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We study the effect of quasiperiodic perturbations on one-dimensional all-bands-flat lattice models. Such
networks can be diagonalized by a finite sequence of local unitary transformations parameterized by angles
θi. Without loss of generality, we focus on the case of two bands with bandgap �. Weak perturbations lead
to an effective Hamiltonian with both on- and off-diagonal quasiperiodic terms that depend on θi. For some
angle values, the effective model coincides with the extended Harper model. By varying the parameters of the
quasiperiodic potentials, we observe localized insulating states and an entire parameter range hosting critical
states with subdiffusive transport. For finite quasiperiodic potential strength, the critical-to-insulating transition
becomes energy dependent with what we term fractality edges separating localized from critical states.
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I. INTRODUCTION

One of the most fascinating pursuits in recent decades in
condensed matter physics has been to understand the impact
of various perturbations on single-particle localized states. It
is well known that states can be localized in the presence of
a random disorder or quasiperiodic potential [1–3]; however,
localization can also be achieved in the absence of disorder.
Certain translation invariant tight-binding networks feature
dispersionless Bloch energy bands E (k) ≡ E , known as flat-
bands [4–6], independent of the crystal momentum k and
implying a macroscopic degeneracy at the energy E . This is a
result of destructive interference caused by network geometry
or symmetry, implying zero group velocity ∇kE and a local-
ization of particles in the flatband. For short-range Hamiltoni-
ans, flatbands feature compact localized states, or eigenstates
trapped in a strictly finite number of sites [7,8]. Experimen-
tally, compact localized states have been observed in a variety
of fine-tuned settings [9]. The interest in flatbands is moti-
vated by their extreme sensitivity to perturbations that lift the
macroscopic degeneracy and give rise to unusual behavior and
a variety of interesting and exotic phases: Flatband ferromag-
netism [10], frustrated magnetism [11,12], unconventional
Anderson localization [13], and superconductivity [14].

Flatband systems can be further fine-tuned to flatten
all the dispersive bands, resulting in all-bands-flat (ABF)
networks [15,16] that are even more sensitive to perturba-
tions and produce interesting ergodicity-breaking phenomena
[16–20]. ABF networks can be diagonalized by a finite se-
quence of noncommuting local unitary transformation into
the ABF parent network. Any perturbation of the original
ABF network will result in some nontrivial perturbation of
the diagonal parent network which can be thus efficiently
analyzed.

The effect of single particle perturbations, e.g., disorder,
has been studied for flatband lattices [13,21–24]. In particu-
lar, unconventional localization length scaling [13], analytical
mobility edges [25], and reentrant localization [26–28] have
been found. The effects of random disorder on ABF networks
have recently been systematically investigated, where nonper-
turbative delocalization transitions were found [29].

In this work, we perform a systematic study of the impact
of weak quasiperiodic perturbation on ABF networks in one
dimension, closely following the previous work, Ref. [29].
Without loss of generality, we focus on a two-band ABF
ladder. Then we apply a weak (compared to the bandgap)
quasiperiodic perturbation. We use the smallness of the per-
turbation to project the Hamiltonian onto a single sublattice,
thereby deriving a new effective projected Hamiltonian. By
varying the parameters of the perturbation, we find that the
entire spectrum of the projected Hamiltonian is either local-
ized or critical, but never extended, using a mapping to the
extended Harper model [30].

We also find a transition between localized and critical
phases—the critical-to-insulator transition (CIT)—that de-
pends on the spatial frequency of the quasiperiodic potential.
No metallic states are found for any values of the parameters.
Upon increasing the strength of the quasiperiodic potential,
the critical eigenstates are gradually replaced by localized
ones via the appearance of an energy-dependent CIT that we
dub fractality edges.

The paper is organized as follows. We start by defining
and discussing the construction of the all-bands-flat models
in Sec. II. In Sec. III we derive an effective model valid in the
limit of weak quasiperiodic perturbation and use it to chart
the phase diagram, confirmed numerically. The properties of
the full model at finite perturbation strength are investigated
in Sec. IV, followed by conclusions in Sec. V.
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II. THE MODEL

We consider one-dimensional (1D) ABF Hamiltonians.
Without loss of generality, we focus on the case of two bands
and hopping between the nearest-neighbor unit cells [31].
Any such 1D Hamiltonian HABF can be constructed from
a macroscopically degenerate diagonal parent matrix HFD

with onsite energies εa and εb on the two sublattices and the
bandgap � = |εa − εb| [16]. We refer to the Hamiltonian in
this parent basis as fully detangled and consider it to be the
parent Hamiltonian for a manifold of ABF systems. Applying
a sequence of local unitary transformations Ui [13,16,18,29]
(also see Appendix A) to HFD, we necessarily end up with a
connected ABF Hamiltonian. Throughout the paper, ABF im-
plies a connected ABF network. For nearest-neighbor unit cell
hopping, generically, only two noncommuting local unitary
transformations, U1 and U2, are needed to generate a 1D ABF
Hamiltonian. In the simplest case, these are parameterized by
two angles: θ1,2 for U1,2, respectively, giving real U1,2. For
angles θ1,2 = π/4—the case considered below—the Hamil-
tonian HABF = UHFDU † reads

Eψn = Aψn + Bψn−1 + B†ψn+1, (1)

where ψn = (pn, fn)T , and the 2 × 2 matrices

An = εa + εb

2

[
1 0
0 1

]
, B = �

4

[
1 −1
1 −1

]
. (2)

While there are more possible parameters describing complex
U1,2, they do not affect the localization properties discussed
below, as demonstrated in Appendix A. The full unitary trans-
formation reads U = U2 U1. We refer the reader to Ref. [29]
for further details on the construction of ABF Hamiltonians.
The symmetry of the system allows us to consider the ir-
reducible region of θ1,2 ∈ [0, π/2] only. We note that this
construction method has been conjectured to be exhaustive
for the generation of higher dimensional short-range ABF
networks as well [16].

Next, we add a quasiperiodic perturbation to the ABF
Hamiltonian with H = HABF + W . Here W is defined as a
direct sum of 2 × 2 matrices W (n) of all 1 � n � L, where L
is the number of unit cells:

W =
L⊕

n=1

W (n), W (n) =
[
W1(n) 0

0 W2(n)

]
. (3)

The generic form of W (n) is given by two quasiperiodic fields
W1 and W2 defined as follows:

W1(n) = λ1 cos(2παn + φ),

W2(n) = λ2 cos(2παn + β + φ). (4)

Here the spatial frequency α is an irrational number, α ∈
R \ Q, β is the phase difference between W2 and W1, φ is the
phase used for averaging, and λ1 and λ2 are the strengths of
the quasiperiodic potentials.

We aim to understand how this perturbation affects the
transport properties of the ABF models. The canonical
Aubry-André model displays a metal-insulator transition with
increasing strength of the potential [3]. On the other hand,
three-dimensional ABF Hamiltonians perturbed by weak
random disorder display a nonperturbative metal-insulator

FIG. 1. Local unitary transformations U1 and U2 convert an
ABF model into a fully detangled Hamiltonian (left). Addition of
quasiperiodic perturbation W composed of two quasiperiodic fields
W1 and W2 (4) creates additional hoppings in the fully detangled
basis (right). For weak quasiperiodic fields, the first-order degenerate
perturbation theory is used to derive the effective projected model.
In the detangled basis, this corresponds to only keeping Hamiltonian
terms coupling the sites on the same sublattice.

transition depending on the Hamiltonian parameters. For fi-
nite disorder strength, a reentrant localization transition is
observed [26].

III. WEAK QUASIPERIODIC POTENTIAL
AND EFFECTIVE PROJECTED MODEL

We start by examining the limit of weak quasiperiodic
perturbation, i.e., vanishing λ1,2, as compared to the bandgap
�. This is done by applying the first-order degenerate per-
turbation theory: We apply the inverse unitary transformation
U † to H, so that the Hamiltonian in a fully detangled basis
is H̃ = HFD + U †WU . The second term represents hoppings
solely due to the quasiperiodic perturbation. The strongest
enhancement of these hoppings occurs for θ1,2 = π/4. This
is the case we focus on below as we expect the strongest
delocalizing effect due to the maximal enhancement of the
hoppings [29]. Without loss of generality, we set λ2 � λ1.
Factoring out λ1 from H̃ gives us the perturbation W̃ = W/λ1,
which depends on the ratio λ2/λ1 ∈ [0, 1] only. Then via
first-order degenerate perturbation theory we get the following
eigenvalue problem:

PaUW̃U †Pa|an〉 = λ1ε
(1)
a,n|an〉. (5)

Here |an〉 are the states in the fully detangled basis and
Pa is a projection operator onto flatband εa that is local.
The above equation describes an effective 1D tight binding
problem that we refer to as the projected model [29]. Figure 1
presents the schematics of obtaining the projected model:
Without perturbation, reverting the unitary transformation
U gives two sublattices of decoupled sites, while one
gets onsite energies and hoppings from U †WU due to the
perturbation. Projected model valid for weak interactions
neglects the couplings between the sublattices producing two
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decoupled projected models. The choice of the
sublattice/projected model is dictated by the (flatband)
energy we want to focus on. On general grounds, we expect
the effective model to feature both quasiperiodic onsite
energies and finite-range hopping, since W̃ is local and
quasiperiodic, while U †Pa is a local operator. The effective
problem for a specific sublattice reads an are the amplitudes
in the fully detangled basis:

Ean = vnan + tn−1an−1 + t∗
n an+1, (6)

where the onsite potential vn and the hopping tn are indeed
quasiperiodic:

vn = vs sin(2παn − πα) + vc cos(2παn − πα), (7)

tn = ts sin(2παn) + tc cos(2παn). (8)

The coefficients vs,c, ts,c depend on the potential strengths
λ1,2, spatial frequency α, and the phase difference β:

vs,c = vs,c(λ1,2, β, α) and ts,c = ts,c(λ1,2, β ).

Their full expressions are provided in Appendix B. This model
describes the transport properties of the ABF network in the
weak potential limit, λ1,2 � �.

A. Mapping of the projected model onto the extended
Harper model

The projected model in Eq. (6) features both a quasiperi-
odic onsite potential and quasiperiodic hopping. The most
generic model of this type is defined by a self-adjoint
quasiperiodic Jacobi operator J acting on a vector of l2(Z)
space [32]:

(Ju)n = v(αn + φ)un

+ tρ (αn + φ)un+1 + t∗
ρ [α(n − 1) + φ]un−1, (9)

where α is an irrational spatial frequency, φ is a fixed phase,
and ρ is some additional parameter controlling the hopping
t . For this most generic case, no complete phase diagram
or transport properties—numerical or analytical—have been
established to the best of our knowledge. In our case though,
the projected model can be mapped onto the already studied
extended Harper model for specific parameter values, as dis-
cussed below. The definition of the extended Harper model is
given as follows:

(Ju)n = 2 cos(2παn − πα)un

+ 2ρ{cos(2παn)un+1 + cos[2πα(n − 1)]un−1}.
(10)

Its spectral properties have been characterized completely in
Ref. [30]. For 2ρ < 1, the eigenstates are all localized, as
guaranteed by the RAGE theorem [33–35]. Otherwise, for
2ρ � 1, the energy spectrum is fractal [30], similar to the
Aubry-André-Harper model at its critical point. Moreover,
the corresponding eigenstates show multifractal behavior, as
demonstrated numerically in [36].

We first cover the choices of parameters λ1,2, β that allow
our projected model to map onto the extended Harper model.
In these cases, we analytically find critical states and a CIT
based on the known phase diagram of the extended Harper

TABLE I. Summary of the localization properties of eigenstates
for the projected model (6). For parameters not listed in this table the
entire spectrum is localized.

Parameters Mapped to Type of states

λ2/λ1 = 0
Anyβ

Extended Harper Critical

λ2/λ1 �= 1
β = π

Extended Harper Critical

λ2/λ1 �= 1
β = 0

Extended Harper CIT

λ2/λ1 = 1
β = π

Off-diagonal Harper Critical

λ2/λ1 = 1
β = 0

Diagonal Hamiltonian Compact localized

model. The results are summarized in Table I. In what follows
we set φ = 0 (4) unless otherwise specified.

1. λ2/λ1 = 0

When λ2/λ1 = 0, the onsite potential vn and the hopping
tn of the projected model in Eq. (6) are simplified into

vn =
[

cos(πα)

4

]
2 cos(2παn − πα), (11)

tn = 1

4
cos(2παn). (12)

The hopping strength 2ρ in Eq. (10) is always larger than 1
regardless of the values of α and β,

2ρ =
∣∣∣∣ 1

cos(πα)

∣∣∣∣ � 1, (13)

implying that all the eigenstates are critical in this case. Fur-
thermore, since β drops from the effective Hamiltonian, the
spectrum and the eigenstates are the same for any value of β.
Intuitively, it is clear that if the quasiperiodic potential is only
applied to a single leg of the ladder, the phase difference β is
irrelevant.

2. β = π and λ1 �= λ2

When β = π and λ1 �= λ2, the onsite potential and the
hopping in Eq. (6) are simplified as follows:

vn =
[

1

4

(
1 − λ2

λ1

)
cos(πα)

]
2 cos(2παn − πα),

tn =
[

1

4

(
1 + λ2

λ1

)]
cos(2παn).

Similarly to the previous case, we find 2ρ � 1 regardless of
the values of α and λ2/λ1:

2ρ =
∣∣∣∣ 1

cos(πα)

∣∣∣∣
∣∣∣∣1 + λ2/λ1

1 − λ2/λ1

∣∣∣∣ � 1. (14)

This implies that all the eigenstates are always critical.
When the quasiperiodic amplitudes are equal, λ1 = λ2, the

onsite potential in the projected model [Eq. (6)] vanishes and
the strongest hopping can be achieved among other parameter
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FIG. 2. Phase diagram of the projected model based on the val-
ues of the exponent τ averaged over the spectrum, 〈τ 〉, computed for
25 × 25 values of parameters λ2/λ1, β/π . The blue and red lines on
the borders indicate the critical and localized regimes, respectively.
(a) R2 values for parameters λ2/λ1, β/π . All points have values very
close to 1, implying that all eigenstates are localized in the thermo-
dynamic limit in this entire region. (b) Slope κ̂ for the parameters
away from the border of the phase diagram. The absolute value of
the slope increases closer to the border, implying larger localization
length.

choices. In this case, the projected model maps onto the self-
dual off-diagonal Harper model, which is also critical (see
Appendix C for details).

3. β = 0 and λ1 �= λ2

We now choose β = 0 and λ1 �= λ2. The onsite potential
and hopping in Eq. (6) are reduced to the following expres-
sions:

vn =
[

1

4

(
λ2

λ1
+ 1

)
cos(πα)

]
2 cos(2παn − πα),

tn =
[

1

4

(
1 − λ2

λ1

)]
cos(2παn).

Now 2ρ in Eq. (10) can be either larger or smaller than 1
depending on the values of α and λ2/λ1:

2ρ =
∣∣∣∣ 1

cos(πα)

∣∣∣∣
∣∣∣∣1 − λ2/λ1

1 + λ2/λ1

∣∣∣∣. (15)

This leads to a CIT at 2ρ = 1. For α = (
√

5 − 1)/2, the phase
transition point is (λ2/λ1)c ≈ 0.468.

We point out that when the quasiperiodic amplitudes are
equal (λ1 = λ2) in this case, the hopping tn vanishes in the
projected model, which makes it diagonal and leaves only
the nonzero onsite potential. Hence, the eigenstates of the
projected model exhibit compact localization with eigenstates
occupying a single site. However, since the onsite potential
is quasiperiodic, there is no degeneracy in the eigenenergies.
This ultimately leads to the compact localized eigenstates of
the original Hamiltonian H = HABF + W occupying a finite
number of sites without degeneracy.

4. 0 < β < π and 0 < λ2/λ1 � 1

We now look into the properties of the states away from
the border of the phase diagram shown in Fig. 2, 0 < β < π

and 0 < λ2/λ1 � 1. In this case, mapping onto the extended
Harper model is impossible due to the nonzero sine terms
in Eqs. (7) and (8), and furthermore, an analytical approach
cannot be taken with the projected model in this parameter

region. Therefore, we studied the eigenstate localization prop-
erties numerically using standard probes for localization. The
inverse participation ratio (IPR) [37–39] for an eigenstate ψn,

IPR =
∑

n

|ψn|4 ∼ L−τ , (16)

is commonly used to quantify the degree of localization of
a wave function in a system of size L. The quantity τ is a
scaling exponent of the IPR. In the thermodynamic limit, one
can define τ explicitly as follows [40]:

τ = lim
L→∞

1

ln(1/L)
ln IPR . (17)

We rescale the eigenspectrum to fit into the interval [0, 1] and
split into equidistant bins e. Then we calculate the average τ

in a single bin e, denoted as 〈τ 〉e as a function of lattice size
L. It follows:

lim
L→∞

〈τ 〉e =
{

0, all states localized in e,
τ0, at least some states critical in e,

(18)

where τ0 is a finite value between 0 and 1. Suppose all states
in a bin are localized. Then we expect the following equation,
which resembles Eq. (17), to hold as the lattice size changes:

〈τ 〉e = κ (e)

ln(1/L)
+ intercept, intercept = 0. (19)

The average τ over the entire spectrum giving 〈τ 〉. An
important quantity in such a statistical approach is the R2

or goodness of fit [41]. R2 reflects how well the data are
described with a given statistical model; R2 ≈ 1 concludes
that states in bin e are localized in the thermodynamic limit,
while R2 � 0 indicates that the set of numerical data does
not follow the linear model in Eq. (19) at all. Hence, in the
thermodynamic limit, there are extended or critical states for
which a different fitting model should be used.

We scanned the control parameter region given by 0 <

β < π and 0 < λ2/λ1 � 1, discretized into 25 × 25 points.
Then the fitting procedure of 〈τ 〉 is computed via Eq. (19)
for lattice sizes L = 2000, 3000, . . . , 9000 in steps of 1000.
The numerical results are summarized in Fig. 2, where it
can be seen that all the eigenstates of the projected model in
Eq. (6) are localized in the thermodynamic limit away from
the border of the phase diagram. We also performed energy
resolved fitting for a set of parameters and found no evidence
of admixture of localized and critical states (not shown).

B. Subdiffusive wave-packet spreading

To further quantify the transport properties, we analyze
the spreading of an initially localized wave packet for weak
quasiperiodic perturbation. We use an initial state localized on
a single site in the center of the lattice. For convenience, we
assign the lattice center to be the zero coordinate. To quantify
the spreading of the initial state, we compute the root mean
square of the displacement σ (t ):

σ (t ) =
⎧⎨
⎩

∑
n∈Z

[n − 〈n〉(t )]2|ψn(t )|2
⎫⎬
⎭

1/2

∝ tγ , (20)
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TABLE II. Diffusion exponent γ in Eq. (20) for various points on
the border of the phase diagram in Fig. 2. Except for λ2/λ1 = 1 and
β = π , all results show that the critical states support clear subdiffu-
sive transport. For the off-diagonal Harper model, β = π, λ1 = λ2,
the diffusion exponent is either diffusive or subdiffusive but very
close to diffusive, similar to the case of the Aubry-André-Harper
model at the critical point [46,47].

(λ2/λ1, β/π ) γ ± �γ (λ2/λ1, β/π ) γ ± �γ

(0.00, 0.00) 0.34 ± 0.01 (0.00, 1.00) 0.34 ± 0.01
(0.15, 0.00) 0.38 ± 0.01 (0.25, 1.00) 0.39 ± 0.04
(0.25, 0.00) 0.39 ± 0.04 (0.50, 1.00) 0.37 ± 0.01
(0.35, 0.00) 0.41 ± 0.03 (0.75, 1.00) 0.39 ± 0.02
(0.46, 0.00) 0.41 ± 0.03 (1.00, 1.00) 0.50 ± 0.01

where 〈n〉 is the average position defined as

〈n〉(t ) =
∑
n∈Z

n|ψn(t )|2.

We also average the results over 40 values of the phase φ (4)
sampled from the range [0, π ].

The displacement σ (t ) provides the deviation of the par-
ticle’s position from its average at time t . The absence of
spreading indicates localization. Also, the spreading always
stops in finite systems once the boundaries are reached. At
an intermediate time, i.e., a period before the boundaries are
reached, σ (t ) is fitted by a power law with the exponent γ

whose value indicates the type of transport: Diffusive, subdif-
fusive, or ballistic [42].

We have picked several points (λ2/λ1, β/π ) corresponding
to the extended Harper model mapping and featuring critical
eigenstates at the border of the phase diagram (for localized
cases, the spreading stops as discussed above). The results
of the fitting are provided in Table II and the details of the
wave-packet spreading are shown in Fig. 3 for system size
L = 12801. In all cases, we see a clear subdiffusion [43–45],
whose exponent γ depends on the position on the border of the
phase diagram, i.e., the values of λ2/λ1, β/π . For λ2/λ1 = 0,
β drops out of the Hamiltonian in Eq. (6), and consequently,
the diffusion exponent γ does not depend on β. Furthermore,
we observe a positive correlation between γ and 〈τ 〉 in Fig. 4.
This suggests that the transport properties are strongly af-
fected by the details of the profiles of the critical eigenstates.

IV. FINITE PERTURBATION

In the limit of weak interaction, we saw the emergence
of entirely critical spectra for specific values of the rela-
tive potential strength λ2/λ1 and the phase difference β. As
we now increase the perturbation strength and make it finite,
we expect the system to localize for large enough values of
λ1,2. The open question is what happens to the critical states
for moderate values of λ1,2, and also whether any extended
states might emerge. Also, we do not expect any change in the
localization properties of the states that were already localized
for weak quasiperiodic perturbation.

For finite potential strengths, the projected model descrip-
tion is not valid anymore and thus we have to focus on the
original Hamiltonian, H = HABF + W . The Hamiltonian H

FIG. 3. Log-log plots of the spreading of a wave packet initially
localized on a single site using log10. The order of the plots follows
the data in Table II.

(2-4) can be expressed as a non-Abelian Aubry-André-Harper
model [48] with a quasiperiodic diagonal block and a fixed
hopping block:

Eψn = Anψn + Bψn−1 + B†ψn+1, (21)

FIG. 4. Positive correlation between the exponent γ in Eq. (20)
(red points) and the exponent τ averaged over the spectrum, 〈τ 〉,
in Eq. (19) (blue points). The values of γ are taken from Table II.
(a) β = π . (b) β = 0.
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where ψn = (pn, fn)T , and An and B are (� ≡ |εa − εb|):

An = 4

�

[
W1(n) 0

0 W2(n)

]
, B =

[
1 −1
1 −1

]
. (22)

We focus on the parameter regions where the projected model
[Eq. (6)] for weak disorder hosts critical states. We expect that
the localized eigenstates for weak disorder remain localized
for a finite potential, as we have checked below for several
points in the parameter space. It turns out to be convenient
to work with the semidetangled Hamiltonian [16], which is
defined by reverting the second local unitary U2 defined in
Sec. II. This defines the semidetangled basis {un, dn} and gives
the new, semidetangled Hamiltonian,

HSD = U1HFDU †
1 + U †

2 WU2. (23)

The semidetangled wave-function amplitudes un and dn are
related to {pn, fn} as follows (for θ = π/4):

un = 1√
2

(pn − fn) and dn = 1√
2

(pn + fn). (24)

For convenience, let ε = (εb + εa)/2 and t = (εb − εa)/2.
Below we discuss several parameter values of β, λ2, λ1 that
allow for some analytical results.

1. β = π and λ1 = λ2 = λ

For β = π and λ1 = λ2 = λ, we recall that the projected
model is critical and maps onto the off-diagonal Harper
model, which supports the strongest hopping among other
parameters with vanishing onsite potential. Now we move on
to the finite perturbation. The semidetangled Hamiltonian in
Eq. (23) takes the following form:

[E − ε]un = λ cos(2παn)dn + tdn+1, (25)

[E − ε]dn = λ cos(2παn)un + tun−1, (26)

where λ1,2 = λ. We can eliminate one of the amplitudes un

or dn by substituting one of the equations into the other. If
we choose to eliminate un, we get the following effective
equation:

Ẽdn = cos(4παn)dn

+ 2t

λ
{cos[2πα(n − 1)]dn−1 + cos(2παn)dn+1},

(27)

where the eigenvalue Ẽ is

Ẽ = 2

λ2

[
(E − ε)2 − t2 − λ2

2

]
. (28)

This eigenequation looks very similar to the extended Harper
model, Eq. (10) [30], except for the spatial frequency of the
onsite potential that is double that of the hopping. Also, the
potential is twice as large as in the extended Harper model.

The non-Abelian Aubry-André-Harper model for this case
has been studied numerically [48,49]. The critical eigenstates
over the entire spectrum show up until λ reaches the value
of the flatband bandgap � = |εb − εa|. Then the CIT occurs
once λ is equal to � for the entire spectrum. We remark that

this result coincides with the extended Harper model esti-
mate of the transition, 2t/λ = 1, if we neglect the differences
between our model, Eq. (27), and the true extended Harper
model, Eq. (10).

2. β = 0 and λ = λ1 = λ2

For β = 0 and λ = λ1 = λ2, we obtain the following
Hamiltonian in the semidetangled basis un, dn:

Ẽun = λ cos(2παn)un + tdn+1, (29)

Ẽdn = λ cos(2παn)dn + tun−1, (30)

where Ẽ = E − ε and λ1,2 = λ. Again, we can eliminate one
of the amplitudes through substitution. Choosing to eliminate
un leads to a diagonal problem for dn:

Ẽdn =
{
λ cos(2παn) + t

Ẽ − λ cos[2πα(n − 1)]

}
dn, (31)

and a compact localization of the eigenstates for any λ. We
recall that we have already found compact localization for
infinitesimal parameter values (see Sec. III A 3). This compact
localization survives for any potential strength.

3. Emergence of fractality edges

We now consider all the other values of β, λ1,2 where we
observed critical states for weak perturbation. In the semide-
tangled basis un, dn, we obtain the following Hamiltonian:

Ẽun = W1(n) + W2(n)

2
un + W1(n) − W2(n)

2
dn + tdn+1,

Ẽdn = W1(n) + W2(n)

2
dn + W1(n) − W2(n)

2
un + tun−1.

Ẽ is E − ε and W1,2 are the quasiperiodic fields given in
Eq. (4). We see that the above effective equations are a mixture
of the one given in Secs. IV 1 and IV 2. This implies that the
behavior of an eigenstate is at most critical.

To look into the properties of the states, we have to resort
to numerical analysis on the full model in Eq. (22) to ana-
lyze their localization properties. Flatband energies are fixed
to εa = −1 and εb = 2 with bandgap � = 3. We consider
several points of β, λ1,2 to probe the different regions of
the phase diagram with critical states and repeat the com-
putation of the IPR of the eigenstates. Then we apply the
linear model introduced in Eq. (19), and introduce 50 en-
ergy bins for the eigenenergy range rescaled to fit between
0 and 1, which is referred to as the rescaled energy. This
allows us to distinguish localized and critical states as a
function of eigenenergy. The lattice sizes (in unit cells) are
L = 2584, 3283, 4181, 4832, 5473, and 6765. Since the exact
model has two sites for each unit cell, the size of the Hamilto-
nian matrix is 2L × 2L.

The generic observation is that the critical spectrum of the
projected model is replaced with a mixed one, comprising
partially critical and partially localized states depending on
the eigenenergy. We dub the border between critical and local-
ized states as fractality edges by analogy with mobility edges
separating localized and extended states.

First, let β = π and λ2/λ1 = 0.5. Figure 5 shows the emer-
gence of fractality edges for a finite strength of perturbation
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FIG. 5. (a) Fractality edges in the exact model at β/π =
1, λ2/λ1 = 0.5. Every R2 lower than or equal to zero is revalued to
−1 for the purpose of clear distinction between the localized and
critical regions in the figure. The −1 R2 value implies that states
are critical. For R2 ≈ 1, the states are localized. (b) Fractality edges
shown for the original, nonrescaled energy spectrum.

λ1,2. We note that the critical states extend to values λ1 � �,
at variance with the case in Sec. IV 1 where all states localize
for λ1 > �.

Now let λ2 = 0, i.e., one of the quasiperiodic fields is
turned off completely, and then similarly to the case of the
projected model, the phase difference β is irrelevant. This
can be seen from Eq. (22), where the Hamiltonian remains
unchanged as β is completely removed due to the absence of
λ2. As is clear from Fig. 6, the fractality edges are present
for any potential strength λ1 and coincide with the flatband
energies; as a result, the critical states are always located
between the original flatbands.

For β = 0, we observe fractality edges as well for λ2/λ1 �
(λ2/λ1)c ≈ 0.468 (not shown). For larger ratios, no fractality
edges emerge, and all the states are localized.

V. CONCLUSIONS

We have investigated the effect of quasiperiodic pertur-
bation on all-bands-flat systems using a two-leg ladder with
both bands flat as an example. Choosing the local unitary
transformation with the angles that maximize the hopping
in the effective Hamiltonian, we identified parameter regions
supporting critical states with subdiffusive transport for weak
quasiperiodic perturbation. The emergence of critical states in
1D systems is quite different from both the random disorder

FIG. 6. (a) Fractality edges in the exact model at β/π = 1
and λ2/λ1 = 0. The value of β is irrelevant, as discussed in the
text. (b) Fractality edges shown in the original, nonrescaled energy
spectrum. All eigenstates between the flatband energies are always
critical, while the eigenstates outside are localized. The red lines are
flatband energies εa = −1 and εb = 2.

case in ABF networks [29], which allows only for localized
states, and the conventional Aubry-André model, which fea-
tures a metal-to-insulator transition. The critical states were
found when the phase difference β = 0, π or the amplitude
ratio λ2/λ1 is zero. Additionally, for β = 0, a phase transition
between localized and critical states, or CIT, was observed.
The transition point (λ2/λ1)c depends on the irrational spa-
tial frequency α. Away from these parameter values, all the
states were localized in the thermodynamic limit, which we
have shown numerically. For finite potential strength, we have
discovered fractality edges, an energy-dependent CIT—that
disappear in most cases as the strength of the potential is
increased. We have also identified a case where the critical
states persist in part of the spectrum for arbitrary quasiperiodic
potential strengths.

Understanding the origin of this effect is an open question
worth investigating. Our results generally align with the ob-
servation that critical states can be induced by correlations
in disorder [50–53]. It might also be interesting to reveal a
connection, if any, to other models featuring critical states:
The Rosenzweig-Porter model [54–56], and its extensions
[57–59], Floquet models [60–63]. Adding interactions and
considering the case of many particles might also be of in-
terest.

We expect that our findings can be relatively straightfor-
wardly probed experimentally in photonics and cold atoms,
where all-bands-flat systems have been implemented [28,64].
Reproducing our results would require an additional laser
induced potential with a frequency incommensurate to the
lattice potential.

Recently we became aware of the work [65] that reached
similar conclusions for a diamond chain based ABF model
in the presence of quasiperiodic perturbation. We provide
some basic analysis of this model using our framework in
Appendix D.
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APPENDIX A: CONSTRUCTION OF THE ABF
HAMILTONIAN AND GENERIC SU(2) LOCAL

UNITARY TRANSFORMATION

We provide here further information on the construction of
the ABF Hamiltonians, including the unitary transformations.
The detangled parent matrix HFD with onsite energies εa

and εb is a diagonal matrix with diagonal entries εa and εb,
depending on the sublattice:

HFD =
∑

εa|an〉〈an| + εb|bn〉〈bn|, (A1)

where an, bn are the basis states of two sublattices. Applying a
sequence of unitary transformations U = U2U1 to this Hamil-
tonian produces the final ABF Hamiltonian. The individual
transformations U1,2 are a sum of local transformations, e.g.,
they have block diagonal form. The general form of the 2 × 2
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block is

Ui =
∑

zi|a(i)
n 〉〈a(i−1)

n | + wi|a(i)
n 〉〈b(i−1)

n′ |
− w∗

i |b(i)
n 〉〈a(i−1)

n′ | + z∗
i |b(i)

n 〉〈b(i−1)
n |,

where the index i denotes the ith local unitary transformation
and indices n, n′ label the unit cell. The 2 × 2 blocks might
act on two sites within the same unit cell—n′ = n, or different
unit cells—n′ �= n. This generates different, noncommuting
transformations [16,18,29]. In our case the blocks of U1 act
within their unit cell only (n′ = n in the above expression),
while for the U2 block one of the sublattice sites is taken from
the neighboring unit cell: n′ = n − 1.

We restrict the unitary transformations, e.g. individual
blocks, to the elements of SO(2): The matrices U2 and U1 are
parameterized by angles θ2 and θ1, respectively. However, the
most generic possible form of U producing ABF networks
corresponds to block diagonal matrices with blocks being
elements of SU(2), parameterized by angle θ and phases η, ζ :

U (θ ) =
[

eiζ cos(θ ) e−iη sin(θ )
−eiη sin(θ ) e−iζ cos(θ )

]
. (A2)

Using this general transformation to derive the projected
model gives the hopping term tn in Eq. (6) with an extra com-
plex phase tn exp(−i�), where � = ζ2 − ζ1 − η2 + η1, and
subscripts 1 and 2 indicate the first and second local unitary
matrices U1,2. The phase exp(−i�) can then be eliminated
with an appropriate local unitary transformation in the form
of Eq. (C5) (see Appendix C), after which the effective model
reduces to the case of SO(2) transformations.

APPENDIX B: DETAILS OF THE DERIVATION
OF THE PROJECTED MODEL

After applying the inverse unitary transformation U † to
H, we get the Hamiltonian in the fully detangled basis H̃ =
HFD + U †WU as described in Sec. III. The first term is
diagonal, while the second term represents hoppings solely
due to the quasiperiodic perturbation. For infinitesimal/weak
perturbation, we choose only one sublattice and neglect all
terms which couple to the other sublattice. Then HFD acts as
a simple shift in energy and can be discarded. In the paper,
we choose an a sublattice and ignore all terms containing a b
sublattice. Thus we get the projected model (6).

The onsite and hopping terms of the projected model for
generic local unitary transformation angles θ1,2 are

vn = cos2 θ1 cos2 θ2 cos(2παn)

+λ2

λ1
cos2 θ1 sin2 θ2 cos(2παn + β )

+ sin2 θ1 sin2 θ2 cos[2πα(n − 1)]

+λ2

λ1
sin2 θ1 cos2 θ2 cos[2πα(n − 1) + β], (B1)

tn = 1

4
sin 2θ1 sin 2θ2 cos(2παn)

− λ2

4λ1
sin 2θ1 sin 2θ2 cos(2παn + β ). (B2)

Using the identities

cos(x + y) = cos x cos y − sin x sin y,

sin(x + y) = sin x cos y − cos x sin y,

we obtain the coefficients vs,c and ts,c in Eqs. (7) and (8) as
follows:

vs = sin(πα)(sin2 θ1 sin2 θ2 − cos2 θ1 cos2 θ2)

+ λ2 cos β

λ1
sin(πα)(sin2 θ1 cos2 θ2 − cos2 θ1 sin2 θ2)

− λ2 sin β

λ1
cos(πα)(cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2),

(B3)

vc = cos(πα)(cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2)

+ λ2 sin β

λ1
sin(πα)(sin2 θ1 cos2 θ2 − cos2 θ1 sin2 θ2)

+ λ2 cos β

λ1
cos(πα)(cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2),

(B4)

ts = 1

4
sin 2θ1 sin 2θ2

λ2 sin β

λ1
, (B5)

tc = 1

4
sin 2θ1 sin 2θ2

(
1 − λ2 cos β

λ1

)
. (B6)

APPENDIX C: SELF-DUALITY OF THE OFF-DIAGONAL
HARPER MODEL

For β = π and λ1 = λ2, the projected model in Eq. (6) has
a zero onsite potential vn ≡ 0 and quasiperiodic hopping tn =
cos(2παn)/2:

Ean = tnan+1 + tn−1an−1. (C1)

This model, known as the off-diagonal Harper model [66,67],
is self-dual under a transformation similar to that of the
Aubry-André model. We provide here the details of this
transformation. The starting point is a conventional Fourier
transform:

|k〉 = 1√
L

∑
n

ei2παnk|an〉. (C2)

Applying this to the above model in Eq. (C1), we find

H = 1

2

∑
n

cos(2παn)(|an〉〈an+1|+|an+1〉〈an|) (C3)

= 1

2

∑
k

e−iπα|k + 1〉〈k| cos[πα(2k + 1)]

+ eiπα|k〉〈k + 1| cos[πα(2k + 1)]. (C4)

Equation (C4) is almost identical to Eq. (C1) except for the
additional phase factors e±iπα . Then we apply the local unitary
transformation R to remove the redundant phase factors:

R =
∑

k

|k + 1〉〈k|e−iπα/2 + |k〉〈k + 1|eiπα/2. (C5)
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This gives us the equivalent off-diagonal Harper model that
we started with, as

H ′ = 1

2

∑
k

cos(2παk + πα)(|k + 1〉〈k| + |k〉〈k + 1|).

APPENDIX D: DIAMOND CHAIN ABF: FRACTALITY
EDGES AND MULTIFRACTAL STATES AT E = 0

The interesting point the authors of Ref. [65] have claimed
is the existence of multifractal states in the case of an anti-
symmetric quasiperiodic perturbation (see the reference for
details). The authors numerically tested the model and ob-
served the multifractal states at around E = 0 and λ � 2. We
consider their model theoretically to explain their numerical
results.

For nonzero energy cases, the number of variables can be
reduced via substitution in making the effective model. The
recurrence relations of the asymmetric quasiperturbed model
are given as follows:

Eun = −(cn + cn−1) + λ cos(2παn)un, (D1)

Ecn = −(un+1 − dn+1 + un + dn), (D2)

Edn = −(cn − cn−1) − λ cos(2παn)dn. (D3)

Let us introduce the following local unitary transformation as
in Ref. [13] and remove cn via substitution:

pn = 1√
2

(un + dn),

fn = 1√
2

(un − dn).

Then we get recurrence relations consisting of pn and fn sites:

E pn = 2

E
(pn + fn+1) + λ cos(2παn) fn, (D4)

E fn = 2

E
(pn−1 + fn) + λ cos(2παn)pn. (D5)

Making another substitution, we clear out one of the vari-
ables and get the effective model composed of a single site
variable:

Ẽ pn = cos(4παn)pn

+ 4

λE
{cos[2πα(n + 1)]pn+1 + cos(2παn)pn−1},

(D6)

where the eigenvalue Ẽ is

Ẽ = 2

λ2

[(
E − 2

E

)2

− 4

E2
− λ2

2

]
. (D7)

This model is equivalent to Eq. (27). Based on the claim
we made in Sec. IV 1, the CIT appears at 4/(|E |λc) = 1.
However, λc is energy dependent, which consequently gives
the fractality edges. The explicit equation of the fractal-
ity edges seem to match the numerical results of Ref. [65]
(not shown).

On the other hand, zero energy works differently. Setting
E = 0 gives different recurrence relations:

cn−1 + cn = λ cos(2παn)un, (D8)

0 = −(un + dn + un+1 − dn+1), (D9)

cn−1 − cn = λ cos(2παn)dn. (D10)

After the same local unitary transformation as above, we get
the following:

√
2cn−1 = λ cos(2παn)pn, (D11)

pn = fn+1, (D12)

√
2cn = λ cos(2παn) fn. (D13)

Again through a substitution, we get the effective model
which is equivalent to the off-diagonal Harper model having
self-duality as shown in Appendix C:

0 = λ cos(2παn)pn−1 + λ cos[2πα(n + 1)]pn+1. (D14)
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