which the Hamiltonian operates.

APPENDIX D: DERIVATION OF THE BESSEL FUNCTION
ORDER DEPENDENCE ON THE SPATIAL COORDINATES

IN EQS. (36) AND (37)

Let us consider the case of triangular and centered rect-
angular lattices with six nearest neighbor hoppings. The case
of square, rectangular, and oblique lattices with four nearest
neighbor hoppings follows straightforwardly by setting ν =
ν(1,−1) = 0, s1,−1 = 0 in Eq. (37). The constraints in Eq. (35)
can be expanded as follows:

ν(1,0)xα + ν(0,1)yα + ν(1,−1)(xα − yα ) = −(z − a),

ν(1,0)ε1,0 + ν(0,1)ε0,1 + ν(1,−1)ε1,−1 = −η,

where a is the band index which corresponds to different
eigenenergies. Using the relations

τ1yα + τ2xα = 1, ε1,0 = τ1, ε0,1 = −τ2, ε1,−1 = ε1,0 − ε0,1,

η = w − w0(z)

xxα + yyα

= w − z[τ2y − τ1x]

xxα + yyα

,

n = xz + wyα

xxα + yyα

, m = yz − wxα

xxα + yyα

,

we get

ν(0,1) = −zτ1 + ηxα + ν(1,−1) + aτ1

= ν(1,−1) − m + aτ1;

ν(1,0) = −zτ2 − ηyα − ν(1,−1) + aτ2

= − n − ν(1,−1) + aτ2.
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In the main text we analyzed the a = 0 case only. We also used
the following symmetry properties of the Bessel functions:

J−ν (−μ) = Jν (μ),

for integer order index ν and real μ.

APPENDIX E: NONEXISTENCE OF COMPACT
LOCALIZED EIGENSTATES FOR WANNIER-STARK

FLATBANDS

Let us try to construct a compact localized eigenstate
|�CLS〉 in position space, assuming existence of a set of proper
superposition coefficients CCLS(k):

|�CLS〉 = 1

2π

∫
k

CCLS(k)|ψ (k)〉dk

= 1

4π2

∫
k

∫
q

dqdkCCLS(k)

×
∑

z,η∈Z
ei(qz+kη)gE (q, k)|z,w0(z) + η�w〉.

The generating function gE (q, k) is periodic both in k and
q, and hence it can be expanded as a Fourier series in the
variables k and q:

gE (q, k) =
∑

p1,p2∈Z
gp1,p2 eikp1+iqp2 .

Therefore

|�CLS〉 = 1

2π

∫
k

dkCCLS(k)
∑

p1,p2,η∈Z
eik(η+p1 )gp1,p2 |

− p2,w0(−p2) + η�w〉.

Compactness of the eigenstate in the field direction implies
gp1,p2 = 0 except for a finite number of values of p2. But from
the solution Eq. (24) it follows that the generating function
cannot be expressed as finite polynomial in eiq. Hence a flat-
band wavefunction cannot be made compact in the direction
of the field.

We will now discuss the possibility for the flatband wave-
function to be compact in the perpendicular direction of the
field. Since we study lattice eigenvalue problems, CCLS(k) is a
2π -periodic function in k:

CCLS(k + 2π ) = CCLS(k) ⇒ CCLS(k) =
∑
p3∈Z

Cp3 eikp3 .

Therefore,

|�CLS〉 =
∑

p1,p2,p3∈Z
Cp3 gp1,p2 | − p2,w0(−p2)

− (p1 + p3)�w〉.

Compactness in the direction perpendicular to the field im-
plies that the product Cp3 gp1,p2 = 0 except for a finite number
of integer values of the sum (p1 + p3). Simple inspection of
Eq. (24) yields that, for any fixed value of p3 with a corre-
sponding nonzero Cp3 , there always exists an infinite number
of p1 values for which gp1,p2 turns nonzero.

Therefore there exists no function CCLS(k) for which the
flatband eigenfunction turns into a CLS. Moreover, we proved
that the flatband eigenfunctions are necessarily noncompact
in all space directions. The proof can be generalized to higher
space dimensions d � 2 by replacing k with a (d − 1) dimen-
sional vector �k.

[1] E. H. Lieb, Two Theorems on the Hubbard Model, Phys. Rev.
Lett. 62, 1201 (1989).

[2] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys.: X 3,
1473052 (2018).

[3] D. Leykam and S. Flach, Perspective: Photonic flatbands, APL
Phot. 3, 070901 (2018).

[4] O. Derzhko, J. Richter, and M. Maksymenko, Strongly cor-
related flat-band systems: The route from heisenberg spins
to hubbard electrons, Int. J. Mod. Phys. B 29, 1530007
(2015).

[5] M. Goda, S. Nishino, and H. Matsuda, Inverse Anderson Tran-
sition Caused by Flatbands, Phys. Rev. Lett. 96, 126401 (2006).

[6] S. Nishino, H. Matsuda, and M. Goda, Flat-band localization in
weakly disordered system, J Phys. Soc. Jap. 76, 024709 (2007).

[7] J. T. Chalker, T. S. Pickles, and P. Shukla, Anderson localiza-
tion in tight-binding models with flat bands, Phys. Rev. B 82,
104209 (2010).

[8] D. Leykam, S. Flach, O. Bahat-Treidel, and Anton S.
Desyatnikov, Flat band states: Disorder and nonlinearity, Phys.
Rev. B 88, 224203 (2013).

[9] D. Leykam, J. D. Bodyfelt, A. S. Desyatnikov, and S. Flach,
Localization of weakly disordered flat band states, Eur. Phys. J.
B 90, 1 (2017).

[10] P. Shukla, Disorder perturbed flat bands: Level density
and inverse participation ratio, Phys. Rev. B 98, 054206
(2018).

[11] Andrey I Maimistov, On the stability of flat-band modes in a
rhombic nonlinear optical waveguide array, J. Opt. 19, 045502
(2017).
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[15] G. Gligorić, Petra P. Beličev, D. Leykam, and A. Maluckov,
Nonlinear symmetry breaking of Aharonov-Bohm cages, Phys.
Rev. A 99, 013826 (2019).

[16] M. Di Liberto, S. Mukherjee, and N. Goldman, Nonlinear dy-
namics of Aharonov-Bohm cages, Phys. Rev. A 100, 043829
(2019).

[17] M. Johansson, U. Naether, and Rodrigo A. Vicencio,
Compactification tuning for nonlinear localized modes in saw-
tooth lattices, Phys. Rev. E 92, 032912 (2015).

013174-9

https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1063/1.5034365
https://doi.org/10.1142/S0217979215300078
https://doi.org/10.1103/PhysRevLett.96.126401
https://doi.org/10.1143/JPSJ.76.024709
https://doi.org/10.1103/PhysRevB.82.104209
https://doi.org/10.1103/PhysRevB.88.224203
https://doi.org/10.1140/epjb/e2016-70551-2
https://doi.org/10.1103/PhysRevB.98.054206
https://doi.org/10.1088/2040-8986/aa58fb
https://doi.org/10.1103/PhysRevB.94.144302
https://doi.org/10.1103/PhysRevE.96.012204
https://doi.org/10.1103/PhysRevA.98.053845
https://doi.org/10.1103/PhysRevA.99.013826
https://doi.org/10.1103/PhysRevA.100.043829
https://doi.org/10.1103/PhysRevE.92.032912


ARINDAM MALLICK et al. PHYSICAL REVIEW RESEARCH 3, 013174 (2021)

[18] C. Danieli, A. Maluckov, and S. Flach, Compact discrete
breathers on flat-band networks, Low Temp. Phys. 44, 678–687
(2018).

[19] A Mielke, Ferromagnetism in the hubbard model on line graphs
and further considerations, J. Phys. A: Math. Gen. 24, 3311
(1991).

[20] H. Tasaki, Stability of Ferromagnetism in the Hubbard Model,
Phys. Rev. Lett. 73, 1158 (1994).

[21] H. Tasaki, Hubbard model and the origin of ferromagnetism,
Eur. Phys. J. B 64, 365 (2008).

[22] O. Derzhko, A. Honecker, and J. Richter, Low-temperature
thermodynamics for a flat-band ferromagnet: Rigorous versus
numerical results, Phys. Rev. B 76, 220402(R) (2007).

[23] M. Maksymenko, A. Honecker, R. Moessner, J. Richter, and
O. Derzhko, Flat-Band Ferromagnetism as a Pauli-Correlated
Percolation Problem, Phys. Rev. Lett. 109, 096404 (2012).

[24] R. Khomeriki and S. Flach, Landau-Zener Bloch Oscillations
with Perturbed Flat Bands, Phys. Rev. Lett. 116, 245301 (2016).

[25] Y. Long and J. Ren, Topological Landau-Zener-Bloch oscil-
lations in photonic Floquet Lieb lattices, arXiv:1706.01107
(2017).

[26] S. Peotta and Päivi Törmä, Superfluidity in topologically non-
trivial flat bands, Nat. Commun. 6, 8944 (2015).

[27] A. Julku, S. Peotta, Tuomas I. Vanhala, D.-H. Kim, and P.
Törmä, Geometric Origin of Superfluidity in the Lieb-Lattice
Flat Band, Phys. Rev. Lett. 117, 045303 (2016).

[28] M. Tovmasyan, S. Peotta, L. Liang, P. Törmä, and S. D. Huber,
Preformed pairs in flat bloch bands, Phys. Rev. B 98, 134513
(2018).

[29] G. E. Volovik, Graphite, graphene, and the flat band supercon-
ductivity, JETP Lett. 107, 516 (2018).

[30] A. Ramachandran, A. Andreanov, and S. Flach, Chiral flat
bands: Existence, engineering, and stability, Phys. Rev. B 96,
161104(R) (2017).

[31] N. Read, Compactly supported wannier functions and algebraic
k-theory, Phys. Rev. B 95, 115309 (2017).

[32] C. Danieli, A. Andreanov, T. Mithun, and S. Flach, Nonlinear
caging in all-bands-flat lattices, arXiv:2004.11871 (2020).

[33] C. Danieli, A. Andreanov, T. Mithun, and S. Flach, Quan-
tum caging in interacting many-body all-bands-flat lattices,
arXiv:2004.11880 (2020).

[34] W. Maimaiti, A. Andreanov, H. C. Park, O. Gendelman, and S.
Flach, Compact localized states and flat-band generators in one
dimension, Phys. Rev. B 95, 115135 (2017).

[35] W. Maimaiti, S. Flach, and A. Andreanov, Universal d = 1 flat
band generator from compact localized states, Phys. Rev. B 99,
125129 (2019).

[36] W. M. Maimaiti, A. Andreanov, and S. Flach, Flatband genera-
tor in two dimemsion, arXiv:2101.03794.

[37] M. Wulayimu, Flatband generators, Ph.D. thesis, Uni-
versity of Science and Technology, Daejeon, 2020, doi:
10.13140/RG.2.2.21763.25127.

[38] Dmitrii N. Maksimov, Evgeny N. Bulgakov, and Andrey R.
Kolovsky, Wannier-stark states in double-periodic lattices. i.
one-dimensional lattices, Phys. Rev. A 91, 053631 (2015).

[39] T. Nakanishi, T. Ohtsuki, and M. Saitoh, Two-Dimensional
Tight-Binding Electrons in Electric and Magnetic Fields,
J. Phys. Soc. Jpn. 64, 2092 (1995).

[40] F. Keck and H. J. Korsch, Infinite-variable bessel functions in
two-dimensional wannier-stark systems, J. Phys. A: Math. Gen.
35, L105 (2002).

[41] E. N. Bulgakov and A. R. Kolovsky, Induced tunneling and
localization for a quantum particle in tilted two-dimensional
lattices, Phys. Rev. B 89, 035116 (2014).

[42] B. P. Anderson and M. A. Kasevich, Macroscopic quantum in-
terference from atomic tunnel arrays, Science 282, 1686 (1998).

[43] M. Cristiani, O. Morsch, J. H. Müller, D. Ciampini, and E.
Arimondo, Experimental properties of Bose-Einstein conden-
sates in one-dimensional optical lattices: Bloch oscillations,
Landau-Zener tunneling, and mean-field effects, Phys. Rev. A
65, 063612 (2002).

[44] S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta,
E. Cianci, and V. Foglietti, Observation of Dynamic Localiza-
tion in Periodically Curved Waveguide Arrays, Phys. Rev. Lett.
96, 243901 (2006).

[45] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H.
Terrones, Electronic and optical properties of strained graphene
and other strained 2d materials: A review, Rep. Prog. Phys. 80,
096501 (2017).

[46] S. Flach, D. Leykam, Joshua D. Bodyfelt, P. Matthies, and
Anton S. Desyatnikov, Detangling flat bands into Fano lattices,
Europhys. Lett. 105, 30001 (2014).

[47] A. R. Kolovsky, A. Ramachandran, and S. Flach, Topo-
logical flat Wannier-Stark bands, Phys. Rev. B 97, 045120
(2018).

[48] Gareth A Jones and Josephine M Jones, Elementary Number
Theory (Springer, Berlin-Heidelberg, 2012).

[49] H. R. P. Ferguson, D. H. Bailey, and S. Arno, Analysis of PSLQ,
an integer relation finding algorithm, Math. Comp. 68, 351
(1999).

[50] Andrey R. Kolovsky, I. Chesnokov, and G. Mantica, Cyclotron-
bloch dynamics of a quantum particle in a two-dimensional
lattice. ii. arbitrary electric field directions, Phys. Rev. E 86,
041146 (2012).

013174-10

https://doi.org/10.1063/1.5041434
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1103/PhysRevLett.73.1158
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1103/PhysRevB.76.220402
https://doi.org/10.1103/PhysRevLett.109.096404
https://doi.org/10.1103/PhysRevLett.116.245301
http://arxiv.org/abs/arXiv:1706.01107
https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevLett.117.045303
https://doi.org/10.1103/PhysRevB.98.134513
https://doi.org/10.1134/S0021364018080052
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1103/PhysRevB.95.115309
http://arxiv.org/abs/arXiv:2004.11871
http://arxiv.org/abs/arXiv:2004.11880
https://doi.org/10.1103/PhysRevB.95.115135
https://doi.org/10.1103/PhysRevB.99.125129
http://arxiv.org/abs/arXiv:2101.03794
https://doi.org/10.13140/RG.2.2.21763.25127
https://doi.org/10.1103/PhysRevA.91.053631
https://doi.org/10.1143/JPSJ.64.2092
https://doi.org/10.1088/0305-4470/35/9/101
https://doi.org/10.1103/PhysRevB.89.035116
https://doi.org/10.1126/science.282.5394.1686
https://doi.org/10.1103/PhysRevA.65.063612
https://doi.org/10.1103/PhysRevLett.96.243901
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1209/0295-5075/105/30001
https://doi.org/10.1103/PhysRevB.97.045120
https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1103/PhysRevE.86.041146

