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Flat band induced metal-insulator transitions for weak magnetic flux and spin-orbit disorder
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We consider manifolds of tunable all-bands-flat (ABF) lattices in dimensions d = 1, 2, parameterized by a
manifold angle parameter θ . We study localization properties of eigenstates in the presence of weak magnetic
flux disorder and weak spin-orbit disorder. We demonstrate that weakly disordered ABF lattices are described
by effective scale-free models, where the disorder strength is scaled out. For weak magnetic flux disorder,
we observe subexponential localization at flatband energies in d = 1, which differs from the usual Anderson
localization. We also find diverging localization length at flatband energies for weak flux values in d = 2;
however, the character of the eigenstates at these energies is less clear. For weak spin-orbit coupling disorder in
d = 2 we identify a tunable metal-insulator transition with mobility edges. We also consider the case of mixed
spin-orbit and diagonal disorder and obtain the metal-insulator transition driven by the manifold parameter θ .
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I. INTRODUCTION

There is an increasing interest in flatband systems (flat-
bands) [1–5] in the fields of photonics and condensed matter
physics. Flatbands arise in tight-binding lattices where one
or more energy bands E (k) are dispersionless. They were
initially found in certain lattice systems as fine-tuned cases [6]
or due to bipartite symmetry [7,8]. Soon thereafter, more sys-
tematic approaches to construct them were developed, based
on line graphs [9,10] and decorated lattices [11]. Further
the impact of chiral symmetry on the existence of flatbands
was explored [12–15] and more recently also other types
of symmetries leading to protected flatbands, such as latent
[16,17] and anti-PT [18], were proposed. New systematic ap-
proaches to flatband construction based on either real [19–22]
or momentum space [23–25] were introduced. These works
demonstrate that flatband models form continuous manifolds
and their properties can be tuned by changing the manifold
parameters. In this work we focus on an interesting extreme
case of flatband lattices where all the bands are flat (all-bands-
flat, ABF) [26,27]. The absence of dispersive bands in an
ABF model makes all the eigenstates localized and the system
completely insulating.

Due to the macroscopic degeneracy, perturbed flatband lat-
tices exhibit interesting phenomena, such as ferromagnetism
[3,8–11,28–30], superfluidity and superconductivity [31–35],
many-body localization [36–39], and unconventional Ander-
son localization [15,40–48]. The perturbations can be various
types of disorder or interactions, and in this work we are
interested in the former. As for the latter, the nonperturbative
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effect of weak interaction on many-body ABF can lead to a
nontrivial transport of pairs, topological effects, and quantum
caging [49–53].

In lattices with only dispersive bands, Anderson showed
that strong onsite disorder leads to complete localization of
the eigenstates [54]. For weak disorder, the system can be
treated perturbatively in momentum space, making it diffu-
sive in d = 3. Because the kinetic energy is quenched in a
flatband, one may conclude that flatband systems are trivially
localized, since the disorder is effectively infinite. However,
the situation is not as simple as one might expect. Infinites-
imal disorder breaks the fine-tuned flatness and destructive
interference condition for the compact localized states (CLS)
and can delocalize the eigenstates. Indeed, in our recent work
[55] we have derived effective Hamiltonians of ABF lattices
perturbed with infinitesimally weak onsite disorder and then
projected on a flatband Hilbert space. We have shown that the
eigenstates of the effective model evolve nonperturbatively,
inducing a metal-insulator transition (MIT) in d = 3, while
the system remains localized in d = 1, 2.

The Anderson transition is a quantum phase transition,
showing universal behavior [56,57]. In its vicinity, there is a
diverging localization length ξ with a critical exponent ν. The
localization properties are determined by the symmetries and
the dimensionality of the system. An important insight into the
details of the Anderson transition is based on renormalization
arguments and a one parameter scaling hypothesis [58]. The
scaling theory of localization predicts MIT in d = 3 and only
localized states in d = 1.

The d = 2 case is marginal [59], and the existence of
MIT in d = 2 has been studied extensively. In Ref. [59],
the RG analysis of the nonlinear σ -model established that
out of the three Wigner-Dyson symmetry classes: orthogonal,
unitary, symplectic classes, the MIT in d = 2 can occur only
for the symplectic class. This prediction has been verified
numerically [60,61]. However, it was found that MIT in d = 2
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occurs in the presence of the strong constant magnetic field,
also known as the quantum Hall transition [62]. The issue
extends beyond the standard Wigner-Dyson symmetry classes
[63], where unconventional localization can occur in d = 1, 2
[57]. Two notable and most studied examples are the chiral
orthogonal and unitary classes. These systems have bipartite
lattices with disordered hoppings. They exhibit a symmetric
energy spectrum in the presence of disorder, with an E = 0
eigenstate for odd number of sites. An analytical study [64]
predicts that these systems exhibit a localization length which
diverges as the logarithm of E in the vicinity of E = 0, with
a completely delocalized E = 0 eigenstate. For d = 1, stud-
ies on chains with hopping disorder have shown a diverging
localization length near E = 0, while the eigenstate precisely
at the band center is subexponentially localized [65,66]. In
d = 2 numerical studies of models with hopping disorder and
random magnetic flux (RMF) on a square lattice also found a
divergence of the localization length around E = 0. Several
works [66–68] have studied the localization of the E = 0
eigenstate for d = 2 and arrived at conflicting conclusions on
the localization properties of the state. The divergent density
of states around E = 0 makes numerical computations and
characterizations of the state challenging. However, we point
out that recently an MIT was identified in a two-dimensional
(2D) system subject to RMF [69].

In this work, we extend our previous results for onsite
disorder [55] and study the effects of different types of in-
finitesimally weak disorder on ABF, namely the RMF and the
random spin-orbit couplings (SOC). This is motivated by the
peculiar and interesting properties of dispersive 2D systems
with these types of disorder, as mentioned above. We show
that when ABF is perturbed by an infinitesimal RMF disorder,
the effective nonperturbative model exhibits a particle-hole
symmetry and displays spectral properties similar to those of
bipartite lattices mentioned in the preceding paragraph. We
show analytically and numerically that an infinitesimal RMF
leads to anomalous localization in d = 1, 2, with the existence
of a subexponentially localized state at zero energy. In the case
of the SOC disorder, we report on a tunable nonperturbative
MIT with mobility edges in d = 2. The paper is organized as
follows: We introduce the theoretical background of the scale-
free model in Sec. II. We study RMF and SOC disorder in
Secs. III and IV, respectively. Each section contains numerical
results. This is followed by conclusions in Sec. V.

II. CONSTRUCTION OF ABF NETWORKS
AND SCALE-FREE MODELS

We begin by outlining the ABF construction procedure
[27,55] for d = 1, 2 ABF lattices with ν = 2 flatbands and
nearest unit cell hoppings [22]. The starting point is a lattice of
decoupled sites. The sites on each sublattice a, b are assigned
the same onsite energy: Ea = −�/2 and Eb = �/2, so that
the band gap is �. Therefore, the Hamiltonian has a trivial
diagonal representation in real space in this basis, which we
refer to as the fully detangled basis. In this basis, the ABF
Hamiltonian Ĥ reads

Ĥ = �

2

∑
r

−|a, r〉〈a, r| + |b, r〉〈b, r|, (1)

(a)

|an〉 |an+1〉

|bn〉 |bn+1〉

· · ·· · ·

(b)

|pn〉 |pn+1〉

|fn〉 |fn+1〉

· · ·· · ·

(c)

|ax,y〉 |ax+1,y〉

|bx,y〉 |bx+1,y〉

|ax,y+1〉 |ax+1,y+1〉

|bx,y+1〉 |bx+1,y+1〉

· · ·· · ·

··
·

··
·

(d)

|px,y〉 |px+1,y〉

|fx,y〉
|fx+1,y〉

|px,y+1〉 |px+1,y+1〉

|fx,y+1〉 |fx+1,y+1〉

· · ·· · ·

··
·

··
·

FIG. 1. Schematic representations of the ABF Hamiltonians Ĥ
(1) in the fully detangled basis in (a) d = 1 and (c) d = 2 and the
fully entangled basis in (b) d = 1 and (d) d = 2. In the 2D case the
color of the hoppings represents five different hopping matrices [22]:
H0 (black), H(1,0) (red), H(0,1) (blue), H(1,1) (green), H(1,−1) (orange),
which are given explicitly in Appendix A. The dots at the edges
indicate that the pattern repeats in those directions.

where |a, r〉 and |b, r〉 are detangled (diagonalized) eigen-
states in real space. From the fully detangled basis, an ABF
Hamiltonian is constructed by the change of basis: applying a
finite sequence of (d + 1) noncommuting local unitary trans-
formations (LUT). Reversing the above procedure implies
these ABF Hamiltonians can be diagonalized in real space
by a finite sequence of local unitary transformations without
resorting to the nonlocal Bloch space representation. These
results hold for all 1D ABF Hamiltonians [27,70] and we
believe that it is also true in higher dimensions [27].

In the simplest case, LUTs couple each unit cell with an
element of the SO(2) group as follows:

Û (i) =
∑

r

cos θi|a, r〉〈a, r| + sin θi|a, r〉〈b, ri|

− sin θi|b, ri〉〈a, r| + cos θi|b, ri〉〈b, ri|, (2)

where θi are the ABF manifold angle parameters. The most
generic LUT is an element of the SU(2) group, parameterized
by three angles. The unit cell redefinition is required to cou-
ple the nearest unit cells in d dimensions [for concreteness,
Eq. (2) illustrates the d = 2 case] given by

ri = r + δi,1x + δi,2y,

where x, y are primitive lattice vectors. With the combined
LUTs Û = ∏d

i=0 Û (i), we define the fully entangled basis

|p, r〉 = Û |a, r〉, | f , r〉 = Û |b, r〉. (3)

In this new basis the ABF Hamiltonian Ĥ (1) has d-
dimensional nearest-neighbor hoppings. The expression for
the d = 1, 2 ABF Hamiltonian in the fully entangled basis
with θi = θ is given in Appendix A and illustrated in Fig. 1.
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We point out that since any unitary transformation can be
decomposed into a finite sequence of embedded 2 × 2 unitary
transformations, the above construction readily extends to the
case of a large number of bands ν.

The eigenstates in the fully detangled basis occupy a sin-
gle lattice site, and these eigenstates remain strictly local in
the fully entangled basis thanks to the locality of the basis
change transformation. Let us add a weak disorder W D̂ to the
ABF Hamiltonian (in the fully entangled basis), with strength
W � �, and an operator D̂. The degeneracy of flatbands is
lifted by the disorder, yet the broadening of spectrum is much
smaller than the band gap �. For this reason, the perturbed
eigenstates emerging from one of the flatbands (with energy
Ea for concreteness) are effectively described by the first order
degenerate perturbation theory

W P̂aD̂P̂a|ψ〉 = δE |ψ〉, (4)

where the projector on the flatband with energy Ea is given
by P̂a = ∑

n |a, r〉〈a, r| (similarly for P̂b). We observe that the
disorder strength W becomes simply an overall scaling factor
and the above eigenproblem defines a new effective Hamil-
tonian. We scale out W from the both sides of Eq. (4) and

denote it as the scale-free model ˜̂H = P̂aD̂P̂a with eigenen-
ergies Ẽ = δE/W . We note that even infinitesimal values
of W always alter the system, reflecting the nonperturbative
effect of disorder on the macroscopically degenerate flatband
eigenstates. In what follows, we drop the tilde symbols and
focus exclusively on the properties of the scale-free models
and their spectrum. Provided the contribution from the other
band, b, is eliminated by the projection and we are effectively
dealing with a chain or square lattice, it is more convenient
to use the integer unit cell coordinates n, rather than the
vectors r.

We note that this projection method is applicable also in the
presence of interactions: several works described the nonper-
turbative effect of an interaction via an effective Hamiltonian,
e.g., a projection onto the flatband [49–52].

A. Numerics

In the next sections we consider two different types of dis-
order: RMF, and random SOC, the latter both in the presence
and the absence of an onsite potential disorder. The case of
onsite disorder was studied in detail before [55] and in this
work we consider it together with the random SOC.

We construct d = 1 and d = 2 fully entangled ABF Hamil-
tonians with ν = 2 bands following the procedure outlined
above, with a band gap � = 2 as a function of angle θ = θi

and of system sizes 2L and 2L2, respectively. The resulting
models are given in Appendix A. The θ controls the coupling
strength or hopping strength. Maximum hopping, and the
CLS which are maximally expanded in the fully detangled
basis are reached at θ = π/4, while as expected, there is
no coupling at θ = 0. From Ĥ(θ ) we derive the scale-free
models ĤRMF, ĤSOC for infinitesimal RMF and SOC disorder
using Eq. (4). For d = 1 we present the explicit Hamilto-
nian for the scale-free model. The scale-free Hamiltonian for
d = 2 is lengthy, and we do not derive it explicitly, but rather
the unitary transformations and projection were performed
numerically.

We study the spectra of these scale-free Hamiltonians using
the full diagonalization and the Lanczos method with shift-
and-invert technique to obtain eigenstates in a window �E
around the target energy E . The Lanczos method enables us to
go to larger L as compared to the full diagonalization, which
proves especially useful in d = 2. The width of the window
�E is chosen so that the quantities averaged over this energy
window do not change significantly by choosing a smaller
window size. The appropriate width of the energy window
�E has an almost constant density of states (DoS) over that
window. As we see in Sec. III A, for a singular DoS the width
can be a function of E and tend to zero, setting the limitation
of the numerical study.

To analyze whether the eigenstates are localized or ex-
tended, we compute the box-counted participation number
[57,71–73]

PN(E , λ)−1 =
∑
box j

⎛
⎝ ∑

i∈box j

|ψE ,i|2
⎞
⎠

2

(5)

for the eigenstates inside the window of a target energy E .
Here λ ≡ l/L, where l is the length of each box of volume ld

and a divisor of L. Next we extract the scaling exponent of the
PN, defined as

τ̃ = − ln〈PN〉/ ln λ, (6)

where 〈. . . 〉 denotes the average over both disorder realiza-
tions and the eigenstates in the energy window around E . Note
that for l = 1 we get the conventional definition of PN with-
out box counting. Finally the exponent τ = limλ→0 limL→∞ τ̃

describes the localization properties of the states around
energy E :

τ =
⎧⎨
⎩

0, localized
dc (0 < dc < d ), critical
d, extended.

(7)

The advantage of box counting is that by fixing λ to a small
value while increasing L, we eliminate the irrelevant scaling
effect with respect to λ [73]. Unless otherwise specified in the
manuscript, λ = 0.04 in all computations.

III. RANDOM MAGNETIC FLUX DISORDER

In a tight binding model, the magnetic flux can be modeled
by Peierls substitution, e.g., by adding phases to the hopping
matrix elements (off-diagonal elements of the Hamiltonian)
[74]. The magnetic flux of a plaquette is proportional to the to-
tal phase change of the hoppings enclosing it. One simple case
is, for example, a square lattice with a constant magnetic flux,
which gives rise to the famous Hofstadter butterfly spectrum
[75]. Here we are interested in another possibility RMF, which
corresponds to assigning random phases to all the hoppings in
a lattice, that is,

tμm,μ′n → tμm,μ′n exp(iφμm,μ′n), (8)

where tμm,μ′n = 〈μm|Ĥ|μ′n〉 with (m 
= n or μ 
= μ′) and
μ,μ′ ∈ {p, f } and φμm,μ′n is a random phase with a box dis-
tribution [−W/2,W/2], and φμ′n,μm = −φμm,μ′n to preserve
Hermiticity.
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In our work, we are interested in the case of infinitesimal
W , and thus we can expand

tμm,μ′n → tμm,μ′n + Witμm,μ′nφ̃μm,μ′n (9)

where φ̃μm,μ′n is scaled-out random phase with box distri-
bution [−1/2, 1/2]. The perturbation becomes additive and
infinitesimal, therefore we are able to use Eq. (4) to derive
the scale-free model. In d = 1 the scale-free model ĤRMF is
given by

ĤRMF =
∑

n

t̃n,n+1|a, n〉〈a, n + 1| + t̃n,n+2|a, n〉〈a, n + 2| + H.c. (10)

t̃n,n+1 = 2i
[
φ̃(1)

n cos4 θ − φ̃(1)
n sin4 θ + φ̃

(2)
n−1 sin2 θ cos2 θ + φ̃(2)

n sin2 θ cos2 θ − φ̃
(3)
n−1 sin2 θ cos2 θ

+ φ̃(3)
n sin4 θ + φ̃

(4)
n−1 cos4 θ − φ̃(4)

n sin2 θ cos2 θ − φ̃
(5)
n−1 cos4 θ − φ̃(5)

n sin4 θ
]

sin2 θ cos2 θ, (11a)

t̃n,n+2 = 2i
[
φ̃(2)

n − φ̃(3)
n − φ̃(4)

n + φ̃(5)
n

]
sin4 θ cos4 θ. (11b)

This scale-free model describes a chain with no onsite po-
tential and random, purely imaginary nearest-, t̃n,n+1, and
next-nearest-, t̃n,n+2, neighbor hoppings, with zero mean.
There are five hoppings for the nth unit cell: one intracell
and four intercell. Correspondingly, there are five indepen-
dent random-phase variables φ̃

( j)
n ∈ [−1/2, 1/2] per unit cell,

1 � j � 5, as shown in Fig. 2.
Let us first consider a special case, t̃n,n+2 = 0 or φ̃(2)

n +
φ̃(5)

n = φ̃(3)
n + φ̃(4)

n [the bracket in Eq. (11b) vanishes]. In this
case, the ĤRMF reduces to a linear chain with real random
hoppings correlated over the neighboring unit cells [76]. The
energy spectrum is symmetric around E = 0 due to chiral
symmetry, with an E = 0 state for odd system sizes. The
localization property of the eigenstates of that model is sum-
marized in Sec. I.

For the general case, t̃n,n+2 
= 0, the model appears to
be different from the special well-known case and does not
have a chiral symmetry anymore because of the next-nearest-
neighbor hoppings. However, now the particle-hole symmetry
ensures that the spectrum is still symmetric around E = 0.
To see this, from Eqs. (11a) and (11b), we observe that the
Hamiltonian is purely imaginary in matrix form. Therefore, it
is straightforward to check that the particle-hole transforma-
tion c† → c keeps ĤRMF unchanged while flipping the sign of

φ̃
(2)
n

φ̃
(5)
n

φ̃
(3)
n

φ̃
(4)
n

φ̃
(1)
n · · ·· · ·

|pn〉 |pn+1〉

|fn〉 |fn+1〉

FIG. 2. Definition of the random-phase variables φ̃ ( j)
n , Eq. (11),

attached to the hopping amplitudes in the nth unit cell of the 1D ABF
Ĥ (A1) and (A2a)–(A2b). Circles denote the lattice sites, and lines
indicate the hoppings. The three dots on the right and left indicate
that this pattern repeats with periodic boundary condition.

the energy in the eigenequation. Similarly to the chiral case,
if the number of lattice sites is odd, then there is an eigenstate
precisely at E = 0 (the flatband energy in the original model).

Despite the differences in symmetries (and hence the
eigenstates) between the general and the special cases, in both
cases the DoS diverges at E = 0 and the E = 0 eigenstates
are subexponentially localized, as we show below. For the
nearest neighbor random hopping model, the mean DoS and
the localization length are directly related by the Thouless
formula [77].

A. Numerical results

1. d = 1

We consider θ = π/4, which gives the strongest hopping,
unless otherwise indicated. We first compute the average DoS
of the general model (10) with next-nearest-neighbor hop-
pings using exact diagonalization: It diverges for E → 0 just
like in the random hopping model. In Fig. 3, we show the
comparison of our numerically computed DoS computation
with the analytical prediction for the DoS of the random
hopping chain. Both DoS show the same scaling E → 0,
suggesting that both our random flux model and the random
hopping chain have similar localization properties, despite
having different symmetries.

We then study the 〈PN〉, as given in Eq. (5), for the
eigenstates of the scale-free Hamiltonian of d = 1 ABF with

10−410−610−810−1010−12

102

104

106

108

E

D
oS

L = 500
L = 1000
L = 3000
1/E ln3 E

FIG. 3. Computed DoS (solid) for θ = π/4 and theoretical
asymptotic behavior (dashed) of DoS for the special case.
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0.05 0.15 0.25 0.35
4

6

8

10

12
(a)
to log scale

E

〈P
N
〉

L = 300
L = 500
L = 700
L = 1000
L = 3000

L = 301(at 0)

500 1,500 2,500
0

0.01

0.02

0.03
(b)

L

τ̃
(E

≈
10

−
1
2
)

10−3.0010−12.00
8

11

E

〈P
N
〉

FIG. 4. (a) The average participation number 〈PN〉, with box size
l = 1, for the d = 1 ĤRMF vs E . The inset shows the 〈PN〉 near E =
0 on a logarithmic energy scale. (b) The exponent τ̃ (L) at E ≈ 10−12,
the leftmost points in the inset of (a): limL→∞ τ̃ = 0 implying all
these eigenstates are also localized.

RMF disorder for non-negative eigenenergies E . As shown
in Fig. 4(a), the 〈PN〉 for E 
= 0 does not scale with L, and
the corresponding τ = 0, and thus we conclude that all the
corresponding eigenstates are localized. We also plot the 〈PN〉
for the eigenstate at E = 0, which was computed for odd
number of sites, L = 301, and was only averaged over dis-
order realizations [78]. The 〈PN〉 close to E = 0 is resolved
in the inset of Fig. 4(a) where the 〈PN〉 vs E is plotted on
the logarithmic scale. The 〈PN〉(E → 0) weakly scale with
L, but the finite-size scaling result of τ̃ in Fig. 4(b) indicates
τ (E → 0) = 0 and these eigenstates are also localized. The
results for other values θ are qualitatively similar and are not
shown here.

Next we focus on the special behavior around E = 0 that
we discussed above: Both density of states (DoS) and lo-
calization length ξ diverge at E = 0 and there is a special
eigenstate at E = 0 for odd system sizes L. In order to study
the vicinity of the band center E = 0, we use the transfer
matrix method [79–82]. The computed ξ diverges as ln E for
E → 0 as shown in Fig. 5(a). This contradicts the prediction
based on the scaling of 〈PN〉 with L, that the E = 0 state
is localized. An explanation of this apparent discrepancy is
that ξ is a property of an asymptotic tail of the eigenstate,
while 〈PN〉 measures the core of the eigenstate. If the single

10−510−1510−250

30

60

90

(a)

E

ξ

θ/π
0.03
0.07
0.11
0.15
0.19
0.23
0.25

0 500 1,500 2,5000

500

1,000

1,500

2,000 (b)

r

g
2
(r

)

θ/π
0.01
0.05
0.10
0.15
0.20
0.25

FIG. 5. Random magnetic field model ĤRMF in d = 1. (a) E 
= 0:
Localization length ξ vs E as a function of the energy, for various an-
gle θ . A clear ln E divergence of the localization length is observed.
(b) E = 0: Squared average logarithmic decay g2(r) (12) vs distance
r computed for the E = 0 eigenstate. The linear behavior signals
subexponential localization.

parameter scaling holds [56], then ξ is the single parameter
that determines the length scale of the system, which is clearly
not true in our case. Similar logarithmic divergence of ξ is
also observed in the chain with hopping disorder near the
band center. This is the anomalous localization, or freezing
[57,83,84], and can be distinguished from exponential local-
ization by examining τ̃ (q), where the final exponent in Eq. (5)
is changed from 2 to q.

Further, we attempt to quantify the localization of the E =
0 eigenstate: We expect it to have the same subexponential,
exp(−√

r), localization as in the random hopping model. This
is a challenging problem: the transfer matrix method has to be
modified since the localization length is infinite for E = 0.
Furthermore, the results shown in Figs. 4 and 5(a) indicate
that even tiny deviations away from E = 0 give finite and
strongly varying values of ξ . For instance, the ξ (E = 10−100)
and ξ (E = 10−10) differ by an order of magnitude. Exact
diagonalization faces a number of problems: (a) Relatively
large L are required to capture the decay of the E = 0 eigen-
state, and (b) the mean DoS diverges at E = 0, and the level
spacing around E = 0 quickly becomes so small with growing
L that the exact diagonalization eigenstate at E = 0 get con-
taminated by states with eigenenergies indistinguishable from
zero within machine precision. Therefore, we solve the linear
system H |ψ〉 = 0 directly [68] using arbitrary precision arith-
metic. We increase the precision until the desired convergence
of the ψn is reached for all sites n, e.g., the amplitudes ψn stop
changing with increasing precision. This algorithm allows us
to obtain the eigenstate at E = 0.

The anomalous localization of the E = 0 eigenstate are
analyzed using the average logarithmic decay g(r) [66,85],
defined as

g(r) = 〈|ln |ψE ,nmax || − |ln |ψE ,nmax+r ||〉, (12)

where nmax is the position of the maximum (in absolute value)
of the E = 0 eigenstate, and 〈. . . 〉 is the average over dis-
order realizations. For an exponentially localized state, g(r)
is asymptotically linear, while for an extended state, g(r)
is asymptotically zero. The g(r) computed using the linear
solver is shown in Fig. 5(b): We plot g2(r) instead of g(r)
to capture the expected subexponential localization. We see
clearly that the E = 0 eigenstate is subexponentially local-
ized. From these numerical results, we see that the localization
properties of d = 1 ABF with RMF disorder are qualitatively
similar to that of the chain with hopping disorder: There is
a divergent DoS at E = 0 and a subexponentially localized
E = 0 eigenstate.

2. d = 2

We have also looked at the d = 2 ABF model with random
magnetic flux using the same approaches and methods as in
d = 1. For convenience, we introduce the rescaled energy
Ē ∈ [−1, 1]. Our numerical results for nonzero energies are
summarized in Fig. 6, which shows the scaling of the exponent
τ̃ vs linear system size L (L2 unit cells), for several values
of θ . The trend in scaling of τ̃ vs L for small θ , observed in
Figs. 6(a) and 6(b) suggests that all the eigenstates are local-
ized for nonzero Ē , as τ̃ is reducing with increasing system
size. To confirm that τ̃ → 0 in the L → ∞ limit, we perform
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Ē

L
100
200
300
400
500
800

200 400 600 8000.8

1.0

1.2

1.4 (d)

L

τ̃

200 400 600 800
1.52

1.58

1.64
(e)

L
200 400 600 8001.84

1.85

1.86
(f)

L

FIG. 6. The 2D random magnetic field model ĤRMF for lin-
ear sizes L = 100, 200, 300, 400, 500, and 800. 〈PN〉 was averaged
over 7500, 3400, 500, 200, 100, and 100 disorder realizations.
Data for L = 800 were computed for Ē = 0.42 only. τ̃ is com-
puted with fixed λ = l/L = 0.04 [see Eq. (6)]. Top row: τ̃ vs Ē
(0.03 � Ē � 0.9). Bottom row: τ̃ vs L, at Ē = 0.42. Left to right:
θ = 0.01π, 0.125π, 0.25π for (a) and (d), (b) and (e), and (c) and
(f), respectively.

a finite-size scaling analysis for the case θ = 0.01π and show
the results and the extracted localization lengths in Fig. 7.
These results support localization away from E = 0. We note,
however, that extremely large system sizes, well beyond the
accessible ones, would be needed to see τ̃ ≈ 0, especially for
θ around 0.25π . The details of the fitting procedure are given
in Appendix B.

At θ = 0.25π , the case of the strongest hopping in the
clean Hamiltonian, the τ̃ near Ē = 0 seem to lay on top of
each other for different linear sizes L [Fig. 6(c)], suggesting
critical eigenstates according to Eq. (7). However, the likely
scenario is that all the eigenstates are also localized, but the
localization length ξ becomes much larger than the considered
linear system sizes L, e.g., L � ξ , and huge system sizes are
required to observe that at small Ē . This is supported by the
finite-size scaling and larger values of Ē and the scaling of τ̃

for smaller values of θ .
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FIG. 7. The 2D random magnetic field model ĤRMF. Finite-size
scaling analysis of τ̃ at θ = 0.01π in the rescaled energy range 0.3 <

Ē < 0.9 of the data in Fig. 6(a). (a) Nonlinear least-squares fitting of
τ̃ . (b) Collapse of τ̃ as a function of χ = ln L/ ln ξ . Inset: Fit for the
localization length ξ (up to a constant prefactor).
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FIG. 8. The average logarithmic decay, (a) g(r) in (b) g2(r),
computed for the Ē = 0 eigenstate of the d = 2 RMF model with
L = 501 and θ = 0.19π and averaged over 2000 realizations. The
resulting curve appears to agree better with the (γZiman ln |r|)1/2

fit (γZiman = 1.74) (dashed black) predicted analytically by Ziman
[67] rather than the γpower ln |r| (γpower = 0.75) power-law fit (dotted
gray).

Similarly to the d = 1 model, the d = 2 model features a
special Ē = 0 eigenstate, which is enforced by the particle-
hole symmetry and also anomalously localized. We computed
the average logarithmic decay g(r) of the Ē = 0 eigenstate
for the system size L = 501 and θ = 0.19π using the same
method as d = 1. The result is shown in Fig. 8. We fit the g(r),
which is the logarithm of the wave-function amplitude, with
two different curves by varying the exponent γ : (γ ln |r|)1/2

(an analytical prediction by Ziman [67]) and the power-law
decay ln |r| (the numerical result suggested by Xiong and
Evangelou [68] for the square lattice with hopping disor-
der). The fitting results (γZiman = 1.74 and γpower = 0.75) in
Fig. 8(b) suggest that g(r) shows a slower than the power-law
decay and the g2(r) is following the root-log decay.

IV. SPIN-ORBIT COUPLING DISORDER

Here we consider the case of weak SOC disorder. We
first construct an uncoupled spin- 1

2 single particle clean ABF
Hamiltonian Ĥs by taking two copies of the identical spinless
Hamiltonian Ĥ. To do this, we double the Hilbert space to
include spin degrees of freedom, |p, n〉 → |p, n, σ 〉:

Ĥs =
∑

n,n′,μ,σ

Hμn,μ′n′ |μ, n, σ 〉〈μ′, n′, σ |, (13)

where μ,μ′ ∈ {p, f }, σ ∈ {↑,↓}. For the off-diagonal ele-
ments of Ĥ (i.e., n 
= n′ or μ 
= μ′), let tμn,μ′n′ = Hμn,μ′n′ . The
SOC is added through the spin-flip hoppings, with the follow-
ing constraint ensuring the absence of external magnetic fields
and the persistence of time reversal symmetry [86]:

tμn,μ′n′ I2×2 → tμn,μ′n′Xμn,μ′n′ , (14)

where

Xi, j =
(

eiαi, j cos βi, j eiγi, j sin βi, j

−e−iγi, j sin βi, j e−iαi, j cos βi, j

)
(15)

for i = (μn) and j = (μ′n′). βi, j are random variables with
box distribution [−W/2,W/2] and γi, j and αi, j are uniform
random variables in [−π, π ].
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In the weak-coupling limit, βi, j → 0 and we approximate
cos βi, j ≈ 1 and sin βi, j ≈ βi, j . We also set αi, j = 0 so that the

perturbation is additive in the weak-W limit. Then we apply
Eq. (4) to derive the scale-free model, ĤSOC for d = 1:

ĤSOC =
∑

n

(T̃n,n+1)σσ ′ |a, n, σ 〉〈a, n + 1, σ ′| + (T̃n,n+2)σσ ′ |a, n, σ 〉〈a, n + 2, σ ′| + H.c., (16)

T̃n,m =
(

0 t̃n,m

−t̃∗
n,m 0

)
, (17)

t̃n,n+1 = 2
[
ω(1)

n cos4 θ − ω(1)
n sin4 θ + ω

(2)
n−1 sin2 θ cos2 θ + ω(2)

n sin2 θ cos2 θ − ω
(3)
n−1 sin2 θ cos2 θ

+ω(3)
n sin4 θ + ω

(4)
n−1 cos4 θ − ω(4)

n sin2 θ cos2 θ − ω
(5)
n−1 cos4 θ − ω(5)

n sin4 θ
]

sin2 θ cos2 θ, (18a)

t̃n,n+2 = 2
[
ω(2)

n − ω(3)
n − ω(4)

n + ω(5)
n

]
sin4 θ cos4 θ. (18b)

Here t̃n,m are correlated spin-flip hoppings with zero mean,
where ω

( j)
n = β

( j)
n exp[iγ ( j)

n ] and, 1 � j � 5 is an index for
five hoppings in a nth unit cell. The hoppings in Eq. (18)
and Eq. (11) are similar, except ω

( j)
n are complex random

variables, while the hoppings in Eq. (11) are purely imaginary.
We also note that T̃n,m (17) still satisfies the constraint (15),
implying that the ĤSOC also belongs to the symplectic class
[87]. The projected scale-free model ĤSOC features an addi-
tional chiral symmetry between the spin-up and spin-down
sublattices, which is destroyed for finite values of W , since
T̃n,m only contains spin-flip hoppings and no spin preserving
hoppings. Therefore, for odd lattice sizes Kramer’s degener-
acy [87] ensures that there is a double degenerate E = 0 state,
which can be decomposed into purely spin-up and spin-down
states. However, unlike the RMF disorder case considered
before, we found no evidence of divergent DoS at E = 0 or
localization length in this model.

Similarly to the symplectic class Hamiltonian discussed in
the introduction Sec. I, we demonstrate below that the MIT
occurs also in d = 2 ABF SOC disordered systems in the
weak disorder limit W → 0.

A. Numerical results

We find that in d = 1 all the eigenstates are localized
for the weak SOC disorder case, ĤSOC (16). Although SOC
disorder is similar to the RMF disorder in that both cases give
off-diagonal disorder, we found that all states are localized.
Therefore we focus on the d = 2 case.

Due to the complexity of the scale-free Hamiltonian with
the SOC disorder in d = 2, we derive and diagonalize it
numerically. We again define Ē to be the rescaled energy so
that the spectrum extends from −1 to 1. Figure 9(a) shows
the exponent τ̃ of the 〈PN〉 of the eigenstates, Eq. (6), vs Ē
at θ = 0.01π computed for increasing system sizes L. We see
that τ̃ is approaching zero value (localized) at the band edge
and value 2 (extended) near the center of the band. Curves for
different L cross, indicating a mobility edge: This transition is
clearly seen in the inset of Fig. 9(a). The results for other θ

are qualitatively similar.
We also consider the case where both SOC and the onsite

potential disorders are present, which we refer to as the SOCO
case: In addition to the perturbation in Eq. (14) with strength
W the onsite potential (diagonal) disorder with infinitesimal
strength V term is added. This is the type of perturbation

which produces the SU(2) model on a square lattice [60,61],
although we only consider infinitesimal strengths of the onsite
disorder. The onsite disorder is given by

V D̂onsite = V
∑
n,σ

ε̃n,μ|μ, n, σ 〉〈μ, n, σ |, (19)
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FIG. 9. The system-size scaling of the exponent of the participa-
tion number τ̃ vs Ē and θ for the pure SOC and both SOCO (δ = 2)
is shown in panels (a) and (b), respectively. (a) τ̃ (E , θ/π = 0.01) for
pure SOC and (b) τ̃ (E = 0, θ ) for SOCO. The system size consists
of L2 unit cells, with L = 50, 100, 200, 300. 〈PN〉 average was done
over ≈104 states. τ̃ is computed with fixed λ = l/L = 0.04 [see
Eq. (6)]. In both cases crossing points are present, signaling the phase
transition. The insets zoom into the vicinity of the crossing points.
(c) Phase diagram (based on the value of τ̃ ) vs θ and Ē for the
SOC case, with L = 50. The red region is a metal while the blue
region is an insulator. The data in (a) correspond to the left border
of the diagram. (d) Phase diagram as in (c) but for the SOCO case
with L = 50. The data in (b) correspond to the bottom border of the
diagram, Ē = 0.
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FIG. 10. Finite-size scaling analysis of the ABF with weak
spin-orbit coupling and onsite potential disorder, with δ = 2 (Ap-
pendix C). The FSS is done at E = 0 for the parameters used in
Fig. 9(b). (a) Dashed line is the nonlinear least-squares fitting result
of the scaling function F to the data points τ̃ (θ ). (b): F as a function
of L/ξ . The data collapse shows that the one-parameter scaling
hypothesis works well. Inset of (b): Divergence of the localization
length ξ near the critical point θc/π = 0.1621 ± 0.0005.

where ε̃n,μ are random variables with box distribution in
[−1/2, 1/2], σ ∈ {↑,↓}, and μ ∈ {p, f }. The effective pro-
jected Hamiltonian is given by

ĤSOCO = ĤSOC + δĤonsite, (20)

where Ĥonsite is the scale-free model created from infinitesi-
mal disorder Eq. (19) using Eq. (4) and δ = V/W is the ratio
of infinitesimal SOC disorder to onsite disorder. As explained
earlier, the analytical expression for the scale-free model is
too complex, and the Hamiltonian was instead evaluated nu-
merically.

Unlike the random magnetic flux or SOC scale-free mod-
els, there is an additional scale remaining in the process of
scaling out of W from the effective model (4). Thus, we no
longer obtain a scale-free model but a model with a control
parameter given by the ratio of the strengths of the two disor-
ders, δ. We set δ = 2 in our numerics, so that both disorders
are of the same order.

Based on the results with no onsite disorder, Fig. 9(a), we
expect the onsite potential disorder, which tends to localize the
system, to compete with the SOC generated hopping disorder
controlled by the angle θ in the projected model. The exponent
τ̃ as a function of θ at energy window around E = 0 for
the SOCO case is shown in Fig. 9(b). Since the curves for
different L cross as for the pure SOC disordered case, the MIT
is now induced by changing θ (at E ≈ 0). For the fixed ratio δ

we see a transition at a critical angle θc as shown in Fig. 9(b).
Figures 9(c) (SOC model) and 9(d) (SOCO model) are

the 2D color plots of τ̃ vs Ē and τ̃ vs θ . Figure 9(a) corre-
sponds to the left border of the color plot in Fig. 9(c), and
Fig. 9(b) corresponds to the bottom border of the color plot in
Fig. 9(d). Blue corresponds to the localized phase and red to
the extended phase. It is clear that onsite disorder in the SOCO
model creates a MIT as a function of θ , Fig. 9(d), as compared
to the extended bulk and localized edges of the spectrum in
Fig. 9(c).

In the vicinity of the critical angle θc we conduct the
finite-size scaling analysis for the SOCO model as shown
in Fig. 10 (for details, see Appendix C) A universal scaling

function τ̃ = F (L/ξ ) is assumed and expanded as a poly-
nomial with unknown coefficients which are fitted using
nonlinear least-squares fitting algorithms. The single param-
eter scaling hypothesis works well as shown in Fig. 10(b): All
the data points collapse into a single curve F (L/ξ ). We also
extract the localization length (correlation length) kξ up to an
arbitrary constant k from the fitting, in the inset of Fig. 10(b).
The critical point is estimated as θc/π = 0.1621 ± 0.0005 for
this choice of ratio, δ = 2. The critical exponent ν, describing
the divergence of the localization length ξ is ν ≈ 2.70 ± 0.05,
in agreement with the critical exponent obtained for the SU(2)
model [60,61], which belongs to the symplectic d = 2 class.

V. CONCLUSIONS

We studied the effect of the weak random magnetic flux
disorder and weak spin orbit coupling plus weak onsite disor-
der on d = 1, 2 all bands flat lattice manifolds. The manifolds
are constructed by local unitary transformations, and their
reaction to weak disorder is described by effective scale-free
models, which capture the nonperturbative effects of disorder
on a chosen flatband. We then have studied the localization
properties of the scale-free models analytically and numeri-
cally. The nonperturbative effect of weak disorder in all bands
flat lattices results in complete destruction of compact local-
ized states and counterintuitively can lead to a nonperturbative
metal-insulator transition in 2D in the presence of spin-orbit
coupling. In such cases the reentrant behavior is likely ob-
served on further increase of disorder, e.g., localization at
strong-enough disorder.

Interestingly, for both types of disorder considered, the
effective models inherit the symmetry of the weak perturba-
tion (e.g., particle-hole symmetry for RMF disorder and chiral
symmetry for SOC disorder). This leads to an unconventional,
slower than exponential localization (freezing) precisely at
the flatband energies. Further investigations using multifractal
analysis may reveal more facts about the anomalous localiza-
tion or freezing effect [83,84].

For nonzero energies, the effective models follow the uni-
versality of Anderson localization for the three Wigner-Dyson
symmetry classes: For the random magnetic flux, we see
localization in d = 1, 2, while for the spin-orbit coupling,
we see localization in d = 1 and an energy-dependent metal-
insulator transition induced by the manifold angle parameter
θ . In the latter case the critical exponent is ν = 2.70 ± 0.05,
in agreement with the critical exponent previously reported
for the square lattice with spin-orbit coupling [60,61].

Finally, we briefly discuss the case of finite strength dis-
order. Generically strong-enough disorder would localize all
the eigenstates. Projected models stop being valid and no
longer describe the properties of the eigenstates once the
disorder becomes comparable to the band gap. The particle-
hole(chiral) symmetry of the RMF (SOC) model is destroyed,
as well as the unconventionally localized eigenstate at the
flatband energy (corresponding to the E = 0 state of the
scale-free model). Interesting phenomena might occur for
disorder strength comparable to the band gap when the two
perturbed flatbands hybridize. In particular, we observed a
nontrivial enhancement of localization length in a 1D model
in this regime [55]. An inverse Anderson transition, e.g.,
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delocalization with increasing disorder followed by Anderson
localization on further increasing disorder, was predicted [48]
and observed [88] in 1D systems. It was also reported for
potential disorder in d = 3 all band flat lattice [41,42]. In that
case the states exactly at the flat band energies remain metallic
up to the Anderson localization transition. However there is a
mobility edge in the spectrum and the states at the band edges
are localized. Therefore for a fixed energy different from the
flatband energy, on increasing the disorder, one first observes
the localized states, then the delocalized states, until all the
states become localized at sufficiently strong disorder. We
expect that a similar inverse Anderson transition might also
occur in both the d = 2 SOCO case considered here and the
d = 3 case studied in our previous work [55].
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APPENDIX A: CLEAN ABF Ĥ FOR d = 1 AND d = 2

The ABF Hamiltonian Ĥ with ν = 2, Ea = −1, and Eb =
1, in the fully entangled basis, is expressed as

Ĥ =
∑

r

|�r|2=d∑
|�r|2=0

d̂†
r H�rd̂r+�r, (A1)

where d̂r = ( p̂r f̂r )T . Note that, for the sake of convenience,
here we use second quantization instead of the bra-ket nota-
tion. The first sum is over all lattice sites r, and for each r, the
second sum is for hoppings, where the hopping range is up to
dth nearest neighbors, and H�r are the 2 × 2 hopping matrices
(see Fig. 1 for intuitive understanding of the notation). The
Hermiticity is ensured by the identity H−�r = H†

�r. For d = 1
we have

H0 = cos 2θ

(− cos 2θ sin 2θ

sin 2θ cos 2θ

)
, (A2a)

H1 = 1

2
sin 2θ

(
sin 2θ −1 + cos 2θ

1 + cos 2θ − sin 2θ

)
. (A2b)

For d = 2 we find

H0 = cos2 2θ

(− cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (A3a)

H(1,0) = 1

2
sin 2θ cos 2θ

(
sin 2θ −1 + cos 2θ

1 + cos 2θ − sin 2θ

)
,

(A3b)

H(0,1) = 1

2
sin2 2θ

(
cos 2θ − sin 2θ

− sin 2θ − cos 2θ

)
, (A3c)

H(1,1) = 1

4
sin 2θ (1 + cos 2θ )

(
sin 2θ −1 + cos 2θ

1 + cos 2θ − sin 2θ

)
,

(A3d)

H(1,−1) = 1

4
sin 2θ (1 − cos 2θ )

( − sin 2θ −1 − cos 2θ

1 − cos 2θ sin 2θ

)
.

(A3e)

TABLE I. Fitting results with only a relevant variable.

(n, m) θc ν χ 2 Ndof

(2,4) 0.16100 ± 7 × 10−5 2.54 ± 0.03 204 119
(2,5) 0.16100 ± 7 × 10−5 2.55 ± 0.03 203 118
(2,6) 0.16094 ± 7 × 10−5 2.54 ± 0.03 197 117
(3,6) 0.1610 ± 0.0001 2.55 ± 0.04 197 116
(4,6) 0.1610 ± 0.0001 2.54 ± 0.07 197 115

These hopping matrices correspond to nearest-neighbor
(A3b)–(A3c) and second-nearest-neighbor (A3d)–(A3e) hop-
ping. This is in accordance with the claim in Sec. II, that the
hoppings Ĥ extend up to dth nearest neighbors.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS ON d = 2
ABF WITH WEAK RMF DISORDER

The localization length is assumed to be a function of the
logarithm of Ē :

ξ = f (ln |Ē |). (B1)

The τ̃ is assumed to be a universal function of a single param-
eter, χ = ln L/ ln ξ ,

τ̃ = F (χ ). (B2)

This ansatz is motivated by the finite-size scaling analysis of
hopping disordered bipartite lattices [89].

With the above two assumptions, we fit our data using the
Levenberg-Marquardt algorithm for nonlinear least-squares
fitting for the τ̃ for θ = 0.01π in Fig. 6(a). We restrict the
energy range to 0.3 � Ē � 0.9 because the above single-
parameter ansatz fails in the E = 0 limit. This happens since
the localization length diverges there, and hence F should be
independent of L, while τ̃ is actually dependent on L at Ē = 0.

APPENDIX C: FINITE-SIZE SCALING ANALYSIS
ON d = 2 SOCO

We follow the standard finite-size scaling analysis as de-
scribed in Ref. [82]. We assume the single parameter scaling
τ̃ (L, θ ) = F (L/ξ ). In the localized phase ξ is the localization
length and in the extended phase ξ is a correlation length. We
also assume that near the critical point ξ diverges as a power
law, that is, ξ ∼ (θ − θc)−ν and that the scaling function F is
analytical. Defining F (L/ξ ) = G(φ1), where φ1 = L1/νu1 and
|u1| = ξ−1/ν , we can Taylor expand both u1 and G as

u1 =
n∑

k=1

ck (θ − θc)k, (C1)

G(φ1) =
m∑

k=0

dkφ
k
1, (C2)

where u is a polynomial of degree n and G is a polynomial
of degree m, with the parameters to be determined being the
critical exponent ν, the transition angle θc, and the coeffi-
cients of the Taylor expansion ck, dk . The fitting is done by
minimizing the χ2 statistics using the Levenberg-Marquardt
algorithm. The fitting results are summarized in Table I, where
different orders of expansions n, m are used and we show

174202-9
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TABLE II. Fitting results with irrelevant variable.

(n, m, i, j) θc ν χ 2 Ndof

(2, 4, 1, 2) 0.1628 ± 0.0006 2.78 ± 0.12 105 114
(2, 4, 2, 2) 0.1621 ± 0.0005 2.70 ± 0.05 89 113

the extracted value of the critical exponent ν, the minimized
χ2 value and the number of degrees of freedom Ndof , which
is the number of data points used in the fit minus the total
number of parameters used. The results are consistent and give
ν = 2.55 ± 0.03; however, the χ2 ∼ 2Ndof is relatively high,
indicating that the data might be underfitted.

Thus we also consider a modified scaling, where G =
G(φ1, φ2) is a function of φ1 = L1/νu1, with u1 as given in
Eq. (C1) and φ2 = Lyu2, with u2 = ∑i

k=0 c̄k (θ − θc)k and

y < 0 being the irrelevant variable. The scaling function is
Taylor expanded in both φ1 and φ2 as

G(φ1, φ2) =
m∑

k=0

j∑
l=0

dk,lφ
k
1φ

l
2, (C3)

and to avoid ambiguity we set d1,0 = d0,1 = 1. The parameters
to be fitted in this case are the critical exponent ν, the tran-
sition angle θc, the irrelevant variable y and the coefficients
of the Taylor expansions ck, c̄k, dk,l . As before we minimize
the χ2 statistics using the Levenberg-Marquardt algorithm and
report the fitting results in Table II. Now the extracted critical
exponent gives a larger value than above and has a larger
error, the best result being ν = 2.70 ± 0.05; however, now
the χ2 ∼ Ndof giving better fitting in the results obtained. The
value of the critical exponent is in agreement with the known
results in the literature [60,61].
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