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We consider tight-binding single-particle lattice Hamiltonians which are invariant under an antiunitary an-
tisymmetry: the anti-PT symmetry. The Hermitian Hamiltonians are defined on d-dimensional non-Bravais
lattices. For an odd number of sublattices, the anti-PT symmetry protects a flatband at energy E = 0. We derive
the anti-PT constraints on the Hamiltonian and use them to generate examples of generalized kagome networks
in two and three lattice dimensions. Furthermore, we show that the anti-PT symmetry persists in the presence
of uniform DC fields and ensures the presence of flatbands in the corresponding irreducible Wannier-Stark band
structure. We provide examples of the Wannier-Stark band structure of generalized kagome networks in the
presence of DC fields, and their implementation using Floquet engineering.

DOI: 10.1103/PhysRevA.105.L021305

Introduction. Flatband systems with single-particle disper-
sionless bands in their band structure [1–8] are important and
promising platforms for exploring exotic phases and uncon-
ventional orders, due to the combined effect of macroscopic
degeneracy of flatbands and applied perturbations. Possible
perturbations include disorder [9–11], nonlinear interactions
[10,12], and various many-body interactions [13–17]. The
presence of localized eigenstates of a flatband are argued to be
useful for quantum information storage and transfer [18–20]
and for observing memory effects [21]. Remarkably, the pres-
ence of a uniform DC field leads to a Wannier-Stark (WS)
ladder of (d − 1)-dimensional irreducible band structures in
a d-dimensional lattice. These irreducible band structures can
again contain flatbands [22,23]. Being fine-tuned by nature,
finding flatband Hamiltonians is in general a challenging
problem. Multiple methods were developed to generate flat-
bands in translationally invariant systems that are based on
fine-tuning [5,24,25], line graphs [26], origami rules [27],
repetition of miniarrays [28], and application of magnetic field
[6,29–31].

Flatbands can also emerge as a consequence of a symmetry.
Local and latent symmetries have been shown to generate
flatbands [32,33]. The other class of symmetries are global
symmetries of the Hamiltonian. A global symmetry is asso-
ciated with a symmetry operator � which is either unitary or
antiunitary. A single-particle Hamiltonian H is antisymmetric
if the following relation holds: � · H · �−1 = −H. The anti-
symmetry implies that for each eigenvalue E with eigenvector
|ψE 〉 there exists the negative eigenvalue −E with eigenvector
� |ψE 〉. If the total number of eigenvalues is odd, it follows
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that at least one of them is zero. Translationally invariant
lattice Hamiltonians are characterized by the number of their
sublattices. Transforming the Hamiltonian into Bloch mo-
mentum space and observing �(�k) · H(�k) · �−1(�k) = −H(�k)
results in a macroscopically degenerated symmetry-protected
E = 0 flatband for an odd number of sublattices.

One such example is the chiral symmetry that is realized by
a unitary operator �. The chiral Hamiltonian in momentum

space turns bipartite, H(�k) =
(

O T (�k)
T †(�k) O

)
, where O is a

null matrix and T (�k) is a rectangular matrix. Chiral flatband
models and exhausting flatband generators have been reported
for dimension d = 1, 2, 3 [34–36].

In this Letter, we explore the other possibility when the
symmetry operator � is antiunitary and analyze the effect
of the applied DC field. Only few results are known in this
case. In d = 2, Green et al. [37] introduced a family of
modified kagome lattices with three sublattices with nonzero
local flux distributions which have a symmetry-protected flat-
band at energy E = 0 despite the breaking of time-reversal
symmetry. Specific members of this modified kagome family
were reported in later publications as well [38,39]. A specific
decoration of the 2D Lieb lattice was also reported to feature
a symmetry-protected flatband [40]. We note that all of the re-
spective antiunitary operators � = A consist of a spatial point
reflection (inversion through a point) in lattice position space
P , followed by a time-reversal operation T (usually simply
an antilinear complex conjugation operation in lattice position
basis): A = T · P . Therefore, all of the above examples enjoy
anti-PT Hamiltonians.

When a commensurate uniform DC field [23] is ap-
plied, the band structure of the original d-dimensional
Hamiltonian is modified into a WS ladder of irreducible
(d − 1)-dimensional band structures with the same number
of bands [41]. The particular case of the 2D dice lattice with
three bands resulted in a WS flatband in the presence of a
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DC field, which was believed to be protected by the chiral
(bipartite) symmetry of the original dice lattice [22]. How-
ever, this symmetry appears to be lost in the presence of DC
fields, and the flatband existence proof in Ref. [22] does not
explicitly rely on it. However, we note that the dice lattice is
also invariant under anti-PT symmetry. As we show below,
this symmetry remains, in general, intact in the presence of a
nonzero DC field.

We derive the constraints for a general Hermitian Hamilto-
nian H on a d-dimensional non-Bravais lattice to be anti-PT
symmetric:

A · H · A−1 = −H. (1)

The anti-PT symmetry condition and an odd number of sub-
lattices are sufficient to protect at least one flatband—both in
the absence and presence of DC fields.

Definitions. We consider a Hermitian tight-binding Hamil-
tonian on a d-dimensional non-Bravais lattice. Every lattice
site is labeled by its unit cell index vector �n = ∑d

j=1 n j �a j

and sublattice index ν = 1, 2, . . . , μ. The numbers nj are
integers and �a j are d-dimensional unit cell basis vectors (and
are, in general, neither orthogonal nor normalized). Similar
to the lattice vector �n, we define the sublattice vectors �mν =∑d

i=1 mν,i�ai which locate sublattice sites relative to a unit
cell: −1 < mν,i < 1. Consequently, we label the Hilbert space
basis vectors as |ν, �n〉. The single-particle translationally in-
variant Hamiltonian reads

H = −
∑
�l,�n

μ∑
ν,σ=1

tν,σ (�l )|ν, �n〉〈σ, �n + �l|. (2)

The hopping amplitude tν,σ (�l ) = t∗
σ,ν (−�l ) connects site

(σ, �n + �l ) with site (ν, �n). Application of the Bloch theorem
on the Hamiltonian (2) block diagonalizes it in the quasimo-
mentum basis {|�k〉}. Each block is a μ × μ matrix acting only
on the sublattice space:

H(�k) := −
∑

�l

μ∑
ν,σ=1

tν,σ (�l )ei�k·�l |ν〉 〈σ | . (3)

If μ is odd, an antisymmetry of the Hamiltonian H(�k) results
in a zero eigenvalue. If that antisymmetry holds for all �k, then
the Hamiltonian possesses a zero-energy flatband.

The anti-PT symmetry operator reads

A = T · P = T ·
∑
ν,�n

eiξν | f (ν),−�n − �pν〉 〈ν, �n| . (4)

The one-to-one map f (ν) describes the swap of the sublattice
indices upon lattice point inversion. It is defined by the lattice
geometry and it is its own inverse: f −1 = f . For instance,
with three sublattices the only choices are f1 : 1 �→ 1, 2 �→
2, 3 �→ 3, and f2 : 1 �→ 1, 2 �→ 3, 3 �→ 2 (up to a freedom of
the sublattice index relabeling). The 2D Lieb and kagome
lattices implement f1, while the 2D dice lattice implements
f2. Inversion in position space results in inverting the sign
of a unit cell vector �n �→ −�n. However, the inversion can
map a given sublattice point of unit cell �n into one of the
neighboring cells of −�n. Therefore, we had to introduce the
lattice vectors �pν in Eq. (4). �pν relates the sublattice vectors:

�mν + �m f (ν) = �pν . The gauge phases ξν relate to the magnetic
flux distributions (if present) in the models of interest. Since
we consider an odd number of sublattices, it follows that
A2 = 1 (see Supplemental Material [42] for details). This
implies the following constraints: �pν = �p f (ν) and ξν = ξ f (ν).
For instance, in the case of three sublattices, f1 allows for
three independent gauge phases while f2 allows for only two
independent gauge phases. Combining Eqs. (1) and (4), we
arrive at the following constraints on the hoppings for an
anti-PT symmetric Hamiltonian (2):

e−iξν+iξσ t∗
ν,σ (�l ) = −t f (ν), f (σ )(−�l + �pν − �pσ ). (5)

The above constraint on the hoppings can be used to ef-
ficiently construct anti-PT symmetric Hamiltonians. For a
single sublattice (e.g., a Bravais lattice) the above condi-
tion (5) reduces to t∗(�l ) = −t (−�l ). At the same time, the
Hermiticity of the Hamiltonian enforces t∗(�l ) = t (−�l ). Both
conditions can only be satisfied for the trivial case of no
hopping t (�l ) = 0. Therefore, the anti-PT symmetry requires
two or more sublattices.

Anti-PT protected flatbands. Let us project both sides of
Eq. (1) onto the �k space:

A(�k) · H(�k) · A(�k)
−1 = −H(�k). (6)

For a Hamiltonian satisfying Eq. (5), the anti-PT operator (4)
transforms as

A(�k) = Ts ·
μ∑

ν=1

eiξν e−i�k· �pν | f (ν)〉〈ν|, (7)

where Ts is a complex conjugation operator and it acts only on
the sublattice space. For an odd number of sublattices μ, one
of the μ eigenvalues of H(�k) is zero. As this is true for all �k,
it follows that one of the bands must be flat with energy equal
to zero.

In Fig. 1, we show an anti-PT symmetric generalized
2D kagome lattice with an E = 0 flatband compatible with
Eq. (5). The sublattice vectors are �m1 = 1

2 �a2, �m2 = �0, and

�m3 = 1
2 �a1, while f (ν) = ν, �p1 = �a2, �p2 = �0, and �p3 = �a1.

The hopping parameters are detailed in the caption of Fig. 1.
Diagonalizing the Hamiltonian H(�k) for this choice of param-
eters, we obtain three bands (see Supplemental Material [42]).

The anti-PT band structure is shown in Fig. 1(b). The anti-
PT flatband supports eigenstates which are compact localized
states (CLSs) occupying three unit cells as shown in Fig. 1(a).
The CLS amplitudes up to normalization are ≡ −t (black dia-
monds), ≡ eiϕ (black filled circle), ≡ e−iϕ (empty big circle),
≡ +1 (black filled square), and ≡ −1 (empty square).

To arrive at a 3D version of the kagome lattice, shown
in Fig. 2(d), we stack the 2D kagome lattices shown in
Fig. 1(a) on top of each other vertically with |�a3| = 1.
Two additional hoppings connect neighboring 2D kagome
planes: t1,2(0, 0, 1) = 2 and t1,2(0, 1,−1) = 2. The spectrum
is now a function of three reciprocal momenta (k1, k2, k3). In
Figs. 2(a)–(c), we plot three different 3D intersections of the
band structure E (k1, k2, k3). All of them contain an anti-PT
flatband at zero energy.

Anti-PT protected Wannier-Stark flatbands. We now out-
line and prove the survival of the anti-PT symmetry in the
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(a)

(b) (c)

FIG. 1. (a) The anti-PT symmetric generalized 2D kagome lat-
tice. The lattice sites are shown by small empty black circles. A
single unit cell is shown within a shaded triangle with the sub-
lattice sites a (ν = 1), b (ν = 2), and c (ν = 3). The hoppings
t3,1(1, −1) = −1 (black dashed lines), t2,3(0, 0) = eiϕ (black dashed-
dotted lines), t2,3(−1, 0) = e−iϕ (black dotted lines), t1,2(0, 1) =
t1,2(0, 0) = t (yellow solid lines), t1,3(0, 0) = 1 (solid black lines).
The fluxes ϕ induced by anti-PT symmetric complex hopping
choices are denoted inside each plaquette, with all fluxes computed
counterclockwise. The compact localized eigenstate at the anti-PT
flatband energy E = 0 has nonzero wave-function amplitudes in-
dicated by large circles, diamonds, and squares (for more details,
we refer to the main text). (b) Band structure E (k1, k2) for ϕ = π

5
and t = 0.15. (c) Three subsequent irreducible Wannier-Stark band
structures computed using Eq. (16) for the DC field direction �a1 + �a2.
The field strength | �E | = 2.

presence of a uniform DC field �E for an anti-PT symmetric
Hamiltonian. The DC field adds an on-site potential term in
the Hamiltonian (2) and the full Hamiltonian reads

HE = �E · r̂ + H. (8)

Here we defined the lattice position operator as r̂ = ∑
ν,�n(�n +

�mν ) |ν, �n〉 〈ν, �n|. The DC field term �E · r̂ changes signs under

(a) (b) (c)

(d) (e)

FIG. 2. The anti-PT symmetric generalized 3D kagome lat-
tice. (a)–(c) Three constrained band structures: (a) E (k1, k2, k3 =
π

7 ), (b) E (k1, k2 = π

7 , k3), (c) E (k1 = π

7 , k2, k3). (d) The lattice
structure. The sites are denoted by small solid red spheres. The
hopping connections within each 2D kagome plane are the same
as in Fig. 1(b). The intraplane hoppings t1,2(0, 0, 1) = 2 and
t1,2(0, 1, −1) = 2. (e) Three subsequent irreducible Wannier-Stark
band structures Eγ ,a(κx, κy ) computed using Eq. (16) for the field
direction (2, 2, 3) ≡ 2�a1 + 2�a2 + 3�a3. The field strength | �E | = √

7.

the application of the anti-PT operator A due to lattice reflec-
tion P: (�n + �mν ) �→ −(�n + �mν ). Together with condition (5),
this ensures

A · HE · A−1 = −HE . (9)

The application of the uniform DC field breaks translation
invariance and eliminates the band structure for generic di-
rections of the DC field. However, for special field directions,
translation invariance is broken only partially and a WS band
structure emerges as translation invariance is preserved in
the direction orthogonal to the field. We refer to such field
directions as commensurate [23]. The unit cell and sublat-
tice coordinates along the field, z and zν , respectively, are
defined as z = 1

F
�E · �n, zν = 1

F
�E · �mν with the scaling factor

F ensuring that z taking integer values. The directions perpen-
dicular to �E are parameterized by a d − 1 dimensional integer
vector �η (see Supplemental Material [42] for details). The
Hamiltonian HE is translationally invariant in �η. With the use
of the Bloch basis for �η,

|ψE (�κ )〉 = (2π )
1−d

2

∑
z,ν,�η

ψE (ν, z, �κ )ei�κ·�η |ν, z, �η〉 , (10)
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the Hamiltonian (8) becomes block diagonal:

HE =
∫

�κ
HE (�κ )d �κ, HE (�κ ) |ψE (�κ )〉 = E (�κ ) |ψE (�κ )〉 .

(11)

Each block is infinite dimensional due to the coupling along
the z direction. The commensurability condition for the DC
field implies the persistence of a generalized translational
invariance along the field direction, which goes along with
an overall shift of the eigenenergies. Following Refs. [22,23],
we Fourier transform from z space to its conjugate momentum
q space �gE (q, �κ ) = (2π )−1/2e

−iEq
F

∑
z,ν eiq(z+zν )ψE (ν, z, �κ ) |ν〉

to arrive at μ coupled differential equations (see Supplemental
Material [42] for derivation):

i
∂

∂q
�gE (q, �κ ) = HE (q, �κ )�gE (q, �κ ). (12)

The resulting Hermitian Hamiltonian

HE (q, �κ ) = − 1

F
∑
�l,ν,σ

tν,σ (�l ) |ν〉 〈σ | eiq(zν−zσ )ei�κ·�ε(�l )− iq �E·�l
F (13)

is a μ × μ matrix which acts on the sublattice space {|ν〉} only,
�ε(�l ) is the hopping perpendicular to the field. Equation (12)
describes a unitary evolution of �gE (q, �κ ) in q space,

�gE (q, �κ ) = U (q, �κ ) · �gE (0, �κ ), (14)

where U (q, �κ ) is a q-ordered exponential of the integrated
HE (q, �κ ):

U (q, �κ ) = 1 + (−i)
∫ q

q′=0
dq′HE (q′, �κ ) + (−i)2

∫ q

q′=0

×
∫ q′

q′′=0
dq′dq′′HE (q′, �κ )HE (q′′, �κ ) + · · ·. (15)

By construction, �gE (2π, �κ ) = e− 2π iE
F �(2π ) · �gE (0, �κ ),

where the matrix �(q) is diagonal with entries �νν (q) = eiqzν .
Then, from Eq. (14) and the above periodicity condition, we
arrive at the eigenvalue problem on the WS bands:

[�†(2π ) · U (2π, �κ )] · �gE (0, �κ ) = e− 2π iE
F �gE (0, �κ ). (16)

The spectrum of HE is obtained by solving the above eigen-
problem,

E ≡ Eγ ,a(�κ ) = Fa + iF
2π

ln [λγ (�κ )], (17)

where a ∈ Z and λγ are the eigenvalues of the μ × μ unitary
matrix �†(2π ) · U (2π, �κ ). The irreducible WS band structure
is obtained by choosing a particular value of a, e.g., a = 0.
The entire spectrum is generated by a parallel shift of the
irreducible band structure and is parameterized by the band
indices (γ , a).

We now arrive at the formulation of our anti-PT theorem
in the presence of the commensurate DC field: If the original
Hamiltonian H has an odd number of sublattices and is
anti-PT symmetric, the irreducible WS band structure of HE
contains at least one flatband.

Proof: Indeed, the anti-PT condition (9) translates into a
similar condition for the effective Hamiltonian HE (q, �κ ),

H∗
E (q, �κ ) = −M†(�κ ) · HE (q, �κ ) · M(�κ ), (18)

where the μ × μ unitary matrix

M(�κ ) =
∑

ν

e−iξν ei�κ·�ε( �pν ) | f (ν)〉 〈ν| . (19)

�ε( �pν ) is the same vector function of �l as in Eq. (13) but
its argument is replaced by �pν . Then, from Eq. (15) it is
straightforward to establish that

U ∗(q, �κ ) = M†(�κ ) · U (q, �κ ) · M(�κ ). (20)

We note that by definition of the commensurate DC field
direction, the projection of �pν along the field direction will
be an integer and hence (zν + z f (ν) ) will be an integer as
well (see Supplemental Material [42] for details). Therefore,
e2π i(zν+z f (ν) ) = 1. Since the operator M(�κ ) maps the sublattice
vector |ν〉 to | f (ν)〉, it follows that

�†(2π ) = M(�κ ) · �(2π ) · M†(�κ ). (21)

We use the relations (20) and (21) to rewrite the eigenvalue
problem (16) into the following form (see Supplmental Mate-
rial [42]):

[�†(2π ) · U (2π, �κ )] · [M(�κ ) · �g∗
E (0, �κ )]

= e
2π iE
F [M(�κ ) · �g∗

E (0, �κ )]. (22)

Equations (16) and (22) imply that the eigenvalues of
the unitary operator [�†(2π ) · U (2π, �κ )] come in pairs
(e− 2π iE (�κ )

F , e
2π iE (�κ )

F ). For an odd number of sublattices μ, the
number of eigenvalues of the operator [�†(2π ) · U (2π, �κ )]
is also odd. Therefore, at least one eigenvalue satisfies
e− 2π iE (�κ )

F = e
2π iE (�κ )

F with E (�κ ) being �κ independent and a mul-
tiple of F

2 . Therefore, the irreducible WS band structure
contains at least one anti-PT symmetry protected flatband.
�

We check the validity of the above theorem by comput-
ing WS band structures with (16) for the 2D kagome lattice
in Fig. 1 and 3D kagome lattice in Fig. 2. Details on the
field direction and strength are provided in the corresponding
captions. We observe and confirm the presence of anti-PT
protected WS flatbands in Fig. 1(c) for the 2D case and in
Fig. 2(e) for the 3D case.

Experimental realizations. Flatband models have already
been designed in metallic systems [43], photonic lattices
[44–49], and ultracold atoms in optical lattices [50]. The un-
perturbed kagome lattices introduced above can be tested in
similar setups [44,50] by proper design of hopping parameters
with artificial gauge fields.

To observe the WS effect in optical lattices with ultracold
atomic gases, they can be tilted, so the gravitational field
acts as a DC field source [51]. Moreover, one can study
the impact of an electric DC field on centrosymmetric lat-
tices as reported in a very recent experiment on diamond
[52]. Another option for implementing the WS Hamiltonians
is to use Floquet engineering following recent experiments,
which implemented Floquet Hamiltonians using ultracold
atoms [53,54]. The spectrum of WS Hamiltonians can be
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mapped onto that of periodically driven systems [55] and vise
versa. Mapping the frequency space of a Floquet (d − 1)-
dimensional lattice Hamiltonian to a new spatial dimension
produces an effective static Hamiltonian in a d-dimensional
lattice with WS potential. In this case, the single set of Floquet
bands, which are periodic in energy, unfolds into an infinitely
repeated tower of WS bands. The details of the mapping be-
tween our WS Hamiltonians in 2D (3D) kagome networks and
the Hamiltonians having Floquet Peierls phases in 1D (2D)
diamond lattices are provided in the Supplemental Material
[42].

Discussion and conclusions. We considered tight-binding
lattice Hamiltonians on d-dimensional non-Bravais lattices,
which are invariant under the anti-PT symmetry. We proved
that the anti-PT symmetry protects a flatband at energy E =
0 for odd numbers of sublattices. We derived the precise anti-
PT constraints on the Hamiltonian and used them to generate
examples of generalized kagome networks. Remarkably the
anti-PT symmetry persists in the presence of uniform DC
fields. We prove that the corresponding irreducible WS band
structures will again contain anti-PT protected flatbands. We
demonstrate the validity of our results by computing examples
of the WS band structure of generalized 2D and 3D kagome
networks in the presence of DC fields.

The zero-energy flatbands reported in Refs. [37–40] belong
to the anti-PT class. They were reported for specific choices
of hoppings for two-dimensional lattices. Our results also
explain the persistence of the flatband in the dice lattice [22]
in the presence of the DC field. The original proof relied on

specific properties of the hopping network, and subsequent
conjectures attempted to connect the proof to the bipartiteness
of the unbiased lattice. Actually, the unbiased dice lattice
is both chiral and anti-PT symmetric. Therefore, its E = 0
flatband is protected by both the chiral and the anti-PT sym-
metries. Adding a DC field destroys the chiral symmetry but
preserves the anti-PT symmetry. Therefore, the emerging WS
flatbands in the irreducible WS band structure are protected
by the anti-PT symmetry. Anti-PT networks do not need to
be bipartite and our proof is valid for any d-dimension with
arbitrary number of sublattices.

Our study focused on spinless single particle translation-
ally invariant Hermitian Hamiltonians on non-Bravais lattices.
Our results also apply to a particle with an integer spin (or
other internal degrees of freedom, e.g., orbital degrees of
freedom) including spin-orbit coupling on a Bravais lattice.
The impact of disorder, many-body interactions, nonlineari-
ties, or non-Hermiticity on our system are possible interesting
directions for future investigations. We expect that methods
developed to analyze the impact of these perturbations for
other flatband models might be helpful in our setting as well.
It is also interesting to study the case of incommensurate DC
field directions that are expected to generate quasicrystalline
structures.
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