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Correlated metallic two-particle bound states in Wannier-Stark flatbands
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Tight-binding single-particle models on simple Bravais lattices in space dimension d � 2, when exposed to
commensurate DC fields, result in the complete absence of transport due to the formation of Wannier-Stark
flatbands [Phys. Rev. Res. 3, 013174 (2021)]. The single-particle states localize in a factorial manner, i.e., faster
than exponential. Here, we introduce interaction among two such particles that partially lifts the localization
and results in metallic two-particle bound states that propagate in the directions perpendicular to the DC field.
We demonstrate this effect using a square lattice with Hubbard interaction. We apply perturbation theory in
the regime of interaction strength (U ) � hopping strength (h) � field strength (F ), and obtain estimates for
the group velocity of the bound states in the direction perpendicular to the field. The two-particle group velocity
scales as U (h/F )ν . We calculate the dependence of the exponent ν on the DC field direction and on the dominant
two-particle configurations related to the choices of unperturbed flatbands. Numerical simulations confirm our
predictions from the perturbative analysis.
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I. INTRODUCTION

Flatbands [1–4] are macroscopically degenerate disper-
sionless bands in the band structure of single-particle lattice
systems. The degeneracy makes them highly susceptible to
perturbations, and they show various interesting phenomena
in the presence of disorder [5,6], nonlinearity [7,8], and inter-
actions [9–11]. In particular, flatband systems with interaction
were suggested as candidates for high temperature super-
conductors [12,13]. Translationally invariant flatband systems
with short-range hopping are known to support compact lo-
calized eigenstates (CLSs) [14]. Flatbands have also been
observed experimentally in various condensed matter sys-
tems [15,16] and have been suggested as a useful platform
to develop quantum technologies [17–19].

The energy spectrum from a single-particle tight-binding
Hamiltonian on an infinite Bravais lattice is given by one
single dispersive band. When exposed to a commensurate DC
field (i.e., the direction perpendicular to the field is a lattice
vector) of strength F , the spectrum turns into an equidistant
ladder of Wannier-Stark (WS) flatbands [20,21], provided
there is no equipotential hopping. The absence of dispersion
in any of the bands implies zero group velocity and therefore
complete particle localization. These flatbands do not sup-
port CLS, essentially because there is an infinite number of
flatbands. Their eigenvectors are factorially (or superexponen-
tially) localized in real lattice space [21].

For fine-tuned flatband Hamiltonians featuring CLSs, in-
teractions among fermions or bosons typically induce motion
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in one-dimensional lattices [22,23]. Fine-tuned interactions
can protect particle localization either partially or com-
pletely [24], making such interacting systems candidates for
many-body localization [25,26]. Delocalization can also be
induced in translationally invariant flatband models by inter-
actions in the presence of magnetic fields [27–30].

Here we address the following question: how will flatbands
without CLSs react to perturbations? In particular, how will
interactions alter the localization properties and lead to trans-
port? To address this issue, we study the effect of contact
interaction between two particles in the WS flatband setup.
With no interaction, particles follow the zero dispersion of the
bands and can occupy eigenstates from the same or different
single-particle WS flatbands. Hubbard-like on-site interaction
will locally disrupt the flatness and induce nonzero transport.
The contribution of two interacting particles to the transport
depends on the total energy of unperturbed flatbands occupied
by two noninteracting particles. We identified two quantita-
tively different cases. The particles form a bounded pair and
move only along the direction perpendicular to the field. The
formation of the bounded pair follows from the observation
that widely separated particles do not feel the interaction and
are therefore localized, as in the single-particle case. Motion
along the field direction is prohibited due to energy con-
servation. As a consequence of the interaction, the particles
acquire a finite group velocity and propagate ballistically in
the direction perpendicular to the field.

We use degenerate perturbation theory with interaction
strength U to analyze the problem. We further simplify the
problem by approximating the eigenstates to a CLS in the
limit of weak hopping. This allows us to estimate the group
velocity associated with the center of mass of two distinguish-
able particles as a function of hopping, interaction, DC field
strength, and direction.
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In Sec. II we set the stage by introducing the single-particle
Hamiltonian and its properties. Section III discusses the in-
teracting Hamiltonian for two particles, either distinguishable
or spinless bosons, or fermions with opposite spin. We use
a geometrical approach to analyze the two-particle motion in
the presence of the interaction in Sec. IV. Section V gives
details of the perturbative calculation of the group velocity,
and Sec. VI provides the corresponding numerical results.
Discussion and conclusions follow in Sec. VII.

II. SETTING THE BACKGROUND

We label lattice sites of an infinite square lattice by a pair
of integers (n, m) and consider a single-particle tight-binding
Hamiltonian with homogeneous hopping h and uniform DC
field �E = F (x, y),

Ĥ =
∑
n,m

[
�E · (n, m)b̂†

n,mb̂n,m − h
∑
i, j

b̂†
n−i,m− j b̂n,m

]
.

F = | �E |/
√

x2 + y2, xy �= 0. (1)

Here, b̂†
n,m and b̂n,m are creation and annihilation operators

at site (n, m), respectively. The indices (i, j) take values
{(0,±1), (±1, 0)} for the nearest-neighbor hopping consid-
ered in this work. The components of the field direction x and
y are taken as mutually prime integers. This ensures that the
field has a commensurate field direction [21], i.e., translational
invariance along the direction perpendicular to the field. We
introduce coordinates along and perpendicular to the field
direction [21],

z = nx + my, w = ny − mx. (2)

Note that z is a scaled version of the field coordinate �E ·
(n, m)/| �E | = (nx + my)/

√
x2 + y2 in units of lattice spacing

where n or m changes by 1, and similarly w is a scaled
version of (ny − mx)/

√
x2 + y2. For a square lattice, z takes

all possible integer values while w can be decomposed into

w = w0(z) + (x2 + y2)η, (3)

with a z-dependent integer part w0(z) = z(τ2y − τ1x) and an
integer η. Here, τ1 and τ2 are two integers that satisfy τ1y +
τ2x = 1. Since translational invariance is preserved along the
direction orthogonal to the field, i.e., for η, the Hamiltonian Ĥ
is block diagonal in one-dimensional Bloch momentum space
conjugated with η. For our choice of Hamiltonian parameters,
this leads to a set of equidistant WS flatbands Ea = aF with
band index a ∈ Z [21]. Each flatband Ea has a complete or-
thogonal set of eigenstates (Jμ is the order μ Bessel function
of the first kind) given by

|�(a, l )〉 =
∑

n,m∈Z
Jn−n0

(
2h

xF

)
Jm−m0

(
2h

yF

)
|z, η〉,

a = n0x + m0y, l = τ1n0 − τ2m0, (4)

that are superexponentially localized in real space [21]. The
value of field coordinate z coincides with the band index a,
and l equals the value of η at the site (n0, m0). The integer l
also labels the eigenstates and corresponds to the maximum
weight of |�(a, l )〉 along η for smaller values of |h/F |) (see

TABLE I. Notation description for the single-particle case.

h Hopping strength
�E DC field vector
F Rescaled DC field strength | �E |/√x2 + y2

(n, m) Cartesian coordinates of the square lattice sites
(x, y) Direction of �E in Cartesian reference frame
(z,w) Rotated coordinate of the square lattice sites

along �E and perpendicular to it
(τ1, τ2 ) Two integer numbers which parametrize (z,w)
η Integer coordinate parametrizing w

and independent of z
a Index of Wannier-Stark flatband
l Location/peak of single-particle Fock state along η

|�(a, l )〉 Single-particle Wannier-Stark
flatband eigenstate or Fock state

Appendix A for details). The ratio |h/F | controls the spread-
ing of the eigenfunction. In the limit |h/F | → 0, the particle
is localized at site (a, l ) ≡ (n = n0, m = m0) of the square lat-
tice, giving a CLS that occupies a single site. For |h/F | � 1,
one can construct a CLS that approximates |�(a, l )〉 based on
a truncation of the Taylor expansion of the Bessel function:

Jμ(2s) = s|μ|[sgn(μ)]μ
(

1

|μ|! − 1

(1 + |μ|)! s2

+ 1

2(2 + |μ|)! s4 + . . .

)
. (5)

We use these approximate CLSs in the analysis that follows,
since they are easier to handle than the full superexponentially
localized eigenfunctions. For convenience we summarize the
important notation in Table I.

III. THE MODEL

We consider two distinguishable particles with annihila-
tion (creation) operators b̂1,nm (b̂†

1,nm) and b̂2,nm (b̂†
2,nm) at

site (n, m). For indistinguishable bosons, b̂1 = b̂2, and they
belong to the same Hilbert space and follow the usual bosonic
commutation relations. In what follows, we focus on the case
of distinguishable particles for convenience. In the presence
of Hubbard-like contact interaction, we define the following
two-particle Hamiltonian on a square lattice as

Ĥ12 = Ĥ1 + Ĥ2 + V̂ , (6)

V̂ = U
∑
n,m

b̂†
1,nmb̂1,nmb̂†

2,nmb̂2,nm, (7)

where U is the interaction strength. Ĥ1,2 are the single-particle
Hamiltonians as in Eq. (1) with b̂ replaced by b̂1,2. The hop-
ping strength h is the same for both particles.

The spectrum of Ĥ in Eq. (1) is composed of flatbands
E (k) = aF , a ∈ Z, and therefore, the spectrum of Ĥ12 for
U = 0 is given by a tower of flatbands E (k1, k2) = E (0) =
F (a1 + a2), where the particles fill single-particle flatbands
with indices a1, a2. Depending on the values of a1 and a2,
the total eigenenergy E (0) is either odd or even (in units of
F). We refer to these two cases as “O-band” and “E-band,”
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TABLE II. Notation description for the two-particle case.

(ni, mi ) Cartesian coordinates of the particles, i = 1, 2
(zi, wi ) Rotated (along and perpendicular to the field)

coordinates of the particles, i = 1, 2
zc Center of mass coordinate, along �E
wc Center of mass coordinate, transverse to �E
zr Relative coordinate, along �E
wr Relative coordinate, transverse to �E
(a1, a2) Indices of the Wannier-Stark flatbands occupied

by first and second particles, respectively
(l1, l2) Locations, respectively, of first-

and second-particle Fock states on η axis
lc Center of mass location of first-

and second-particle Fock states on η axis
ξ Relative location of first-

and second-particle Fock states on η axis
ξe, σe, ζe, ξ

′
e, σ

′
e, ζ

′
e, α0, βe, βo are integers

vg Group velocity of the bounded two-particle
ν Group velocity exponent defined in Eq. (15)

respectively. These two types of particle configurations give
different contributions to the transport in the presence of in-
teraction as we show below.

We define the center of mass (c.m.) and relative coordinates
for z,w [Eq. (2)] of the two particles as

zc = z1 + z2

2
, zr = z1 − z2

2
,

wc = w1 + w2

2
, wr = w1 − w2

2
, (8)

so that we can rewrite the interaction matrix as follows:

V̂ = U
∑

zc,wc,zr ,wr

δzr ,0δwr ,0|zc,wc, zr,wr〉〈zc,wc, zr,wr |. (9)

This acts as an identity in the (zc,wc) space and as a single-
site defect in the (zr,wr ) space. Such interaction maintains
the translational invariance along the wc coordinate present
in the noninteracting case. Therefore, Ĥ12 is block diagonal
in the c.m. momentum k space conjugated to wc, while the
matrix elements in each block depend on three coordinates,
(zc, zr,wr ). For U �= 0, the eigenvalues in this new coordinate
system are functions of the Bloch momentum k and can be
dispersive, implying transport.

For convenience we summarize the important notations in
Table II.

IV. GEOMETRIC ANALYSIS

The single-particle eigenstates |�(a, l )〉 (4) are labeled by
the pair of integers a, l that are related to the field coordinates
z, η and can be organized into a square lattice. In this repre-
sentation, the site (a, l ) of this square lattice belongs to the
single-particle flatband of index a for all l . For convenience,
we refer to these lattice sites as “F sites,” while the lattice
sites in the real-space square lattice are referred to simply as
“sites.” The eigenstates |�(a, l )〉 are not compact but super-
exponentially localized. Therefore a particle state localized
at a single F site overlaps with many eigenstates which have
nonzero amplitudes on almost all sites, with the exception of a

finite number of lattice sites where the Bessel function might
turn zero. However, that number is suppressed for the case
of the very small and nonzero magnitude of |h/F | we are
considering. However, every F site can be approximated by
a CLS in real space, using the truncated expansion Eq. (5) in
h/F in the exact eigenstate from Eq. (4). This is an important
observation for the derivation of the transport properties that
is provided below.

For two particles, we define the relative and c.m. coordi-
nates along and perpendicular to the DC field for the F sites
(a1, l1) and (a2, l2) by

ξ = l1 − l2, l1 + l2 ≡ 2lc + ξ, where lc, ξ ∈ Z, (10)

similarly to Eq. (8). The two-particle state

|�(a1, a2, lc, ξ )〉 := |�(a1, l1)〉 ⊗ |�(a2, l2)〉 (11)

is now parametrized by the four coordinates a1, a2, ξ , lc. As
discussed above, we expect to see transport of a bound pair
along the center of mass of the two particles, i.e., the lc
coordinate. In perturbation theory, the leading contribution
to interaction comes from the spatial overlap between two-
particle Fock states of the noninteracting problem with the
same eigenenergy given by

E (0) = (a1 + a2)F . (12)

In the F-site representation, the hopping terms in Eq. (6) are
diagonal and act as an on-site potential, while interaction
contains both diagonal and off-diagonal terms and induces
hopping between the F sites:

Ĥ12 =
∑

n

F (a1 + a2)|�(n)〉〈�(n)| + V̂ ,

V̂ = U
∑
n,m

b̂†
1,nmb̂1,nmb̂†

2,nmb̂2,nm

=
∑
n,n′

|�(n′)〉〈�(n′)|V̂ |�(n)〉〈�(n)|, (13)

where n = (a1, a2, lc, ξ ) and n′ = (a′
1, a′

2, l ′
c, ξ

′). Since F
states are superexponentially localized in real space rather
than compact, the interaction induces hopping between all F
sites, even if most of the hoppings between F sites are super-
exponentially suppressed. In the presence of the interaction,
the two-particle states [Eq. (11)] are no longer eigenstates
of the Hamiltonian of Eq. (6). In the limit |h/F | → 0, the
eigenfunction |�(a, l )〉, i.e., the F site, occupies a single site.
In this case, the two-particle eigenstates remain single-site
CLSs even in the presence of interaction, and the nonin-
teracting eigenenergies are merely shifted by the interaction
EU = E (0) + U , and thus the macroscopic degeneracy sur-
vives and particle transport is still prohibited. Away from the
limit h/F = 0, other corrections are generated to the two-
particle eigenenergies EU = E (0) + E (1) + . . . that can induce
transport. We seek to understand how the transport emerges
and how the velocity of the two-particle motion scales with
h/F with first-order perturbation in interaction strength U .
Since the U = 0 case corresponds to flatbands, implying
macroscopically degenerate eigenstates, we use the degener-
ate perturbation theory for the eigenenergies. The first-order
correction to the flatband eigenenergy E (1) is given by the
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eigenvalues of V̂ (1):

V̂ (1) =
∑
n,n′

δa1+a2,a′
1+a′

2
|�(n′)〉〈�(n′)|V̂ |�(n)〉〈�(n)|. (14)

Here, V̂ (1) is the part of the interaction matrix V̂ subject to the
energy conservation constraints enforced by the Kronecker
symbol δa1+a2,a′

1+a′
2
. Every matrix element 〈�(n′)|V̂ |�(n)〉

in real lattice space is given by the overlap between
noninteracting two-particle eigenstates |�(a1, a2, lc, ξ )〉 and
|�(a′

1, a′
2, l ′

c, ξ
′)〉. These eigenstates are not compact but su-

perexponentially localized in real space, and therefore the
matrix elements are expected to be nonzero even if super-
exponentially small for all sites. It is important to note the
translational invariance with respect to lc, l ′

c that is preserved
even in the presence of interaction, which is the same trans-
lational invariance that we discussed above following Eq. (9).
This translational invariance allows us to block diagonalize
V̂ (1) and define a respective momentum k, conjugated to lc, l ′

c.
The remaining problem is to diagonalize V̂ (1) for a given k,
and check the dispersion of the eigenvalues E (1)(k). Yet the
analytical calculation of E (1)(k) is still challenging. Energy
conservation splits the partially diagonalized blocks into sub-
blocks of E and O bands. The corresponding subblocks are
still of infinite size in parameters a1, a2, a′

1, a′
2, ξ , ξ ′.

As a consequence, we have to resort to further approxi-
mations and use compact approximations of the F states in
powers of h/F , that we discussed above with Eqs. (4) and (5),
to compute E (1) as a function of h/F to the leading order.
We need to identify the two-particle configurations that give
the leading corrections, in parameter h/F , to the h/F = 0
result. In what follows, we refer to this simply as the lead-
ing term or correction. For this, a geometric analysis of the
noninteracting (U = 0) two-particle eigenstates is necessary.
In the following sections, we consider the case of the field di-
rection (x, y) = (1, 1) and demonstrate that the contributions
of the noninteracting two-particle eigenstates |�〉—namely,
those from the E or O band—are different, and that the states
|�〉 have to be expanded at least up to order (h/F )2 for this
particular field direction.

Before we proceed, it is useful to introduce some con-
ventions. Since the F states are parametrized by the flatband
index a and the location (in the flatband) l , the F states
corresponding to a given flatband a form lines of F sites, as
illustrated by the black lines containing red spheres in Fig. 1.
This mapping of the F sites onto lattice sites helps to analyze
the overlapping of the eigenfunctions (in real space), which
is crucial for finding the leading correction and understanding
the effect of interaction as well as the emergence of particle
transport.

A. U = 0 E bands

The U = 0 E bands are formed by pairs of particles occu-
pying F sites (n1, m1, n2, m2) = (n + ξe, m + ξ ′

e, n + σe, m +
σ ′

e) with integers ξe, ξ
′
e, σe, σ

′
e and have eigenenergy E (0) =

2aF . The values of ξe, ξ
′
e, σe, σ

′
e are constrained by the en-

ergy conservation, i.e., the z1 + z2 value equal to n1x + m1y +
n2x + m2y = 2(nx + my) = 2a should not change, impos-
ing the constraint ξex + ξ ′

ey = −(σex + σ ′
ey). Three following

FIG. 1. Schematic representation of the eigenstate pairs for E
bands with eigenenergies 2aF on the square lattice formed by F sites
for the DC field direction (x, y) = (1, 1). Each of the lattice sites (red
spheres) is a single-particle F state |�(a, l )〉. a ∈ Z simultaneously
denotes the single-particle band index and the z coordinate. The con-
stant a lines are drawn over F states |�(a, l )〉 for different l , which
characterize the average values of the perpendicular coordinate η for
fixed a.

possible cases are shown in Fig. 1 for the field direction
(x, y) = (1, 1).

(1) Both particles occupy the same F site (the same single-
particle flatband). The values ξe = σe = βey, ξ ′

e = σ ′
e = −βex

are parametrized by a single integer, βe, that encodes the
position of the F site in the band a. These F states are shown
in Fig. 1 within dash-dotted black circles.

(2) The particles are located symmetrically with respect to
the flatband a in bands a ± 1, occupying different F sites along
the field. This gives the constraint ξey − ξ ′

ex = σey − σ ′
ex.

This case is shown in Fig. 1 with yellow-shaded ellipses, for
which (ξe, ξ

′
e, σe, σ

′
e) = ±(1, 0, 0,−1).

(3) The two particles form a horizontal or vertical pair
of F states, as indicated by violet dashed ellipses connecting
flatbands a ± 1 in Fig. 1. The constraints on the coordinates
are ξe = −σe = ζe, ξ ′

e = −σ ′
e = ζ ′

e, and ζe, ζ
′
e ∈ Z with ζe

and ζ ′
e not being zero simultaneously. In this setting, one

particle is in the single-particle band a + xζe + yζ ′
e and the

other particle is in the single-particle band a − xζe − yζ ′
e.

If we approximate the two-particle state |�(a1, a2, lc, ξ )〉
by a CLS in powers of h/F using Eq. (5), then these three
cases produce different leading corrections in powers of h/F .
These corrections correspond to the overlaps between the F
sites. For the first case, the contribution is (h/F )0, while both
the second and third cases contribute as (h/F )2. These pairs
of the F sites form a quasi-one-dimensional chain along the di-
rection perpendicular to the field, if shifted along the flatband
a, i.e., along lc, ξ for the two-particle states. Such connected
chains only appear at leading order (h/F )2 of the expansion of
matrix elements of V̂ (1) [using Eq. (5)], and provide a hopping
mechanism for pairs of particles and therefore transport. All
the other pairs not shown in the figure give either (h/F )2 or
higher powers of h/F as subleading corrections.
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FIG. 2. Schematic representation of the eigenstate pairs for O
bands with eigenenergies (2a − 1)F on the square lattice of F sites.
The setup is similar to Fig. 1.

B. U = 0 O bands

For the O bands, the two particles cannot occupy F
sites in the same flatband. Therefore, they have to occupy
F sites in neighboring flatbands, or flatbands separated by
an even number of flatbands to ensure an odd total energy
E (0) = (2a − 1)F . The O bands are formed by different types
of such pairs of particles. The coordinates of the F sites
are given by (n1, m1, n2, m2) = (n, m, n − α0τ2 + βoy, m −
α0τ1 − βox) for odd integer αo and integer βo that control the
position of the pair along the flatband. The τ1, τ2 are integers
satisfying τ1y + τ2x = 1. There are many solutions to this
relation, but the specific choice does not affect any physical
observables and is rather made out of convenience [21]. For
our analysis we choose τ1 = 0, τ2 = 1. There are several
types of pairs; we list the most important ones here and depict
them in Fig. 2.

(1) The two particles can form a pair of nearest-neighbor F
sites at bands a and a − 1, either vertically along the m axis
obtained by setting αo = 1, βo = 1 or horizontally along the n
axis obtained by setting αo = 1, βo = 0. These are depicted as
dash-dotted black ellipses in Fig. 2.

(2) The other pair can be formed by the particles located
at the F sites roughly oriented along the diagonal direction,
as shown in Fig. 2 by shaded cyan ellipses obtained by set-
ting αo = 3, βo = 2, and by dotted black ellipses obtained by
setting αo = 3, βo = 1. They are located at bands a + 1 and
a − 2.

Expanding the two-particle F states |�(a1, a2, lc, ξ )〉 in
powers of h/F using Eq. (5), we find the leading terms of
order (h/F )1 or higher. Therefore, the matrix elements ap-
pearing in V̂ (1) (14) are at least of order (h/F )2 or higher.
Similar to the E-band cases, the pairs also form different types
of quasi-one-dimensional chains along the direction perpen-
dicular to the field.

Following a similar approach, we discuss the case for an-
other field direction in Appendix B, when either x or y is even

(the case in which both are even is excluded since we assumed
x, y to be mutually prime).

C. Contributions from E and O bands in pair transport
for U �= 0

Since the F-state pairs depicted in Figs. 1 and 2 overlap
in the real lattice space, they produce nonzero off-diagonal
matrix elements of V̂ (1) and give rise to a nonzero contri-
bution to the energy shift from E (0). This shift is in turn
responsible for the nonzero group velocity of the particles and
hence the transport. As discussed above, it is challenging to
diagonalize the matrix V̂ (1) analytically, even after the partial
block diagonalization, and so we resort to expansion in powers
of h/F generated by Eq. (5). The diagonal elements of the
matrix V̂ (1) correspond to the overlap between the same pairs
of particles, and the leading order term is (h/F )μ, where μ

is a positive integer that depends on the distance between
the F sites within the pair. The off-diagonal terms involve
two different pairs from the quasi-one-dimensional chains
discussed above. These chains can be formed by pairs of the
same or different types, and their contributions would produce
terms with different leading powers of h/F . We computed the
leading order contribution (h/F )ν for certain field directions:
for the (1, 1) direction, we found ν = 2, and for the (2,−3)
field direction, we found ν = 5 (see Appendix B). Based on
these results, we make the following conjecture.

Conjecture. The leading order term for the off-diagonal
elements of the interaction matrix V̂ (1) scales as |h/F ||x|+|y|.

Therefore, if we consider the energy correction up to the
first order in U , we expect a bounded pair motion through the
quasi-one-dimensional chains depicted in Figs. 1 and 2, along
the direction perpendicular to the field. The corresponding
group velocity

vg ∝ (∂E (1)/∂k) ∝ |U ||h/F |ν, (15)

where ν � |x| + |y|.

V. PERTURBATIVE CALCULATION

We are now ready to use the first-order degenerate per-
turbation in U as given by Eq. (14), and diagonalize V̂ (1)

using the leading order contributions in h/F to its matrix
elements in order to compute the eigenvalues of V̂ (1) and
analyze the particle transport. Our perturbative analysis is
valid for U � h � F ; the approximation of the superexpo-
nentially localized eigenstates |�(a, l )〉 by CLSs is justified
for h � F . We derive the analytical results for the field direc-
tion (x, y) = (1, 1) and we choose τ1 = 0, τ2 = 1. Using the
series expansion of the F states generated by Eq. (5) up to a
finite order in h/F , we compute the eigenvalues E (1) of V̂ (1).
Some of them acquire finite dispersion with respect to the
center of mass momentum k [conjugated to the center-of-mass
coordinate lc defined in Eq. (10)] if we take into account the
contributions to the interaction matrix elements at least up
to order (h/F )2 (as follows from the geometrical arguments
discussed above). In this case, the interaction matrix V̂ (1) has
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FIG. 3. Group velocities as functions of the center-of-mass mo-
mentum k for E and O bands, are plotted according to the Eq. (17)
with U = 0.1, h = 1, F = 9.

four dispersive eigenvalues,

E (1)
e = U

2
[1 − 8(h/F )2]

± U

2

√
1 − 16(h/F )2 + (h/F )4(32 cos k + 80),

E (1)
o = 4U (h/F )2

(
1 ± cos

k

2

)
, (16)

for E and O bands, respectively. Therefore, we find two-
particle dispersive bands emerging due to interaction, and the
particles acquire a nonzero group velocity in the c.m. coor-
dinate lc. The group velocities corresponding to the different
energy bands (E and O bands, respectively) are

vg,e = ∂E (1)
e

∂k
= ∓8U (h/F )4 sin k + O((h/F )6),

vg,o = ∂E (1)
o

∂k
= ∓2U (h/F )2 sin

k

2
. (17)

The group velocity for the O bands O((h/F )2) is larger
compared to that of the E bands O((h/F )4) (Fig. 3). As a re-
sult, within the first-order perturbation in U and second-order
approximation in h/F , the particles form a bounded pair that
can move in the direction perpendicular to the field. It also
instructive to point out that higher derivatives of E (1)(k), in-
cluding the second derivative responsible for the wave packet
spreading, display the same scaling with h/F as the group
velocity, as follows directly from Eq. (16). All the other
eigenvalues remain flat at this order O((h/F )2), and therefore
have zero group velocity and the higher order derivatives with
respect to k.

VI. NUMERICAL RESULTS

We numerically checked our perturbation results for the
group velocity of the two-particle cases shown above. For
this, we followed the unitary evolution of the wave function,
starting from an initial two-particle wave packet,

|ψ (t )〉 = e−iĤ12t |ψ (t = 0)〉. (18)

We use initial states |ψ (0)〉 localized at the center of the
square lattice. Therefore their Fourier series contains all mo-
menta k with roughly the same Fourier coefficients. As a result
given Eq. (17) we expect to see negligible variations in the
first moment of the coordinate wc. However, the variation of
the second moment is expected to be significant and follow
the same scaling as the group velocities.

The evolution is implemented using SciPy [31], avoiding
the full diagonalization of the Hamiltonian and based on a
combination of scaling and squaring methods, with a finite
truncation of the Taylor’s series of e−iĤ12t (see Algorithm 5.2
in Ref. [32] for details). To ensure the correctness of our
results, we checked that this propagation scheme produces
relative errors less than 10−10 for both the total norm and the
total energy. To capture the distinct features of the E and O
bands, we used two different localized initial states |ψ (0)〉 that
are eigenstates at U = 0:

(1) for E bands |�(a1, l1)〉 ⊗ |�(a2, l2)〉, and
(2) for O bands |�(a1, l1)〉 ⊗ |�(a2 + 1, l2)〉,

where a1 = a2 = 40, l1 = l2 = −20. Both states are approxi-
mated up to first order in h/F so that they form a CLS on the
real lattice sites. We put them at the center of a finite square
lattice of size 41 × 41. The hopping strength is set to h = 1
and the time evolution of these two-particle wave functions is
followed up to time t = 6000 in units of hopping. In order to
analyze the transport properties of the particles, we computed
the time evolution of the first and second moments of two-
particle lattice site coordinates zc, zr, wc, and wr as functions
of F . We set the interaction strength to U = 0.1 � 1.0, and
the field direction is taken along the diagonal of the square
lattice, (x, y) = (1, 1). To quantify the particle transport, we
compute the average and the root-mean-square (rms) values
of the coordinates wc, zc, zr,wr in lattice units, where the
original coordinate n or m increments by 1,

〈p〉, rms =
√

〈p2〉 − 〈p〉2,

(
√

x2 + y2)p = wc, zc, zr,wr, (19)

as a function of time t . The factor
√

x2 + y2 is introduced
to match the increments of the variables ≡ (wc, zc, zr,wr )
in units of lattice site spacing [see the discussion around
Eq. (2)] [21]. Based on the simple arguments and the above
perturbative calculation, we anticipate no motion along zc, zr

where motion is suppressed by the field gradient, and a
bounded value for wr—the relative distance of the particles
in the direction perpendicular to the field—where too much
of a separation between the particles eliminates the effect of
interaction and reinstates single-particle localization. Figure 4
shows the results for the O-band initial state. The plots in the
bottom inset in Fig. 4 confirm the linear (ballistic) increase
with time t of the center-of-mass coordinate wc, while the
other three coordinates zr, zc,wr saturate quickly and remain
localized after a short initial transient. On the other hand, the
first moment of wc shows a linear change with time. The
weakness of the change is explained by the strong field value
required to achieve the regime where our perturbative results
are valid, h � F . The top inset depicts the final time proba-
bility distribution for one of the two particles on the square
lattice, i.e., after integrating out the other particle. Again as
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FIG. 4. Time evolution of the root-mean-square of position coor-
dinates wc, zc, wr, zr for the O-band initial state. The field direction
is (1,1) and the field strength is F = 9. The physical length unit
defined in Eq. (19) is used. Only the rms of wc shows a linear
increase while the rms of all the other coordinates is bounded, in-
dicating localization along these coordinates. The top inset shows
the probability distribution of the second-particle wave function at
the final time of simulation. The probability is localized along the
direction perpendicular to the field. A similar result is observed
for the first particle. The bottom inset shows the first moments of
the coordinates (as in the legend) as a function of time, with the
same line styles and colors as in the main plot. Note that, the value
of the first moment of zc is considerably larger than the first moments
of the other coordinates. For convenience, zc − 20

√
2 is plotted as the

first moment of zc in the inset.

anticipated, the particle only has a significant presence along
the direction perpendicular to the field, corresponding to mo-
tion perpendicular to the field. We find a qualitatively similar
behavior for the case of the E-band initial state.

To confirm the predicted scaling of the group velocity as in
Eq. (15), it is convenient to look at the rms values that show a
more pronounced variation compared to the first moment even
for the strong fields considered. As we see in the main plot of
Fig. 4, the rms of the variables zc, zr,wr saturate with time,
while only the rms of wc displays a steady linear increase. We
denote the rms for wc as Rwc and the velocity of its increase
as Rvc. The latter is computed as a discrete derivative:

Rvc(t,F ) = Rwc(t + �t,F ) − Rwc(t − �t,F )

2�t
, (20)

for the field strengths F ∈ {8, 9, . . . , 16} and 41 equally
spaced discrete time steps from t = 0 to t = 6000. Figure 5
shows Rvc as a function of time and field strength for the
O-band initial state. The E-band initial state gives similar
results.

The exponent ν from Eq. (15) is calculated via

Rvc ∝ 1

F ν
⇒ ν = −∂ln(Rvc)

∂ln(F )
(21)

that we discretize as

ν(t,F ) = − ln[Rvc(t,F + 1)] − ln[Rvc(t,F − 1)]

ln[F + 1] − ln[F − 1]
. (22)

FIG. 5. Rms velocity Rvc associated with wc as a function of time
(t) for different field strengths (F ) in the case of the O-band initial
state.

Figure 6 shows the scaling exponent ν (averaged over time
t) as a function of field strength F . Its values match the
predicted values [Eq. (17)] 2 and 4 for the O- and E-band
initial states, respectively, up to numerical errors. The error
bars in the figure are the standard deviations calculated over
time. The larger error bars of the exponent for the E-band case
originate from the very small values of rms—of the order of
lattice spacing—as shown in the inset of Fig. 6. The smaller
rms values are the consequence of the smaller group velocity
vg,e at small U and (h/F )4 � 1 as can be seen from Eq. (17).
Achieving larger rms values would require longer running
times of our numerical evolution.

VII. DISCUSSION AND CONCLUSION

We have shown that Hubbard-like contact interaction in-
duces particle transport in Wannier-Stark flatband set-ups on
a square lattice subject to a DC field. For two particles, we

FIG. 6. Scaling exponents of the group velocity defined in
Eq. (21) and calculated according to Eq. (22) plotted as function of
field strength F for two types of initial states, which are approxi-
mately E- and O-band eigenstates. The error bars are the standard
deviations calculated over time. The inset shows rms at the final time
of the simulation as a function of the field strength for O- and E-band
cases. The colors match the main figure.
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observe the motion of a bounded pair along the direction
perpendicular to the field, while the motion along the field
direction as well as relative motion is suppressed. This partial
delocalization is possible since the lattice dimension is greater
than one, in contrast to the case of many-body Wannier-Stark
localization in one dimension [33–35]. Our results provide a
way of controlling the direction of the particle transport by
tuning the field direction. The scaling of the group velocity
with the field strength as vg ∼ (h/F )ν with ν � |x| + |y| was
obtained for specific field directions, while the generic scaling
remains a conjecture. Verifying and proving this conjecture
for all field directions (x, y), interactions U , and hopping to
field strength ratios h/F is an interesting open question. Our
results were derived for distinguishable particles, but they are
applicable for spinless bosons as well. For other particles,
e.g., spinless fermions, one can consider a nearest-neighbor
density-density interaction. The overall conclusion remains
the same: once the interaction is present, there is pair transport
of particles in the direction transverse to the field. However,
the details of the transport depend on the details of the in-
teraction, e.g., scaling of the velocity with the field strength
and hopping [Eq. (15)] likely would have a different expo-
nent as compared to the on-site interaction. The exponent is
controlled by the interaction that induces overlaps between
truncated single-particle eigenstates [see Eqs. (9) and (14) for
detail] and would take a different form for spinless fermions.
Our setup can be realized experimentally with state-of-the-art
technologies like superconducting quantum processors [36] or
cold atoms in tilted optical lattices [37] where the gravitational
field can act as a DC field.

We have focused on the case of just two particles to eluci-
date the emergence of transport in Wannier-Stark flatbands.
An interesting problem would be to understand the trans-
port properties of this system at finite particle density. This
problem could be addressed by a variety of methods like
time-evolving block decimation, Green’s function approach,
density matrix renormalization group, mean-field approxi-
mation, dynamical mean-field theory, tensor networks, etc.,
that have already been successfully applied to flatband sys-
tems [11,38–43].

A single-particle Wannier-Stark Hamiltonian on a two-
dimensional lattice maps onto a one-dimensional Floquet
Hamiltonian, where the DC field potential enters as a Peierls
phase (see the last section of the Supplemental Material of
Ref. [4]). However, such a mapping does not hold at the level
of the interactions, e.g., Hubbard interactions in our model
do not map onto Hubbard interactions in the Floquet set-
ting. Nevertheless, exploring this connection is an interesting
question for future investigation. Another open question is
to understand the effect of disorder or a magnetic field on
such bounded motion of the particles and whether either can
enhance the group velocity. Adding more particles, consid-
ering a finite density of particles, or adding spin degrees of
freedom are also expected to yield interesting phenomena.
Our results should be valid for any two-dimensional Bra-
vais lattice of connectivity four (number of nearest-neighbor
hoppings). An immediate generalization is to extend these
results to other Bravais lattices with different connectivities.
In particular, in three dimensions we expect to observe a
two-dimensional motion. Another interesting direction is to

search for cases with emerging topological properties due
to interaction in Wannier-Stark flatbands. Similarly to the
case of flatbands with finite-range hopping and finite number
of sublattices [44], we expect the single-particle Wannier-
Stark flatbands to be topologically trivial. However, recent
works [29,30] demonstrated nontrivial topological properties
for composite particles, doublons, emerging in interacting flat-
bands. It would be interesting to identify, if possible, similar
cases for the Wannier-Stark flatbands.
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APPENDIX A: DERIVING THE WANNIER EIGENBASIS
FROM THE BLOCH EIGENBASIS

The Bloch momentum eigenstates of a single particle were
calculated in Ref. [21] for four-nearest-neighbor hopping in a
square lattice, which read

|ψ (a, κ )〉 =
∑

μ,σ∈Z

∑
z,η∈Z

Jμ

(
− 2h

xF

)
Jσ

(
− 2h

yF

)

× δμx+σy+z,aeik(μτ1−στ2 )+ikη|z,w〉, (A1)

where a is the band index. The coordinate perpendicular to
the field is w = z(τ2y − τ1x) + η(x2 + y2). It is the sum of
a (coordinate along the field) z-dependent part and an inde-
pendent part. κ is the single-particle momentum conjugate to
the independent perpendicular coordinate η ∈ Z. The Wan-
nier function is an eigenstate for the single-particle case, and
we construct a complete orthogonal set of spatially localized
eigenstates by applying the inverse Fourier transform:

|�(a, l )〉 = 1

2π

∫ 2π

0
e−iκl |ψ (a, κ )〉dκ

=
∑
n,m

Jn−n0

(
2h

xF

)
Jm−m0

(
2h

yF

)
|n, m〉, (A2)

where (n, m) are the lattice sites of a square lattice along
conventional Cartesian axes, and the average location of the
eigenstate |�(a, l )〉 is controlled by two integers,

n0 = aτ2 + ly, m0 = aτ1 − lx. (A3)

The Wannier eigenstates are parametrized by two indices: the
band index a = n0x + m0y, and l ∈ Z which is the value of
η at coordinate (n0, m0). In other words (a, l ) determines our
coordinates for Fock states/eigenstates. The l takes countably
infinite values and hence an eigenenergy E = aF is macro-
scopically degenerate.

APPENDIX B: GEOMETRIC ANALYSIS FOR A
DIFFERENT FIELD DIRECTION

In Figs. 7 and 8 we depict the square lattice formed by F
sites for the DC field direction (x, y) = (2,−3). We denote
single particle flatbands by straight lines over all F sites that
have the same band index a or z coordinate value for various
l . In this representation, if an F site has energy a, then from
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FIG. 7. Schematic representation of the eigenstate pairs for E
bands with eigenenergies 2aF on the square lattice formed by F sites
for the DC field direction (x, y) = (2,−3). Each of the lattice sites
(red spheres) is a single-particle F state |�(a, l )〉. a ∈ Z simultane-
ously denotes the single-particle band index and the z coordinate.
The constant a lines are drawn over F states |�(a, l )〉 for different
l , which characterize the average values of the perpendicular coordi-
nate η for fixed a.

Eq. (4) we see that the nearest F sites along the (horizontal)
n axis has energy a ± x and along the (vertical) m axis has
energy a ± y. The number of single-particle flatbands existing
between two nearest F sites is |x| − 1 along the n axis, while
this number is |y| − 1 along the m axis.

1. U = 0 E bands

Let us consider the two-particle Fock state located at F site
(n1, m1, n2, m2). One possible E-band case is that both par-
ticles are located at the same F sites (n1, m1, n2, m2) = (n +
βey, m − βex, n + βey, m − βex), which are parametrized by
an integer βe for fixed (n, m). This corresponds to the total
eigenenergy E (0) = 2aF (as n1x + m1y + n2x + m2y = 2a).
Such states are shown in Fig. 7 by the F sites at constant
band a surrounded by dash-dotted black circles. Two par-
ticles located at F sites connected by reflection symmetry
(n + ζe, m + ζ ′

e, n − ζe, m − ζ ′
e), where ζe, ζ

′
e ∈ Z but ζe and

ζ ′
e are not 0 simultaneously, correspond to the case where

one particle is in the single-particle band a + xζe + yζ ′
e and

the other particle is in the single-particle band a − xζe − yζ ′
e.

Hence they have the eigenenergy E (0) = 2aF . In Fig. 7, we
show three examples of such pairs: (ζe = 1, ζ ′

e = 0) by violet
dashed ellipses connecting bands a ± 2; (ζe = 0, ζ ′

e = 1) by
green solid ellipses connecting bands a ± 3; and (ζe = 1, ζ ′

e =
1) by magenta shaded ellipses connecting bands a ± 1. Each
of these pairs form a quasi-one-dimensional chain along the
perpendicular direction of the field.

FIG. 8. Schematic representation of the eigenstate pairs for O
bands with eigenenergies (2a − 1)F on the square lattice of F sites
for the field direction (x, y) = (2,−3). The setup is similar to Fig. 7.

2. U = 0 O bands

For the O bands, two particles cannot occupy the same F
site. If y is odd, two particles can form a pair if they are located
at the nearest vertically oriented F sites, and their eigenenergy
is odd. If x is odd, two particles can form such a pair if they are
located at the nearest horizontally oriented F sites. In Fig. 8,
we show some examples of pair formation for odd eigenen-
ergy E (0) = (2a − 1)F . Pairs formed by particles located at
bands a + 1 and a − 2 are shown within the orange ellipses
by setting the location of the particles as (n1, m1, n2, m2) =
(n, m, n + ζo, m + ζ ′

o). The location of such two-particle pairs
nearest to (n, m, n + ζo, m + ζ ′

o) is at (n, m, n + ζo ± y, m +
ζ ′

o ∓ x). Some other types of connected pairs are shown within
cyan-shaded and blue-dashed ellipses. Similar to the E-band
cases, they also form different types of quasi-one-dimensional
chains along the perpendicular direction of the field.

For both types of bands, the pairs that lead to two-particle
transport will contribute by at least the order (h/F )5. This
appears as the leading order contribution in the off-diagonal
terms in matrix V̂ (1) [Eq. (14)].

APPENDIX C: RELATION BETWEEN THE RMS OF C.M.
COORDINATE wc AND NEW COORDINATE lc

The two-particle coordinates along the perpendicular di-
rection to the DC field read

wc = w1 + w2

2
= zc(τ2y − τ1x) + x2 + y2

2
(η1 + η2),

wr = w1 − w2

2
= zr (τ2y − τ1x) + x2 + y2

2
(η1 − η2). (C1)
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In our numerical analysis,

η1 + η2 = 2lc + ξ, η1 − η2 = ξ,

τ2y − τ1x = 1, (x2 + y2) = 2. (C2)

Therefore,

wc = zc + 2lc + wr − zr . (C3)

The averages of wc and w2
c are

〈wc〉 = 〈zc + wr − zr〉 + 2〈lc〉,〈
w2

c

〉 = 〈(zc + wr − zr )2〉 + 4
〈
l2
c

〉 + 4〈lc(zc + wr − zr )〉.
(C4)

Thus, the second moment of wc reads as follows:〈
w2

c

〉 − 〈wc〉2 = [〈(zc + wr − zr )2〉 − 〈zc + wr − zr〉2]

+ 4[〈lc(zc + wr − zr )〉 − 〈lc〉〈zc + wr − zr〉]
+ 4

[〈
l2
c

〉 − 〈lc〉2
]
. (C5)

If zc, wr , and zr are time independent, then we can write〈
w2

c

〉 − 〈wc〉2 = 4
[〈

l2
c

〉 − 〈lc〉2
] + const (C6)

where the constant is negligible compared to the variance of
lc for our case. Therefore the rms defined according to the
physical distance in lattice spacing units is given by

Rwc =
√〈

w2
c

〉 − 〈wc〉2√
x2 + y2

=
√

2
√〈

l2
c

〉 − 〈lc〉2. (C7)
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