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Anderson localization confines the wave function of a quantum particle in a one-dimensional random potential
to a volume of the order of the localization length ξ . Nonlinear add-ons to the wave dynamics mimic many-body
interactions on a mean-field level, and result in escape from the Anderson cage and in unlimited subdiffusion
of the interacting cloud. We address quantum corrections to that subdiffusion by (i) using the ultrafast unitary
Floquet dynamics of discrete-time quantum walks, (ii) an interaction strength ramping to speed up the subdiffu-
sion, and (iii) an action discretization of the nonlinear terms. We observe the saturation of the cloud expansion
of N particles to a volume ∼Nξ . We predict and observe a universal intermediate logarithmic expansion regime
which connects the mean-field diffusion with the final saturation regime and is entirely controlled by particle
number N . The temporal window of that regime grows exponentially with the localization length ξ .
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Introduction. Single-particle quantum dynamics in a one-
dimensional space with uncorrelated disorder results in
Anderson localization (AL), i.e., confinement to a finite lo-
calization volume of the order of the localization length ξ [1].
The evolution of an initially localized quantum wave packet
will consist of an (almost ballistic) expansion up to the volume
∼ξ [2] with a subsequent halt and exponential wave-function
localization in the tails [3]. Experimental verifications of AL
with Bose-Einstein condensates of ultracold atomic gases
loaded onto optical potentials were reported harvesting on the
halt of the wave-packet expansion [4].

Many-body interactions alter the picture. Full-scale com-
putations of temporal evolutions are restricted to two or
three interacting particles only, with the complexity quickly
increasing due to the Hilbert space dimension prolifera-
tion [5–23]. Increasing the number of particles is predicted
to result in a slow subdiffusive expansion [24], which adds
to the computational challenge. The same slow subdiffusion
limits experimental studies with condensates due to finite
coherence times [25]. Treating infinite particle numbers with
mean-field approximations results in nonlinear add-ons to the
wave dynamics which stem from the two-body interactions.
Nonlinear wave-packet expansion was investigated both an-
alytically and numerically over vast timescales [26–32]. It
allows us to obtain the details of the subdiffusion process, with
expansion times which are many orders of magnitude larger
than the time reached by the experimental implementations of
comparable theoretical models [33]. Remarkably, the subdif-
fusive expansion of a nonlinear wave packet appears to show
no signatures of halt which was tested using a vast number of
different Hamiltonian and discrete-time map evolutions with
various types of nonlinear terms [33]. Contrarily, for quantum
clouds with N particles we expect the expansion to stop when
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the cloud reaches the size of the order of Nξ since each
particle can occupy its own localization volume ∼ξ and is
only exponentially weakly interacting with other particles.

Here, we want to explore the long-time wave-packet ex-
pansion of an interacting many-body cloud and to establish
its slowing down from (sub)diffusion to a complete halt.
To achieve that challenging goal, we have to choose proper
platforms and approximations. We use a Floquet platform of
discrete-time quantum walks which exhibit AL [34]. Non-
linear add-ons show subdiffusive cloud expansion up to
record large evolution times [35]. We further use a time-
dependent ramping of the interaction strength which allows
us to speed up subdiffusion to normal diffusion [36]. Finally
we quantize the actions in the nonlinear add-ons similar to
the Bohr-Sommerfeld quantization approach and to previous
quantization studies of kicked rotor models [37–40]. As a
result, we are able to simulate the cloud expansion for tens
and hundreds of interacting particles. We carefully choose the
localization length ξ and the number of interacting particles in
order to observe the slowing down and halt processes within
the time window accessible due to computational restrictions.
We succeed in observing a slowing down of the expansion
into a universal intermediate logarithmic growth regime which
connects the (sub)diffusion with the final saturation regime.
We derive the analytical details of this logarithmic regime.

DTQW. The single-particle linear discrete-time quantum
walk (DTQW) is a Floquet evolution of a two-level system
{σ, σ̄ } on a chain. The system state at time t + 1 follows from
that at time t by the following unitary map,

ψn,σ (t + 1) = cos θψn−1,σ (t ) + eiφn−1(t ) sin θψn−1,σ̄ (t ),

ψn,σ̄ (t + 1) = −e−iφn+1(t ) sin θψn+1,σ (t ) + cos θψn+1,σ̄ (t ),
(1)

where n counts the lattice sites, and θ is the mixing angle
in the {σ, σ̄ } space which controls the kinetic energy of an
excitation [34]. The uncorrelated random on-site disorder in

2469-9926/2022/105(2)/L020202(6) L020202-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.L020202&domain=pdf&date_stamp=2022-02-23
https://doi.org/10.1103/PhysRevA.105.L020202


ARINDAM MALLICK AND SERGEJ FLACH PHYSICAL REVIEW A 105, L020202 (2022)

the phase φn ≡ ζn ∈ [−π, π ] results in Anderson localiza-
tion with the localization length ξ = −[ln(| cos θ |)]−1 [34].
Note that ξ (θ → 0) → ∞ and ξ (θ → π/2) → 0. DTQWs
were introduced as a quantum version of classical random
walks [41]. They serve as a single-particle version of a quan-
tum cellular automaton [42,43]. DTQWs became a useful tool
to study various systems and phenomena such as relativistic
particles, artificial gauge fields [44,45], various topological
phases [46–48], percolation problems [49,50], localization
phenomena [51], and implementation of quantum information
tasks [52–54], among others. DTQWs were implemented ex-
perimentally using NMR devices [55], optical devices [56,57],
in the IBM quantum computer [58], and in a trapped ion
quantum computer [59].

Nonlinearity was introduced in DTQWs in a number of
publications [35,60–64]. We follow Ref. [35] by making
the phase φn(t ) a continuous function of the local norm
ρn(t ) = |ψn,σ (t )|2 + |ψn,σ̄ (t )|2:

φn = γ ρn + ζn. (2)

Both linear and nonlinear DTQWs preserve the total norm
A = ∑

n ρn. We will evolve the DTQWs starting with one
and the same localized initial condition [ψn,σ (0), ψn,σ̄ (0)] =
δn,0[1, i]/

√
2 with A = 1. For γ = 0 the corresponding linear

DTQW results in a short expansion and final halt of the wave
packet spreading due to Anderson localization. Instead, for
γ �= 0 the wave packet continues its expansion beyond the
limits set by Anderson localization [35]. Its root mean square
(rms)

r =
√

〈n2〉 − 〈n〉2, 〈nx〉 =
∑

n

nxρn, (3)

grows indefinitely in a subdiffusive manner r(t ) ∼ t1/6 [35].
Ramping. The subdiffusive expansion is a rather slow pro-

cess since it is characterized by a time-dependent diffusion
constant which is a function of the wave-packet norm den-
sity ρ ∼ 1/r: D ≡ D(γ ρ) [65]. The density ρ is decaying in
time while the wave packet expands, thus effectively slowing
down the diffusion. Since we intend to simulate the impact
of a yet to be introduced quantum slowing down correction,
we are facing a challenging computational task. Remarkably,
there is a reported way to speed up the subdiffusive process
by choosing a proper ramping of the strength of nonlinear
interaction γ (t ). Such a ramping intends to compensate for
the decrease of the density ρ through a proper increase of
the interaction strength γ . That ramping can be in princi-
ple realized in experiments with ultracold atoms through a
time-dependent magnetic field which controls the two-body
scattering length in a vicinity to Feshbach resonances [66–69].
The ramping speedup scheme was successfully tested with a
discrete nonlinear Schrödinger lattice Hamiltonian and a non-
linear quantum kicked rotor map [36]. We follow the ramping
protocol from Ref. [36] and choose γ (t ) = γ tν :

φn(t ) = γ tνρn(t ) + ζn. (4)

In a one-dimensional diffusive process for an initially local-
ized wave packet, its variance grows linearly in time: r2 =
Dt . For the ramping case normal diffusion is reached when
D is constant (stationary), implying that the product (γ tνρ)

FIG. 1. Average of log r vs log t for expanding wave pack-
ets with ramping nonlinearity. The ramping exponent ν =
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2 increases from bottom to
top. Here, θ = 0.35π and γ = 30. Averaging is performed over 24
random disorder realizations.

inside the wave packet stays approximately constant. Since
ρ ∼ 1/r and r ∼ √

t for normal diffusion, we conclude that
the ramping exponent ν = 1/2 ensures normal diffusion of
the wave packet (see also Ref. [36]). A further increase of the
ramping exponent beyond 1/2 does not modify the obtained
normal diffusion [65]. Smaller ramping exponents gradually
slow down the spreading into subdiffusion. Our numerical
results in Fig. 1 confirm the above considerations. For what
follows we will use ν = 1 and γ = 30.

Mimicking quantization through discretization. We arrived
at the final and central part of our complex evolution de-
sign which intends to mimic a finite number of interacting
quantum particles. The quantum analog of the total norm
A is the number of particles N similar to the relation be-
tween the total norm of a Gross-Pitaevskii equation and the
number of particles in a corresponding Bose-Hubbard Hamil-
tonian [70,71]. The quantum analog of the norm density ρn

is the number of particles on that site. In analogy to the
particle-number-dependent interaction energy of a many-body
quantum lattice model we discretize the density ρn inside the
nonlinear term [(2) and (4)] using a step function to arrive at

φn(t ) = γ tν

N
�Nρn(t )� + ζn, (5)

where �Nρn(t )� is the largest possible integer less than or
equal to Nρn(t ). The parameter N � 1 serves as the analog
of the number of particles in a quantum many-body system.
Note that the total number of particles

∑
n Nρn(t ) = N is

conserved. For N → ∞ we recover the continuous density
dependence of the phase (4).

Figure 2(b) shows the computed dependence log r vs log t
for N = 24, γ = 30, and ν = 1 and a variety of different
angles θ which control the single-particle localization length
ξ = −[ln(| cos θ |)]−1. The wave packet initially expands dif-
fusively and shows clear signatures of saturation and halt at
larger evolution times. The rms value r at saturation can be
expected to be of the order of the number of particles N times
the volume of a one-particle Anderson localized wave packet
vl . That single-particle volume will depend on the localiza-
tion length ξ and we will assess these details further below.
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FIG. 2. Average of r vs log t for various values of θ (numbers in
the legend, increasing from top to bottom) and N = 24. The average
is taken over 177 random realizations. Inset (a) left: Average of r vs
log t for θ = 0.25π and with ramping, only initial ramping, and no
ramping (see text for details). Inset (b) right: The same main plot but
in log-log scale. Averages are now taken for log r.

Interestingly, Fig. 2(b) appears to predict that the saturation
and halt will happen at earlier times the smaller the angle θ

and therefore the larger the localization length ξ . However, a
replot of the same data with r on a linear scale in the main part
of Fig. 2 shows that what appeared to be a saturation and halt
on logarithmic rms scales, turns into a logarithmic expansion
regime of the quantized wave packet,

r(t ) = r0 + Dqn log10(t ), (6)

where r0 is a fitting parameter which will be quantified below.
It can easily take negative values. The smaller θ and the larger
ξ , the earlier the logarithmic expansion sets in, and the further
it extends in time. In Fig. 2(a) we replot the data for θ =
0.25π and compare with a run where ramping is switched off
when the rms reaches the value r = 25 where the logarithmic
spreading regime appears to start. We also plot data from a
run where no ramping is applied altogether. We observe very
good agreement between all curves, which clearly shows that
the ramping protocol is not affecting the essential details of
the logarithmic spreading. The ramping though is crucial for
larger θ values in order to faster reach the onset of logarithmic
spreading.

To further substantiate this finding, we compute the local
derivatives of the curves from the main panel of Fig. 2 and plot
them in Fig. 3. We find that the derivatives show a plateau-like
structure in the regime of logarithmic expansion, with a slope
value Dqn ≈ 20, almost independently of θ and ξ . Logarith-
mic numerical derivatives are notorious for their fluctuations
due to finite numbers of disorder realizations and smoothening
operations resulting in slow fluctuations, therefore we will
not analyze possible fine structures. Let us measure the true
saturation time Tf . For that we find the largest slope position
and value in Fig. 3. We then use the linear fit (6) and extend
it to larger times until the rms reaches the assumed final
localization volume Vloc. The read-off time is identified as Tf :

Tf = 10(Vloc−r0 )/Dqn . (7)

FIG. 3. Derivative of selected curves in Fig. 2 vs log t . Only four
θ values are shown for the sake of clarity. Curves for other θ values
show similar behavior.

To estimate Vloc we assume that it is proportional to the num-
ber of particles N and the single-particle localization volume
vl ≈ rl + 1 where rl ∼ ξ is the saturated rms of a single
particle:

Vloc = N f (rl + 1). (8)

Note that the correction by one integer in (8) accounts for the
case of small localization length ξ � 1 when rl � 1 but the
volume is approximately one lattice site. We plot the value of
rl as a function of θ in the inset of Fig. 4. The proportion-
ality factor f can be assumed to be of order one. To get a
number, we use the data for θ = 0.45π in Fig. 2 to read off
Vloc ≈ 70 and arrive at the value f ≈ 2 which we will use for
all other curve analysis as well. The outcome is shown by the
blue (top) curve in Fig. 4. We find that Tf (θ ) is expected to
have a minimum at around θ = 0.45π , while it is growing
substantially when deviating to larger and smaller values of
θ .

Derivation. In order to explain the observed logarithmic
expansion and the subsequent halt, we assume that the local-
ization length ξ � 1 and thus rl � 1. In order to enter the
logarithmic expansion regime with r(t ) > rl , the wave-packet

FIG. 4. Tf vs θ . Blue top curve data are extracted from the data
in Fig. 2 following Eq. (7). For the fit details, see the text. Orange
bottom curve—result of theoretical analysis. Inset: The saturated rms
rl for a single particle as a function of θ .
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density must be small such that at any given time for most
of the wave-packet sites the quantization condition (5) yields
one particle, i.e., �Nρ� = 0. For a large time the dynam-
ics in a localization volume vl will be following the linear
DTQW dynamics. We assume (and tested numerically) that
the local norm on any of the two levels in a two-level system
will fluctuate following an exponential (Gibbs) distribution
∼e−μρ with chemical potential μ = 2r (inverse of average
local norm). The fluctuations are restricted to norm redistribu-
tions within the finite volume vl ≈ rl and have an upper limit
ρmax = crl/r(t ) > 1/N with the constant c being of order one
and to be fixed below. Then the norm ρn on the entire two-level
system will fluctuate according to the distribution of the sum
of two uncorrelated non-negative random numbers

P (ρn) = μ2ρne−μρn , 0 � ρn � ρmax. (9)

There is a small but finite probability℘ that 1/N < ρn < ρmax:

℘(r) =
∫ ρmax

1/N
Pdρn ≈ e−2r/N − e−2crl . (10)

The average time for that to happen is T ≈ 1/℘ . Once the rare
event takes place, the quantized nonlinearity (5) effectively
changes the disorder potential within the considered localiza-
tion volume. At the edge of the wave packet, that leads to an
expansion into a newly accessible localization volume:

dr

dt
= rl℘ (r), r(t ) = Ncrl + N

2
ln

(
1 − e− 2rl t

Ne2crl
)
. (11)

It follows that r(t → ∞) → Ncrl and with (8) we conclude
c ≈ f . We are now in a position to obtain the logarithmic
expansion law, which is derived from (11):

r(t ) = N

2
ln

(
2rl

N

)
+ N

2
ln (t ), t � Ne2 f rl

2rl
. (12)

The fitting parameter r0 from Eq. (6) corresponds to the first
term on the right-hand side (rhs) of (12). The logarithmic
expansion is universal in the sense that the slope N/2 depends
only on the particle number, but not on the particularities
of the disorder, nonlinearity, and ramping. In our numeri-
cal computations in Fig. 3 we used N = 24. The observed
slope ≈20 was measured on logarithmic timescales in base 10
and matches reasonably well with the theoretical prediction
N
2 ln 10 = 27.6. Finally we can attempt to estimate the satura-
tion time Tf from (11). For that we compute the time at which
the exponent in the rhs in (11) is of order one. The result reads

Tf = Ne2 f rl

2rl
. (13)

It follows that the saturation time diverges exponentially with
large rl in the limit of infinite localization length θ → 0. At
the same time the saturation time diverges as 1/rl in the limit
of small localization length θ → π/2. Therefore there must
be a minimum saturation time Tf at some value of θ . The
full dependence of Tf (θ ) is plotted in Fig. 4. We find that the
minimum saturation time is obtained for θ ≈ 0.48π which is
reasonably close to the numerically observed value ≈0.45π .

Note that the absolute values of the theoretical estimate of Tf

are much lower than the computational results. The reason
is that our theoretical approach is qualitative when it comes
to fitting, and operates on logarithmic scales. Changing Vloc

from 70 to around 80 changes f from 2 to 2.3. An additional
replacement of rl by rl + 1 results in a magnitude shift of Tf

upwards by three orders of magnitude. Despite the qualitative
character of the theory, it is capable of reproducing the uni-
versal log law, and the minimum in Tf .

Discussion. The wave packet starts to spread in a ballistic-
like regime up to the size of the single-particle localization
volume vl . It then enters a subdiffusive regime when not
ramped, or diffusive regime when ramped which extends until
the start of the logarithmic regime due to density quantization
which happens for a wave-packet size of the order of N and at
a time t ∼ N2/D. The spreading finally halts for a packet size
of the order of Nvl . Therefore both the logarithmic part and
the halt are scaled to infinite times in the limit N → ∞, which
recovers a familiar (sub)diffusion of the wave packet on all
accessible timescales known for the nonquantized theory [35].
If instead the single-particle localization volume vl is tuned
to larger and larger values, the logarithmic spreading part is
extending over more and more time decades. The crossover
between the (sub)diffusion and the logarithmic regimes is
scaled to shorter times. This follows from the dependence
of the diffusion constant D on the localization length [33].
The (sub)diffusive regime window is closing completely for
vl > N so that the ballistic regime is immediately followed by
the logarithmic one. All these results can be read off the data
in Fig. 2.

Experimental platforms which use ultracold atomic
gases [25] can keep cloud coherence up to times which are
comparable to 104 of our dimensionless time units [33].
Interaction strength ramping using Feshbach resonances is
feasible. Therefore we conclude that such experimental plat-
forms can observe the onset of logarithmic spreading (see the
curve for θ = 0.25π in Fig. 3).

Conclusion. Nonlinear wave packets spread subdiffusively
in a disordered environment. Despite many efforts to observe
a slowing down of the subdiffusion, all computational ev-
idence points to unlimited subdiffusion. Quantum systems
with many particles and a conserved particle number were
expected to be sufficient for a slowing down from subdiffu-
sion and final halt of spreading for finite particle numbers.
In this Letter we simulate this effect using a rough action
quantization of a nonlinear wave propagation. To actually
reach the desired timescales, we chose highly efficient unitary
maps (discrete-time quantum walks) and nonlinear interaction
strength ramping for computational speedup. We succeeded
with observing the halt of expansion. In addition, we dis-
covered an intermediate logarithmic expansion regime whose
time window grows with increasing localization length. In that
regime the speed of the wave-packet size growth on logarith-
mic timescales depends only on the total particle number in
the packet.
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