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ABSTRACT

One-dimensional all-bands-flat lattices are networks with all bands being flat and highly degenerate. They can always be diagonalized by a
finite sequence of local unitary transformations parameterized by a set of angles θi. In a previous work, we demonstrated that quasiperiodic
perturbations of a specific one-dimensional all-bands-flat lattice give rise to a critical-to-insulator transition and fractality edges separating
critical from localized states. In this study, we generalize these studies and results to the entire manifold of all-bands-flat models and study the
effect of the quasiperiodic perturbation on the entire manifold. For weak perturbation, we derive an effective Hamiltonian and we identify
the sets of manifold parameters for which the effective model maps to extended or off diagonal Harper models and hosts critical states. For
all the other parameter values, the spectrum is localized. Upon increasing the perturbation strength, the extended Harper model evolves
into a system with energy dependent critical-to-insulator transitions, which we dub fractality edges. Additionally, the fractality edges are
perturbation-independent, i.e., remain constant as the perturbation strength varies. The case where the effective model maps onto the off
diagonal Harper model features a tunable critical-to-insulator transition at a finite disorder strength.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0153819

The breaking of the macroscopic degeneracy in flatband sys-
tems allows to realize a variety of interesting and exotic phases
depending on the types of the perturbation applied. One partic-
ular example of macroscopic degenerate systems is all-bands-flat
systems where all energy bands are flat. In 1D, an all-bands-flat
system is always achieved by applying local unitary transforma-
tions to completely decoupled sites. In our previous work,1 we
studied the effect of a quasiperiodic perturbation on a specific
all-bands-flat Hamiltonian (a specific point of the manifold). We
found a critical-to-insulator transition (CIT) analytically for weak
perturbation and fractality edges numerically for finite pertur-
bation. In this work, we consider the full manifold of all-bands-
flat systems to complete our understanding of the effect of the
quasiperiodic perturbations. We analytically identify extra sub-
manifolds with critical eigenstates for weak potential strengths.
For finite strengths, we confirm numerically the emergence of
tunable CITs and fractality edges on these submanifolds. In all
other cases, the perturbed Hamiltonians have all their eigenstates
localized.

I. INTRODUCTION

Recently, physical systems with macroscopic degeneracies have
received much attention. Their study is motivated by the observa-
tion that macroscopic degeneracies are fragile and are easily lifted
even by weak perturbations, resulting in various exotic and unusual
correlated phases. One example of such systems is a flatband Hamil-
tonian—a translationally invariant tight-binding network with dis-
persionless Bloch bands E(k) = E.2–4 The fine-tuned geometry or
the symmetry of the flatband system causes destructive interference
which leads to zero group velocity ∇kE and traps particles over a
strictly finite number of sites,5,6 resulting in the appearance of com-
pact localized states— eigenstates with strictly compact support. The
extreme sensitivity of macroscopically degenerate flatbands to per-
turbations leads to the emergence of a variety of interesting and
exotic phases: flatband ferromagnetism,7 frustrated magnetism,8,9

unconventional Anderson localization,10 ergodicity breaking,11–14

and superconductivity.15

Flatband systems can be further fine-tuned to turn all their
energy bands flat, resulting in the all-bands-flat (ABF) networks.16,17
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Despite the high degree of fine-tuning, they can be constructed
systematically in 1D via a sequence of local unitary transforma-
tions applied to isolated sites.10,12,18 We conjectured that this result
also holds in higher dimensions.18 Despite fine-tuning, ABF lat-
tices have been realized experimentally,19–22 also in the presence of
correlated disorder.23 ABF models are even more sensitive to per-
turbations and interesting phenomena have been observed in the
presence of perturbations: unconventional localization,23–27 ergodi-
city-breaking,11–13,28 and caging of particles,18,29–33 and perculiar non-
linear dynamics.34–36

In Ref. 1, we looked at a specific two-band ABF model and
studied its behavior in the presence of a quasiperiodic perturbation.
We identified parameters of the model for which it features crit-
ical states with subdiffusive/almost-diffusive transport for weak
perturbation and an exotic phase transition—critical-to-insulator
transition (CIT)—was observed. For finite potential strength, we
discovered fractality edges, an energy dependent CITs. In this paper,
we explore the entire manifold of the two-band ABF models and
identify additional submanifolds which also host critical states,
CITs, and fractality edges under the quasiperiodic perturbation.

The outline of the paper is the following: We discuss the con-
struction of the ABF in Sec. II. Then, we derive an effective model in
Sec. III valid for weak quasiperiodic perturbation and use it to locate
the ABF submanifolds supporting critical states. The properties of
the full model at finite perturbation strengths are studied in Sec. IV,
followed by conclusions in Sec. V.

II. THE MODEL

The model we focus on is the one-dimensional (1D) ABF lad-
der with two flatbands and the nearest-neighbor unit cells hopping.37

Its Hamiltonian HABF is constructed from a macroscopically degen-
erate diagonal matrix HFD with onsite energies εa and εb on the two
sublattices,18

HFD =
∑

εa|an〉〈an| + εb|bn〉〈bn|, (1)

where an, bn are the basis states of the two sublattices and the
bandgap1 = |εa − εb|. We term HFD as the parent Hamiltonian for
the manifold of ABF systems and refer to it as fully detangled.10,12,18

The construction of the ABF manifold is based on a
sequence of unitary transformations Ui

1,10,12,18,25 applied to the par-
ent Hamiltonian.38 Each transformation Ui is, in turn, a direct sum
of local unitary transformations, which need not commute for dif-
ferent i. Throughout the paper, ABF Hamiltonian always refers
to a connected ABF network. For a one-dimensional system with
nearest-neighbor unit cell hopping, only two local unitary trans-
formations U = U2U1 are enough to produce a connected hopping
network. Each transformation U1,2 is a direct sum of local transfor-
mations, e.g., it takes a block diagonal form. The most general 2 × 2
block is a SU(2)matrix

Ui =
∑

n,n′∈N

zi

∣

∣a(i)n

〉 〈

a(i−1)
n

∣

∣ + wi

∣

∣a(i)n

〉

〈

b(i−1)

n′

∣

∣

∣

− w∗
i

∣

∣b(i)n

〉

〈

a(i−1)

n′

∣

∣

∣ + z∗
i

∣

∣b(i)n

〉 〈

b(i−1)
n

∣

∣ . (2)

The index i denotes the ith local unitary transformation and the
indices n, n′ label the unit cells. In the simplest case, the blocks are
parameterized by only two angles: θ1,2 for U1,2, respectively, pro-
ducing real U1,2 ∈ SO(2). The 2 × 2 blocks can act on the two sites
within the same unit cell, n′ = n, or different unit cells, n′ 6= n.
This generates different, non-commuting transformations.12,18,25 We
choose the U1 ∈ SO(2) blocks to act within the same unit cell (n′ = n
in the above expression), while for the U2 ∈ SO(2) blocks, one of the
sublattice sites is taken from the neighboring unit cell: n′ = n-1. As
was discussed in Ref. 1, one can consider the angles 0 ≤ θ1,2 ≤ π/2
only, thanks to the symmetries of the model. This family of ABF
models includes the well-known Creutz ladder17 if one uses generic
SU(2) transformations instead.

A quasiperiodic perturbation W is added to the ABF Hamilto-
nian, H = HABF + W. It is a diagonal matrix depending ony two
quasiperiodic fields W1 and W2 defined as follows:

W1(n) = λ1 cos(2παn + φ),

W2(n) = λ2 cos(2παn + β + φ).
(3)

W1,2 are applied to the two sublattices of the ladder, respectively, as
given in Ref. 1 (see Fig. 1). The spatial frequency α is an irrational

number which we choose as α = (
√

5 − 1)/2 in this work, β is the
phase difference between W2 and W1, while φ is the phase used for
averaging of the results, and λ1,2 are the strengths of the quasiperi-
odic potentials. The effect of quasiperiodic perturbations on one-
dimensional tight binding networks was studied experimentally in
various setups.39,40

Our results are summarized in Table I. For parameters not
listed in the table, all the eigenstates are always localized.

FIG. 1. The ABF model is fully detangled/diagonalized into a diagonal Hamilto-
nian via local unitary transformations U1 and U2 with appropriate angles θ1 and
θ2 (left). By adding quasiperiodic perturbation W made up of two quasiperiodic
fields W1,2 in Eq. (3), nontrivial hoppings are created in the fully detangled basis
(right). For weak quasiperiodic fields, the first-order degenerate perturbation the-
ory is used to derive an effective projected model. In the detangled basis, this
corresponds to only keeping the hopping terms coupling the sites on the same
sublattices.
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TABLE I. Summary of the eigenstates properties for the projected model in Eq. (4)

and for the finite perurbation strength. EHM and OHM stand for the extended and

the off diagonal Harper model, respectively. They have qualitatively different transport

properties.

Submanifold
Weak

perturbation

Type of
eigenstates and
wavespreading

Finite
perturbation

Anyβ
λ2/λ1 = 0
θ1 + θ2 = π/2

EHM
Critical

and
subdiffusive

Perturbation
independent

fractality edges

β = π

λ2/λ1 = 1
∀θ1 : θ2 = π/4

OHM
Critical

and
almost diffusive

CIT

III. WEAK QUASIPERIODIC POTENTIAL AND

EFFECTIVE PROJECTED MODEL

We start by analyzing the limit of vanishing/weak λ1,2 com-
pared to the bandgap1 = |εa − εb|. In this limit, we can simplify the
model by using the first-order degenerate perturbation theory. First,
we apply the inverse unitary transformation U† on H to go back

to the originally fully-detangled system,H̃ = HFD + U†WU. How-
ever, due to the perturbation W, there are now additional hoppings
given by U†WU while HFD acts merely as a sublattice dependent
onsite potential. Second, we use perturbation theory1,25 to project the
Hamiltonian onto one of the sublattices: this amounts to neglecting
all the terms related to the other sublattice. A similar procedure can
be used for other perturbations, including interactions.30,41–43 The
procedure is outlined schematically in Ref. 1 (see Fig. 1). This pro-
duces an effective one-dimensional tight binding problem which is
referred to as the projected model1,25

Ean = vnan + tn−1an−1 + tnan+1. (4)

The quasiperiodicity of the original potentials W1,2 is reflected in the
quasiperiodicity of the onsite potential vn and the hopping tn

vn = vs sin(2παn − πα)+ vc cos(2παn − πα), (5)

tn = ts sin(2παn)+ tc cos(2παn). (6)

The quasiperiodicity of both the potential and the hopping
makes this model markedly different from the well-known
Aubry–André–Harper model which is quasiperiodic in the potential
only.44 The amplitudes vs,c and ts,c of vn and tn are given by

vs = sin(πα)
(

sin2 θ1 sin2 θ2 − cos2 θ1 cos2 θ2

)

+ λ2 cosβ

λ1

sin(πα)
(

sin2 θ1 cos2 θ2 − cos2 θ1 sin2 θ2

)

− λ2 sinβ

λ1

cos(πα)
(

cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2

)

, (7)

vc = cos(πα)
(

cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2

)

+ λ2 sinβ

λ1

sin(πα)
(

sin2 θ1 cos2 θ2 − cos2 θ1 sin2 θ2

)

+ λ2 cosβ

λ1

cos(πα)
(

cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2

)

, (8)

ts = 1

4
sin 2θ1 sin 2θ2

λ2 sinβ

λ1

, (9)

tc = 1

4
sin 2θ1 sin 2θ2

(

1 − λ2 cosβ

λ1

)

. (10)

The adjustable parameters in this model are: the ratio of potential
strengths λ2/λ1, the phase difference β , the spatial frequency α, and
the angles of local unitary transformations θ1,2.

Model (4) is a special case of a more generic Jacobi operator.
A self-adjoint quasiperiodic Jacobi operator J acting on l2(Z) space
is the most generic form of a quasiperiodic system45

(Ju)n = v(αn + φ)un + tρ(αn + φ)un+1

+ t∗ρ(α(n − 1)+ φ)un−1. (11)

Analytical results have been established only for some specific cases
of the Jacobi operator.44,46,47 We use these known cases below to
characterize the spectrum of the projected model (4) for specific
parameter values.

One case admitting an analytical treatment is the extended
Harper model (EHM). In this case, the self-adjoint quasiperiodic
Jacobi model is defined as

(Ju)n = 2 cos(2παn − πα)un

+ 2ρ [cos(2παn)un+1 + cos(2πα(n − 1))un−1] . (12)

Note that the EHM is different from the well-known Aubry–André–
Harper model. Both the onsite potential and the hopping are given
by the cosine terms with the control parameter ρ. Structurally this
model is similar to our projected model. The properties of the
EHM spectrum have been characterized thoroughly in Ref. 46. For
2ρ < 1, all the eigenstates are localized, as guaranteed by the RAGE
theorem.48–50 Otherwise, for 2ρ ≥ 1, the energy spectrum is fractal,46

similar to the Aubry–André–Harper model at its critical point.44

Moreover, the corresponding eigenstates are multifractal, as was
demonstrated numerically in Ref. 51.

For infinite 2ρ, the onsite potential can be neglected and we are
left with the hopping only. The model in this limit is called the off
diagonal Harper model (OHM)52,53

(Ju)n = [cos(2παn)un+1 + cos(2πα(n − 1))un−1] . (13)

It is self-dual under a modified Fourier transformation similar to
that of the Aubry–André model.1 Consequently, the entire spectrum
of the model is critical and the eigenstates are fractal.

When the mapping to the extended or the off diagonal Harper
model is not available, we resorted to exact diagonalization of finite
chains with open boundary conditions in order to characterize
the properties of the eigenstates. The inverse participation ratio
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(IPR)54–56 for an eigenstate ψn is commonly used to quantify the
degree of localization of a wavefunction in a system of size L.

IPR =
∑

n

|ψn|4 ∼ L−τ , (14)

IPR scales as a power-law of the system size L with a scaling
exponent τ . The exponent τ is defined as follows:57

τ = lim
L→∞

1

ln(1/L)
ln IPR . (15)

However, we cannot use this definition for a single eigenstate as a
function of system size L, since eigenenergies change with system
size and energy binning is necessary to have well-defined τ at a given
energy. Instead, we calculate the average of τ over a small energy bin
to extract the scaling behavior of τ . This is achieved by rescaling the
eigenspectrum into the interval [0, 1] and splitting it into equidistant
bins e. This allows us to calculate the average of τ in a single bin e,
denoted as 〈τ 〉e as a function of lattice size L. In the thermodynamic
limit, all eigenstates in the bin e are localized if 〈τ 〉e(L → ∞) = 0.
Otherwise, 〈τ 〉e(L → ∞) takes a finite value between 0 and 1.

To confirm the localization of an eigenstate, we use the fact
τ = 0 in the thermodynamic limit and introduce the following
linear model for 〈τ 〉e, inspired by Eq. (15):

〈τ 〉e(L) = κ(e)

ln(1/L)
+ intercept, intercept = 0. (16)

The numerical fit is quantified with the goodness-of-fit R258 which
shows how well the data are described by model (16). R2 ≈ 1 indi-
cates that states in bin e are localized in the thermodynamic limit.
Otherwise, R2 ≤ 0, the set of numerical data does not follow the lin-
ear model (16) at all. Hence, in the thermodynamic limit, there are
extended or critical states for which a different fitting model should
be used. The slope κ(e) defines the participation number averaged
over e by taking exp(−κ(e)). This choice of the fitting is motivated
by an observation that we only discovered localized or critical states
in our previous study1 and we expect similar results in this extended
model. This expectation has indeed been confirmed a posteriori.

A. λ2/λ1 = 0 for any phase difference β

If we only apply the quasiperiodic potential (3) to one leg of
the ladder, e.g., for example λ2/λ1 = 0, then the projected model (4)
simplifies: τs is zero and vs takes the following form:

vs = sin(πα) cos(θ1 − θ2) cos(θ2 + θ1). (17)

Then, model (4) maps to the extended Harper model for vs ≡ 0 only.
This produces the following constraint on the angles θ1,2:

θ2 + θ1 = π

2
. (18)

Using this to eliminate θ2, we obtain the following expressions for vc

and τc:

vc = 2 cos(πα) sin2 θ1 cos2 θ1, (19)

tc = sin θ1 cos θ1

√

1 − cos 4θ1/
√

8. (20)

For these coefficients, model (4) is equivalent to the λ2/λ1 = 0
case studied in the previous work.1 Note that for θ1 = 0,π/2 both
quantities vanish, producing a set of decoupled sites. Then, for
θ1 6= 0,π/2, the control parameter, ρ of the EHM (12) is expressed
as follows in terms of θ1:

2ρ =
∣

∣

∣

∣

∣

√
1 − cos 4θ1/

√
8

cos(πα) sin θ1 cos θ1

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1

cos(πα)

∣

∣

∣

∣

≥ 1. (21)

The absolute value above ensures that the negative hopping case
is also covered (the sign can be trivially gauged away) and also to
match with the definition of the extended Harper model46 where
non-negative 2ρ is assumed. Since the model is equivalent to the
special case θ1,2 = π/4 studied before in Ref. 1 up to a global rescal-
ing, we have subdiffusive wavepacket spreading for θ1,2 satisfying
Eq. (18).

For all the other θ1,2, e.g., not satisfying the above condi-
tion (18), we establish the character of the spectrum—localized or
not—numerically. We scanned the full parameter region, 0 < θ1,2

< π/2, discretized into the 25 × 25 grid. The exponent 〈τ 〉 aver-
aged over the entire spectrum is computed via Eq. (16) for lattice
sizes L = 2000, 4000, . . . , 12 000 in steps of 2000. The results are
summarized in Fig. 2: Apart from the diagonal line, all points have
the R2-values very close to 1. That is all the eigenstates of the pro-
jected model (4) are localized in the thermodynamic limit whenever
it does not map onto the extended Harper model, e.g., away from
the diagonal θ1 + θ2 = π/2. The increase of the absolute value of
the slope κ̂ (16) toward the diagonal line is related to the increase
of the localization length as we approach the transition to critical
states. The deviations at the anti-corners of the phase diagram are
caused by the failure of the simple linear model (16) to capture the
compact localization emerging for θ1,2 → 0 or θ1,2 → π/2. We con-
sider these cases separately in Sec. III C, and demonstrate that the
spectrum is localized in this case: the eigenstates are effectively com-
pactly localized. We note, that our previous work1 considered the
case of θ1 = θ2 = π/4.

FIG. 2. Phase diagram (θ1, θ2) of the projected model (4) for λ2/λ1 = 0, e.g.,
one of the quasiperiodic fields is absent. The yellow dots indicate the fully local-
ized spectrum. The diagonal blue line indicates the region of critical spectrum
given by Eq. (18). The black dotted lines on the border correspond to the case
of disconnected dimers: all eigenstates are compactly localized. (a) R2 values for
parameters θ1, θ2: All eigenstates are localized in the thermodynamic limit except
the diagonal. (b) Slope κ̂ (16) for the parameters away from the diagonal of the
phase diagram. The absolute value of the slope κ increases upon approaching
the diagonal, implying a larger localization length.
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B. λ2 =λ1 and β = π

For θ2 = π/4, equal potential strengths λ2 = λ1 = 1 and phase
difference β = π , vs,c = ts = 0 and we are left with only the hop-
ping terms tc = sin 2θ1/2 in models (4) and (6). The projected model
becomes exactly equivalent to the off diagonal Harper model and the
role of tc is simply to rescale the energy

Ean = tc [cos(2παn)an+1 + cos(2πα(n − 1))an−1] . (22)

We have established in our previous work, Ref. 1, an almost diffu-
sive spreading of an initially localized wavepacket in the off diagonal
Harper model. Now the factor tc only sets the global timescale for
the wavepacket spreading.

For θ2 6= π/4, we also carried out a numerical scan of the
spectrum of the projected model over the region 0 < θ1,2 < π/2,
discretized into 25 × 25 grid. The fitting procedure of 〈τ 〉 (over
the entire spectrum) is performed via Eq. (16) for lattice sizes
L = 2000, 4000, . . . 12 000 in steps of 2000. The observed results fol-
low closely those of the case λ2/λ1 = 0: all the eigenstates of the
projected model (4) are localized in the thermodynamic limit away
from the horizontal line of the phase diagram, e.g., when the pro-
jected model does not map onto the off-diagonal Harper model,
as shown in Fig. 3. The increase of the absolute value of the slope
toward the horizontal line is related to the increase of the localization
length toward the line of critical states.

C. Near zero angles θ1,2 → 0

Visible deviations from the at the anti-corners of the phase dia-
grams are present in Fig. 2 and to a lesser extent in Fig. 3. In this
section, we focus on the case of θ1,2 → 0 and demonstrate that all
the eigenstates of the projected model (4) are effectively compactly
localized. To see this, we approximate sin θ ≈ θ and cos θ ≈ 1, so

FIG. 3. Phase diagram (θ1, θ2) of the projected model (4) for equal strength of
the quasiperiodic potentials λ2 = λ1 and phase difference β = π . The yellow
dots indicate the fully localized spectrum. The horizontal blue line, θ2 = π/4, the
models with critical spectrum, which map to the off diagonal Harper mode. The
black dotted lines on the border correspond to the system of disconnected dimers
and compactly localized eigenstates. (a) R2 values for parameters θ1, θ2. Aside
from the horizontal blue line, all points have the values very close to 1: all eigen-
states are localized in the thermodynamic limit. (b) Slope κ̂ for the parameters
away from the horizontal of the phase diagram. The absolute value of the slope
κ increases upon approaching the diagonal, implying a larger localization length.

that the coefficients (5) and (6) simplify to

vs = sin(πα)
(

θ 2
1 θ

2
2 − 1

)

+ λ2

λ1

cosβ sin(πα)
(

θ 2
1 − θ 2

2

)

− λ2

λ1

sinβ cos(πα)
(

θ 2
2 + θ 2

1

)

, (23)

vc = cos(πα)
(

1 + θ 2
1 θ

2
2

)

+ λ2

λ1

sinβ sin(πα)
(

θ 2
1 − θ 2

2

)

+ λ2

λ1

cosβ cos(πα)
(

θ 2
2 + θ 2

1

)

, (24)

ts = θ1θ2

λ2 sinβ

λ1

, (25)

tc = θ1θ2

(

1 − λ2 cosβ

λ1

)

. (26)

Keeping only linear terms in θ1,2, so that θ 2
1 = θ 2

2 = θ1θ2 = 0, we see
that the hoppings all vanish ts = tc = 0 and only the onsite poten-
tial terms are left. This implies that all the eigenstates are effectively
compactly localized but their energies are non-degenerate, because
of the onsite potential. A similar argument implies that all states are
compactly localized for θ1,2 ≈ π/2.

IV. FINITE PERTURBATION

We considered so far the case of weak quasiperiodic potential
and found critical eigenstates for specific angles of the local uni-
tary transformations, specific potential strengths λ1,2 and the phase
difference β . Naturally, the next question is what happens at finite
perturbation strength. Generically, we expect that eigenstates local-
ized for the weak potential remain localized upon increasing the
potential strength, and that strong enough potential, as compared
to the bandgap1, should localize all the eigenstates. The open ques-
tion is what happens to the critical eigenstates for moderate values
of λ1,2?

To address this issue, it is convenient to work with the semi-
detangled Hamiltonian,1,18 which is defined by inverting only the
second unitary transformation U2 (see Sec. II). This defines the
semi-detangled basis {un, dn} and gives the new, semi-detangled
Hamiltonian

HSD = U1HFDU
†
1 + U

†
2WU2. (27)

The semi-detangled wavefunction amplitudes un and dn are related
to the basis states of the ABF Hamiltonian {pn, fn} as follows:

un = pn cos θ2 − fn sin θ2,

dn = pn sin θ2 + fn cos θ2.
(28)

The model (27) takes the following form in the semi-detangled basis:

Eun =
[

εb sin2 θ1 + εa cos2 θ1

]

un

+
[

W2(n) sin2 θ2 + W1(n) cos2 θ2

]

un

+ [(W1(n)− W2(n)) cos θ2 sin θ2] dn

+ [1 cos θ1 sin θ1] dn+1, (29)
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Edn =
[

εa sin2 θ1 + εb cos2 θ1

]

dn

+
[

W1(n) sin2 θ2 + W2(n) cos2 θ2

]

dn

+ [(W1(n)− W2(n)) cos θ2 sin θ2] un

+ [1 cos θ1 sin θ1] un−1. (30)

This model is at the core of the subsequent analytical and numerical
analysis.

A. Perturbation independent fractality edges for λ2 =0

We remove one of the quasiperiodic potentials, λ2 = 0 and set
θ2 = π/2 − θ , θ1 = θ . The model in the semi-detangled basis takes
the following form:

Eun

cos θ sin θ
=

[

εa

tan θ
+ (εb + W1(n))

1/ tan θ

]

un + W1(n)dn +1dn+1,

(31)

Edn

cos θ sin θ
=

[

(εb + W1(n))

tan θ
+ εa

1/ tan θ

]

dn + W1(n)un +1un−1.

(32)

After multiplying Eq. (32) by tan θ and taking the difference of
the above equations, we get a single equation without quasiperiodic
potentials

Eu(E, θ)un + tan θEgun−1 = tan θEd(E, θ)dn + Egdn+1,

where Eu(E, θ) and Ed(E, θ) are

Eu(E, θ) =
[

E

cos θ sin θ
−

(

Ea

tan θ
+ Eb tan θ

)]

, (33)

Ed(E, θ) =
[

E

cos θ sin θ
−

(

Eb

tan θ
+ Ea tan θ

)]

. (34)

For θ1,2 = π/4, we obtain the model discussed in Ref. 1
(σ = εa + εb). There are fractality edges at the flatband energies εa,b

for any perturbation strength λ1 and all the eigenstates in between
are critical

(2E − σ)un + Egun−1 = (2E − σ)dn + Egdn+1. (35)

This result can be rationalized with a simple assumption that the
critical states appear when the hopping is larger than the onsite
potential

|2E − σ | ≤ Eg, (36)

implying εa ≤ E ≤ εb for the critical states.
For θ 6= π/4, following the same logics, the above inequailty

for energy E is modified as follows:

|Eu| < Eg tan θ and |Ed| tan θ < Eg. (37)

However, now the simple constraint does not explain the entire
range of fractality edges but only covers the narrower range of the
critical states as seen in Figs. 4 and 5.

Examples are shown and summarized in Figs. 4 and 5, where
θ = 0.01π/2 and θ = 0.68π/2, respectively. We fixed the flatband

FIG. 4. Fractality edges at finite potential strength λ1 and λ2 = 0, for
θ = 0.01π/2. (a) Fractality edges in the rescaled spectrum. The negative R2

values are replaced with −1 for better visual separation of localized and critical
regions. (b) Fractality edges in the original, non-rescaled energy spectrum with
lattice size L = 10 946. The bottom black line is the flatband εa = −1, while
the top black black is E ≈ −0.997. The dashed black line is the upper bound
E ≈ −0.998 given by Eq. (37).

energies to εa = −1 and εb = 2. The narrowness of the critical
region in Fig. 4 is due to the smallness of the angle θ1: remember that
for θ1 = 0 we have trivial flatbands due to the model decoupling into
disconnected dimers. Since the fractality edges are potential strength
independent, we only considered part of the spectrum around the
edges and used it for the rescaled spectrum. We apply the linear
model introduced in Eq. (16) and introduce 50 energy bins e for the
spectrum rescaled to fit in [0, 1]. The lattice sizes (in unit cells) are
L = 3283, 4181, 4832, 5473, 6765, 10 946. The exact model has two
sites for each unit cell and the size of the Hamiltonian matrix is
2L × 2L. In both examples, there are two fractality edges indepen-
dent of the potential strength λ1, with critical states in between and
localized states outside. The lower fractality edge coincides with the
flatband energy εa. By symmetry, setting λ1 = 0 and varying λ2, one
would get the similar spectral behavior with the upper fractality edge
would be at εb.

B. Existence of CIT at λ2 = λ1 and β = π

Let θ1 = θ , θ2 = π/4, λ2 = λ1 = λ and the phase difference
β = π , hence W2 = −W1 = −W. Then the model (29) simplifies

FIG. 5. Fractality edges at finite potential strength λ1 and λ2 = 0, for
θ = 0.68π/2. (a) Fractality edges in the rescaled spectrum. The negative R2

values are replaced with −1 for better visual separation of localized and critical
regions. (b) Fractality edges in the original, non-rescaled energy spectrum with
lattice size L = 10 946. The bottom black line is the flatband εa = −1, while the
top black line is E ≈ 1.05. The dashed black line is the upper bound E ≈ 0.393
given by Eq. (37).
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as follows:

Eu(E, θ)un = W(n)dn +1 cos θ sin θdn+1, (38)

Ed(E, θ)dn = W(n)un +1 cos θ sin θun−1, (39)

where Eu(E, θ) and Ed(E, θ) are defined as

Eu(θ) = E − εb sin2 θ − εa cos2 θ ,

Ed(θ) = E − εa sin2 θ − εb cos2 θ .

We can eliminate un from the above equations by substitution,
resulting in equations with dn only

Ed(θ)Eu(θ)dn = W2(n)dn +12 cos2 θ sin2 θdn,

+1 cos θ sin θ
[

W(n)dn+1 + W(n − 1)dn−1

]

.

(40)

This can be further recast into the model considered in our previous
work1

Ẽ(θ , λ)dn = cos(4παn)dn

+ K(θ , λ))
[

cos(2πα(n − 1))dn−1 + cos(2παn)dn+1

]

,

(41)

where Ẽ(θ , λ) and K(θ , λ) are defined as

Ẽ(θ , λ) = 2

λ2
Ed(θ)Eu(θ)− 1

2
,

K(θ , λ) = 21

λ
cos θ sin θ .

As discussed in Ref. 1, the transition between localized and critical
states occurs for K(θ , λ) = 1,

λc = 1 sin 2θ . (42)

An example for θ = 0.1π/2 is shown and summarized in Fig. 6.
The flatband energies are taken to be εa = −1 and εb = 2. Entire
spectrum is rescaled for each λ1. Then, we apply the linear model
introduced in Eq. (16) introducing 50 energy bins ẽ for the spec-
trum rescaled to fit in [0, 1]. Lattice sizes (in unit cells) are L
= 3283, 4181, 4832, 5473, 6765, 10 946. The exact model has two

FIG. 6. Critical-to-insulator transition at finite potential strength λ2 = λ1, β = π

at θ = 0.1π/2. (a) Rescaled spectrum. The negative R2 values are replaced
with −1 for better visual separation of localized and critical regions. (b) Original,
non-rescaled energy spectrum for lattice size L = 10 946. The vertical dashed
black line marks the CIT transition predicted by Eq. (42).

sites for each unit cell, the size of the Hamiltonian matrix is 2L × 2L.
The transition point λc ≈ 0.927 based on Eq. (42) is indicated with
the black dashed line. It matches perfectly with the numerical results.
All states are critical to the left of λc and localized to the right of
it. The string of eigenstates in between the two broadened flatband
energies is due to the open boundary conditions.

V. CONCLUSIONS

We studied the effect of quasiperiodic perturbation, composed
of two potentials, on a general model of the ABF manifold with
two bands, extending our previous work, Ref. 1, that focused on
the specific point θ1,2 = π/4 of the ABF manifold. First, we con-
sidered the case of weak quasiperiodic perturbation. We identified
the ABF submanifolds of models with spectra containing critical
states and exhibiting subdiffusive and almost diffusive transport
for weak quasiperiodic perturbation. These submanifolds are the
direct extension of the cases found in our previous work and can
be mapped onto the same extended Harper model. The critical
states with subdiffusive transport were found for the ABF models
satisfying the condition θ1 + θ2 = π/2 for the angles of the uni-
tary transformation generating the model. The other constraint is
the absence of one of the two quasiperiodic fields. The other sub-
manifold with models featuring critical states with almost diffusive
transport is given by θ2 = π/4 and arbitrary θ1. The quasiperiodic
potentials must have equal strengths and the relative phase β = π ,
e.g., be of opposite signs. All such models can be mapped onto the
off diagonal Harper model. Outside of these manifolds, all the states
are localized in the thermodynamic limit as suggested by numerical
analysis. Specifically, for small angles θ1,2 we demonstrated compact
localization of the spectrum.

For a finite quasiperiodic potential, the perturbed ABF mod-
els which map to the extended Harper model, display fractality
edges in the spectrum separating critical from localized states. These
edges are independent of the potential strength. On the other hand,
the models which map onto the off diagonal Harper model, show
no fractality edges. Instead they exhibit a critical-to-insulator tran-
sition. The transition point is derived analytically and confirmed
numerically, and depends on the angle θ1 = θ2 = θ .

Only localized and critical eigenstates appeared for the type of
onsite quasiperiodic potential that we have considered. An interest-
ing problem is to identify other quasiperiodic potentials that might
give delocalized states in projected models, for example, by mapping
the ABF model for weak perturbation onto the extended Harper
model in the delocalized part of the phase diagram. This could be
achieved by solving an inverse problem of reconstructing the full
potential from the projected effective model.

The presented ABF manifold perturbed by quasiperiodic
potentials could be potentially implemented using ultracold atomic
gases loaded onto optical lattice potentials where ABF networks have
been realized, e.g., in the Creutz ladder19,20 or the diamond chain.21,23

A second promising platform is light propagation in photonic lat-
tices where the diamond chain with its Aharonov–Bohm cages were
experimentally obtained.22 Another promising future platform is
electric circuits. The main issue for experimental realization of ABF
systems is achieving both positive and negative hopping. A possible
candidate is a stack of LC electric circuits59 in which the topology
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of wiring can generate positive and negative hopping, even com-
plex hopping. By adding extra LC resonators to each site, one might
imitate the onsite quasiperiodic modulation of the ABF system.
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34G. Gligorić, P. P. Beličev, D. Leykam, and A. Maluckov, “Nonlinear symmetry
breaking of Aharonov-Bohm cages,” Phys. Rev. A 99, 013826 (2019).
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