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Abstract: Almost 70 years ago, the Fermi–Pasta–Ulam–Tsingou (FPUT) paradox was formulated
in, observed in, and reported using normal modes of a nonlinear, one-dimensional, non-integrable
string. Let us recap the paradox. One normal mode is excited, which drives three or four more
normal modes in the core. Then, that is it for quite a long time. So why are many normal modes
staying weakly excited in the tail? Furthermore, how many? A quantitative, analytical answer to
the latter question is given here using resonances and secular avalanches A comparison with the
previous numerical data is made and extremely good agreement is found.
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1. Introduction

In 1955, Fermi, Pasta, Ulam and Tsingou published their celebrated report on the
thermalization of weakly nonlinear strings [1], bringing forth a fundamental physical and
mathematical problem of energy equipartition and ergodicity. The study was reportedly
performed by Enrico Fermi, John Pasta, Stanislav Ulam, and Mary Tsingou, and the internal
Los Alamos report was written and authored by Fermi, Pasta and Ulam [1]. A series of
numerical simulations showed that energy, initially placed in a low-frequency normal mode
of the linear problem with a frequency wq and a corresponding wave number q, stayed
almost completely locked within a few neighbor low-frequency modes in the presence of
nonlinear mode–mode interactions, instead of being distributed among all modes of the
system. Moreover, the recurrence of energy to the originally excited mode was observed
after a long simulation time. It has been known since as the Fermi–Pasta–Ulam–Tsingou
(FPUT) problem, paradox, and discovery [2–5].

A number of studies have focused on the explanation of recurrences. Zabusky and
Kruskal pioneered the pathway of integrable approximations and soliton counting in
real space [6–8]. To connect to the limit of weak nonlinear dynamics, Ford and Jackson
followed the path of resonances in normal mode space [9–11]. Tuck and Menzel (née
Tsingou) studied in detail the fate of recurrences for longer times. To their surprise, they
observed super-recurrences, i.e., beatings of the recurrence amplitudes [12]. Sholl and
Henry searched for scaling relations from recurrence time computations [13]. Lin, Goedde,
and Lichter arrived at more detailed scaling relations for the recurrence times, and in
addition also produced intriguing numerical data for the dependence of the number of
excited modes of the energy [14]. The framework of periodic orbits in dynamical systems
was used to rigorously prove the existence of exact time-periodic orbits, coined q-breathers,
which are nonlinearity-induced deformed normal-mode periodic orbits of the linear limit
[15,16]. FPUT trajectories correspond to perturbed q-breather solutions. An advanced
perturbation analysis in mode space which uses secular avalanches was derived by Ponno
et al. [17], which arrived at an approximate estimate of the excited mode number in
the FPUT experiment. Recently, Pace and Campbell arrived at an elegant theoretical
quantitative explanation of super-recurrences [18]. What remains, then, is to quantitatively
explain the numerical observations on the excited mode number by Lin et al. [14] which is
what is done below.
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2. The a-FPUT Chain

FPUT-studied models have cubic (a-FPUT) and quartic (b-FPUT) nonlinearities in the
Hamiltonian potential energy, and the a-FPUT case is considered here. The Hamiltonian of
the a-FPUT lattice for N particles is given by

Ha(q, p) =
N

Â
n=1

p
2
n

2
+
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Â
n=0
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3
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Fixed boundary conditions, q0 = qN+1 = 0 and p0 = pN+1 = 0 are used, where qn(t)
and pn(t) are canonical coordinates and momenta, respectively.

The normal-mode representation is introduced via a canonical Fourier transform,
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which diagonalizes the harmonic oscillator Hamiltonian part. Rewriting Equation (1) in
these normal-mode coordinates (Q, P) yields:
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where the normal mode frequencies are
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and the normal mode energies are defined as
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Note that these normal mode energies are conserved quantities for a = 0, but cease to
be preserved for the nonlinear case. The coupling constants Ak,j,l are given by [16]

Ak,j,l =
wkwjwlp
2(N + 1) Â

±

⇣
dk,±j±l � dk±j±l,2(N+1)

⌘
. (6)

Here, the sums Â± are overall combinations of plus and minus signs among the ± symbols,
and dj,l is the Kronecker delta function.

One can rescale the normal-mode coordinate and momentum [19] pairs in Equation (3)
by (Q, P) ! (Q/a, P/a). If E represents the total energy in the system, this leads to

Ha=1(Q, P) = a2
E, (7)

which allows one to investigate results as functions of the combined parameter, Ea2, rather
than using the separate parameters E and a.

Let us show the evolution of the original a-FPUT trajectory for a = 0.25, N = 32 and
energy E = 0.077 placed initially into the mode with k0 = 1. (All variables in this paper are
considered dimensionless.) In Figure 1, the time dependence of the mode energies Ek(t) is
plotted for the first five modes of the data from [16].
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Figure 1. Evolution of the linear mode energies for the first five modes on a large timescale for the
original Fermi–Pasta–Ulam-Tsingou (FPUT) trajectory for the parameter a = 0.25, theeneregyE =

0.077, and the number of particles N = 32 [1] (oscillating curves). The almost-straight horizontal lines
indicate the weak time dependence of the linear mode energies on corresponding exact time-periodic
q-breather solutions from [16]. Figure is adapted from [16].

The period of the slowest (k0 = 1) harmonic mode is T1 = 2p/w1 ⇡ 66.02. One
observes slow processes of the redistribution of mode energies, with recurrence time
amounting to TR ⇡ 10530. One can also observe even slower modulations of recurrence
amplitudes on time scales of the order of 105, which are the celebrated super-recurrences
with TSR ⇡ 2 · 106 [12,18]. The localization in q-space is also well observed, with the maxi-
mum of E5 being eight times smaller than that of E1. The number of strongly participating
modes can be therefore estimated to be around three or four. The almost straight horizontal
lines indicate the weak time dependence of the linear mode energies on the corresponding
exact time-periodic q-breather solutions from [16].

3. Mode Coupling Approach

The equations of motion for the normal mode amplitudes follow from Equations (1)–(
6) and read:

Q̈k + w2
k
Qk = �a

N

Â
l,m=1

Ak,l,mQlQm, (8)

where the dots stay for time derivative.
The system of Equation (8) describes a network of oscillators with different eigenfre-

quencies. These oscillators interact with each other via nonlinear interaction terms. The
interaction network is long -ranged in k-space. To be more specific, each normal-mode
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oscillator is interacting with a set of other doublets of oscillators. The total number of
multiplets one normal-mode oscillator is connected to is proportional to N

2. The number
N is the total number of oscillators (particles), or, more generally, the volume of the system.
The coupling constants Ak,l,m depend on the oscillator frequencies; see Equation (6). Still,
their values do not decay exponentially fast, with some growing distance between oscilla-
tors (after introducing a proper metric). Therefore, essentially all oscillators interact with
all others. This is what is meant by "long range".

If there is long-range interaction in mode space, why do modes not quickly excite
other modes and thermalize? The reason is that the interaction is nonlinear. Indeed, with
linear interactions, exciting one mode will inevitably excite other modes in some proportion
to the coupling coefficient amplitudes. However, with nonlinear couplings, things are more
complicate as shown below. Actually, it is insightful to recall the seemingly simple problem
of the periodic motion of one oscillator in an anharmonic potential,

ẍ = �x � ax
2
� bx

3 , (9)

where x is the space coordinate.
The bounded motion at energy E yields a solution which is periodic with some period,

T(E) = 2p/W (with W denoting the frequency), and can be represented by a Fourier series

x(t) = Â
k

AkeikWt , (10)

which leads to algebraic equations for the Fourier coefficients,

Ak = k
2W2

Ak � a Â
k1

Ak1 Ak�k1 � b Â
k1,k2

Ak1 Ak2 Ak�k1�k2 . (11)

Let us note that Equation (11) has similar properties as compared to Equation (8)—the
coupling between the Fourier coefficients is nonlinear but long ranged. Yet, it is known
that the bounded solutions (10) to (9) are analytic functions x(t), and thus the Fourier series
coefficients Ak converge exponentially fast with k [20].

3.1. Complex Mode Variables

Ponno et al. [17] attempted to obtain analytical expressions for the mode dynamics of
the a-FPUT model at times shorter than, or at best of the order of the time of first recurrence.
Following their approach, let us perform a change from real to complex variables:

uk ⌘
wkQk + iPk

p
2E

, |uk(t)|
2 =

Ek(t)
E

= ek(t) , (12)

The a-FPUT Hamiltonian now reads:
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where
Dk1,k2,k3 ⌘ dk1+k2,k3 + dk2+k3,k1 + dk3+k1,k2 � dk1+k2+k3,2N , (14)

and
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r
E

N
. (15)
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The quadratic, H2, and cubic, H3, parts of the Hamiltonian are indicated in Equa-
tion (13). The equations of motion then read:

u̇k = �iwk

"
uk +

µ

4

N�1

Â
p,q=1

Dk,p,q(up + u
⇤
p)(uq + u

⇤
q)

#
. (16)

The FPUT initial condition turns to

uk(0) = dk,1 . (17)

3.2. Resonances

With the FPUT initial condition of exciting mode k = 1, and a small value of µ in
Equation (15), the first mode starts evolving in an almost periodic fashion with a frequency
almost equal to w1. Assuming uk = e

�iw1tdk,1 as a solution to zero order in µ, and inserting
this into the righ-hand side (r.h.s.) of Equation (16) leaves us with

u̇2 + iw2u2 = �iµw2 cos2 w1t ⌘ �i
µw2

2
(1 + cos 2w1t) . (18)

Thus, mode k = 2 is driven by a periodic force with frequency 2w1. This is as close
to resonance as w2 � 2w1 is close to zero, and its smallness is to be compared with the
drive amplitude ⇠ µw2. Assuming p/(2(N + 1)) ⌧ 1, which is correct for N = 32, let us
expand the dispersion relation: wk = 2 sin

⇣
kp

2(N+1)

⌘
⇡ 2

⇣
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p3

k
3
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⌘
. Then:

D2 ⌘ |w2 � 2w1| ⇡
p3
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Stripping Equation (18) off its nonresonant terms (whose contribution to the solution
is reduced by a factor of D2/w1,2 ⇠ 1/N

2), one is left with

u̇2 + iw2u2 ⇡ �i
µw2

4
exp(�2iw1t) . (20)

The solution to Equation (20) reads:

u2(t) =
µw2
4D2

e�iw2t

h
eiD2t

� 1
i

. (21)

As long as u2(t) ⌧ 1, the above approach is valid. The border of its validity is reached
when the energy E takes the critical value E

sa
2 , at which mode k = 2 is involved in a secular

avalanche [17]:
µw2
4D2

= 1 ! E
sa
2 =

p4

36a2N3 . (22)

For energies E ⌧ E
sa
2 , the small frequency D2 leads to a slow modulation in the

r.h.s. of Equation (21), which results in a corresponding slow modulation of the energy
stored in mode k = 1 due to energy conservation. Then, the corresponding zero order (or
perturbative) recurrence time estimate is:

T
(0)
R ⌘

2p

D2
=

8
p2 N

3 , E ⌧ E
sa
2 . (23)

This coincides with earlier results by Sholl and Henry [13] ( see also Lin et al. [14]),
and the relevant resonance was already worked out in Ford’s paper [9].

Let us calculate some numbers. Figure 1 in Ref. [14] uses parameters E = 2.2,
a = 0.1, and N = 32. On one side, it follows T

(0)
R = 26,560, but due to the large energy,

it also follows E � E
sa
2 = 0.0083, implying that the recurrence time concept is invalid

since perturbation theory is inapplicable. Still, the measured TR = 6400 is orders of
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magnitude larger than the typical mode period, T1, and only a factor of four smaller than
the perturbation theory estimate. The original FPUT trajectory was investigated in Figure 1
of Ref. [16], with parameters E = 0.077, a = 0.25 and N = 32, and shown here in Figure 1.
Again, E � E

sa
2 = 0.0013. The measured recurrence time TR = 10,500 is smaller than the

perturbation result T
(0)
R , but still orders of magnitude larger than the mode period T1. Part

of the FPUT surprise must have been that even for E � E
sa
2 , recurrence times still stayed

large and reasonably close to their perturbation theory estimates, and a fast approach to
equipartition was missing.

4. The Number of Excited Modes

For E � E
sa
2 , one concludes that the FPUT trajectory is resonant. Mode k = 2 will

be resonantly pumped up by mode k = 1 until mode k = 1 is depleted. It is needless to
state that the process continues into higher modes, showing a complex resonant avalanche,
as studied in detail in Ref. [17]. Furthermore, this is what FPUT observed, since they
evidently chose the proper parameters to ensure that the system is in the nonperturbative
regime of a resonant avalanche, which one enters for energies E � E

sa
2 .

Why is the secular avalanche stopping and not continuing to flood all the modes?
According to Ref. [17], this is simply because the modes in the mode packet can be separated
into core modes and tail modes. Core modes are strongly and resonantly interacting with
each other. Tail modes fail to be resonantly pumped as they are tuned out of resonance
due to the nonlinear dispersion relation. The boundary-separating core and tail modes
are functions of the energy. For E ⌧ E

sa
2 , all modes are tail modes except for the one core

mode initially excited.
To see that the above approach is extended to higher orders of perturbation theory;

see Ref. [17] for details. Mode k = 2 is driven by mode k = 1 through the resonant term
u

2
1. Mode k = 3 is driven by the resonant term u1u2, and so on. One arrives at

u̇k + iwkuk ⇡ �i
µwk

4
e�ikw1t . (24)

The relevant resonances are Dk = |kw1 � wk|, and lead to

uk(t) ⇡
µwk

4Dk

e�iwkt

h
eiDkt

� 1
i

. (25)

The critical energy E
sa
k

, above which mode k becomes part of the core and the secular
avalanche, then reads:

µwk

4Dk

= 1 ! E
sa
k

=
2p4(k2

� 1)2

242a2N3 . (26)

Since E
sa
k

⇠ k
4, it follows that for some reasonably small value of k ⌘ kc, the corre-

sponding mode will be out of resonance:

kc =

r
1 +

6
p2 µN2 . (27)

This agrees very well with the detailed derivations in Ref. [17], which culminate in a
rough scaling estimate kc ⇡

p
µN for large kc and large N. At the same time, Equation (

27) is accurate for small values of kc, which is the case for, e.g., the original FPUT trajectory
(see precise numbers just below). This can happen despite a large value of N � 1 since
other relevant (small) parameters include the energy E and the coupling constant a, which
make the product µN

2 small. The mode energies for k > kc are decreasing exponentially
with increasing k, as observed numerically in Ref. [17,21], and as also derived for the
mode energy profiles in q-breather solutions [15,16]. Therefore, the number of modes
participating in an FPTU trajectory is simply given by kc.

Let us calculate numbers again. Figure 1 in Ref. [14] uses parameters E = 2.2, a = 0.1
and N = 32. It follows kc = 4.16 in good agreement with the numerical observations.
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About four modes are involved in the resonant dynamics of the core, while all other modes
stay out of resonance. The original FPUT trajectory, which was investigated in Figure 1 in
Ref. [16] with parameters E = 0.077, a = 0.25 and N = 32, yields kc = 2.9, which is again
in good agreement with numerical observations; see also Figure 1.

One is now in a position to quantitatively compare the central result obtained, Equa-
tion (27), with numerical results from Lin et al. [14]. The authors of that study measured
the effective number,

neff = eS , S = �Â
k

ek ln ek, (28)

which ranges from 1 to N as S = 0 for one mode excited, and S = ln N for equally
distributed mode energies. According to the derivation made:

kc = neff. (29)

In order to test the above equality, the data on neff versus µN
2 for

N = 32, 64, 128 are extracted from Figure 4 of Ref. [14]. The result is plotted in Fig-
ure 2 along with the theoretical result for kc in Equation (27). Very good agreement can be
observed.

0.1 1 10 100 1000
αε

1/2N2
1
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100

neff

Figure 2. Left panel: The effective number, neff versus a#1/2
N

2
⌘ µN

2 with # ⌘ E/N. The symbols
represent the data read off from Figure 4b of Ref. [14], correspond to a set of different system sizes,
N = 32, 64, 128, and demonstrate a single scaling curve existence. The black line represents the
theoretical result (27). Right panel: same as left panel but using linear scales. The square -root law of
Equation (27) provides an extremely good fit .

One concludes that the FPUT trajectory will, for long times, excite a mode packet with
kc modes, which are the core modes of the packet. The remaining (N � kc) modes belong
to the tail of the packet, and decay exponentially with increasing k. Let us further note that
the theoretical result obtained here can be rewritten in the limit of large system size as:

kc

N
⇡

p
6a

p
#1/4 , # =

E

N
, N � 1 . (30)

Therefore, the packet size becomes system size-independent if expressed entirely
through intensive quantities—wave numbers and energy densities.

5. Discussion

It is now understood that both FPUT recurrences and super-recurrences are part of the
dynamics of so-called metastable states (mode packets) [22], which eventually relax into
equipartition at some time T2. These metastable states are formed at a time T1, persisting
over potentially huge time intervals, ⇠ (T2 � T1). They are characterized by a localized
distribution of energy in mode space. This distribution has a core which, e.g., in the
case of the original FPUT test, contains a few low-frequency modes. The distribution
has also a tail. Galgani and Scott observed that this tail is exponentially decaying [21].



Physics 2021, 3 886

The distribution appears to be almost stationary when using proper averaging times which
are much shorter than Tm, though of course lots of dynamics is going on at various time
scales, e.g., recurrences and super-recurrences. The core shows recurrence and super-
recurrence, but also various forms of chaos (at even larger time scales). The tails are
characterized by decay structures in normal mode space, resonances, and slow incoherent
heating. The decay structures can be exponential, thus leading to length scales in normal
mode space or algebraic implying the absence of the latter. Resonances in the decay profiles
show the driven nature of these tails, with the core being the driving source. Incoherent
heating results from the same core driving, which at larger time scales may exhibit chaotic
incoherent dynamics.

The core dynamics are quantified by their recurrence, TR, and super-recurrence, TSR,
times and the core size. While the recurrence and super-recurrence times were assessed
in previous studies a quantitative calculation of the core size is provided here, which
agrees very well with the measured data. One can therefore conclude that the regular
core dynamics have been to some extent exhaustively studied. What remains for the core
is to assess its chaotic incoherent dynamics. These dynamics are the reason for the slow
heating of the tail modes, and will ultimately explain the time scale T2 of a final reaching of
equipartition, as studied numerically in detail in Ref. [23].

6. Conclusions

In this paper, a quantitative estimates for the size of the core and tail of a low-frequency,
normal-mode excitation in a Fermi–Pasta–Ulam–Tsingou (FPUT) chain is provided. How
will these results be modified if high frequency modes are excited? Even more intriguing
is the question of whether any of these results are carried over in some form for an FPUT
system at thermal equilibrium—what are the details of the energy transfer between low and
high frequency modes in such a situation? What will happen at higher lattice dimensions?
What changes if the model supports optical normal modes with a finite frequency gap in
the band structure? It seems there a plenty of questions to be addressed 70 years after the
FPUT experiment.

7. HB2U

I had a great time working together with Mikhail Tribelsky back in Dresden at the
Max Planck Institute for Physics of Complex Systems. We both shared a passion for puzzles
and paradoxes, probably intuitively realizing that however remote the topic of the puzzle
is, solving it will advance the mind in potentially unexpected areas of science and general
understanding of the world. I dedicate this paper to Mikhail’s 70th birthday. It solves some
aspects of a paradox which is almost the same age, paradoxically.
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