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We investigate prethermalization by studying the statistical properties of the time-dependent largest 

Lyapunov exponent ( )t  for unitary-circuit maps upon approaching integrability. We follow the evolution of tra-

jectories for different initial conditions and compute the mean ( )t  and standard deviation ( )t  of ( )t . 

Thermalization implies a temporal decay 1/2t  at a converged finite value of  . We report prethermalization 

plateaus that persist for long times where both   and  appear to have converged to finite values, seemingly im-

plying differing saturated Lyapunov exponent values for different trajectories. The lifetime of such plateaus fur-

nishes a novel time scale characterizing the thermalization dynamics of many-body systems close to 

integrability. We also find that the plateaus converge to their respective thermal values for long enough times. 

Keywords: prethermalization, thermalization, time-dependent Lyapunov exponent, long-range networks, short-

range networks. 
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1. Introduction 

The study of thermalization usually starts from the Gibbs 

assumption of equal probability for each microstate, and as-

sumes that the system displays ergodicity, i.e., infinite time 

averages have to be equal to phase space (ensemble) averages 

[1]. A standard approach to investigate thermalization dyna-

mics then consists of choosing observables and extracting 

ergodization time scales on which their time averages con-

verge to their ensemble averages. Since these observables are 

functions of phase-space coordinates, their phase-space aver-

ages are not correlated with the ergodization time, which can 

diverge when tuning the system parameters towards an 

integrable limit. Thus, the ambiguity in the choice of observa-

bles ends up in a multitude of different ergodization times. 

To bypass such ambiguity, an alternative approach con-

sists in computing Lyapunov exponents — either the larg-

est or the entire spectrum [2]. The inverse of a Lyapunov 

exponent provides a unique time scale which characterizes 

the exponential decay of correlations in the system. The com-

putation reduces again to the time averaging of a certain quan-

tity along a trajectory, which in this case can no longer be 

straightforwardly interpreted as an observable. Indeed, it is 

uniquely defined from the system’s Hamiltonian and keeps 

track of correlations along the trajectory. A remarkable 

property of these quantities is that the resulting Lyapunov 

exponents are differential invariants [3], such that there is no 

ambiguity in their associated time scales, e.g., their values 

being inversely proportional to the ergodization times of 

their corresponding Lyapunov observables. 

The measurement of Lyapunov times and ergodization 

times of properly chosen observables provide new insights 

into the slowing down of thermalization upon approaching 

integrable limits [4–10]. The Lyapunov spectrum scaling 

shows universality and establishes different classes of weakly 

nonintegrable perturbations. These perturbations connect the 

actions, which are conserved for the integrable limit model, 
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into long-range networks (LRN) or short-range networks 

(SRN). The different network classes demonstrate unique 

correlations between the scalings of the Lyapunov spectrum 

and the ergodization time of the above actions [8, 9]. The 

LRN scaling is roughly characterized by one diverging time 

scale (e.g., the smallest Lyapunov time obtained by inverting 

the largest Lyapunov exponent), i.e., all other thermalization 

time scales diverge proportionally. The SRN scaling is char-

acterized by a second diverging quantity — the exponent 

which controls the decay of the Lyapunov spectrum. This 

exponent and its divergence are believed to be connected to 

the divergence of the distance between chaotic multiplets of 

actions [4–6]. The distance here is measured in action space 

using the network metrics, and corresponds to a distance in a 

real physical space for most models. 

The proximity to an integrable limit results in slow 

thermalization, which is particularly prone to intermediate 

prethermalization dynamics. As a key phenomenon in non-

equilibrium dynamics, prethermalization has attracted sig-

nificant attention across various research fields [11–23]. 

Many studies use the existence of additional integrals of 

motion (e.g., spin systems, many-body quantum systems 

with conserved particle numbers or their classical ana-

logues if available) or at least the existence of almost con-

served quantities (e.g., the energy in certain realizations of 

Floquet systems) to enforce slow relaxation. Typically a 

quench is performed, and a particular observable is picked, 

to follow the fluctuations of the latter and to extract either 

slow or even the absence of relaxation over significant 

times. A few studies pick random initial states, and again 

choose a particular observable to be followed. Others even 

take integrable systems and use generalized Gibbs-ensemble 

concepts. Most of the investigations are performed in the 

quantum regime and few of them in the classical one. The 

previously discussed ambiguity in the choice of observables 

appears to be a limiting factor in characterizing therma-

lization and therefore also prethermalization, attesting to 

how tricky such characterization can be. Thus, in view of 

their invariance, it is interesting to search for pretherma-

lization characteristics of typical initial states through the 

measurement of Lyapunov exponents. 

In the prethermal regime, observables behave as if con-

verged for temporal windows of varying length before fi-

nally relaxing to their true asymptotic values. One way to 

observe such phenomenon is to start from a non-typical 

initial state for which the dynamics is trapped in a near-

regular part of phase space for long times. A prominent 

example is the Fermi–Pasta–Ulam–Tsingou (FPUT) para-

dox [24, 25]. Exciting a single mode (action) of a weakly 

nonintegrable anharmonic chain results in surprisingly long 

times to reach equipartition, with Lyapunov times being 

much shorter, suggesting some converged Lyapunov spec-

trum for a system still being far from convergence [26]. 

Another instance of prethermal dynamics that does not 

require the use of special initial states is the previously 

discussed SRN regime of a weakly nonintegrable system, 

which is the approach pursued here. 

We study thermalization dynamics in a one-dimen-

sional system of nonintegrable nonlinear unitary circuit 

maps [8, 9]. These maps conserve the total norm, similar to 

the conservation of total energy for continuous-time Hamil-

tonian dynamics. Note that technically unitary dynamics can 

be mapped back onto a stroboscobic Poincaré-like map of 

some underlying Hamiltonian system, which conserves both 

norm and energy. What matters is the bulk of evidence that 

the thermalization dynamics of unitary maps considered 

here show full similarity to the conventional thermalization 

dynamics of Hamiltonian systems [4–7, 10, 27, 28]. We 

quantify the temporal convergence properties of Lyapunov 

exponents using trajectories with randomly chosen initial 

values. We observe the tantalizing convergence of 

Lyapunov exponents along such randomly chosen trajecto-

ries for time windows of varying duration, with the theoreti-

cally expected convergence to a unique and trajectory-

independent value taking place only at much longer times. 

2. Model 

We employ the nonlinear unitary circuit map used in 

Refs. 8–10. It is a one-dimensional lattice consisting of 

N unit cells, where each unit cell is labeled by an odd site n 

and its corresponding even site 1n . Here, n  takes odd 

values ( =1, 3, 5, , 2 1)n N  , and 1n  is the next even 

site ( 1= 2, 4, 6, , 2 )n N . Each site n  is represented by a 

complex component n , and the initial state of the lattice is 

described by the vector  1 2 3 4 2 1 2= , , , , , ,N N     ψ , 

representing all the sites in the lattice. The system evolves 

in a phase space of dimension 4N , as each complex com-

ponent is one degree of freedom which contributes two real 

variables. The evolution follows a deterministic trajectory 

defined by the initial conditions and is achieved through 

iterative applications of the unitary map,  

 1, , 1
ˆ ˆ ˆˆ = ,n n n n n nU G C C   (1) 

with each iteration corresponding to one time step. 

The unitary map ˆ
nU  is constructed from two key com-

ponents, namely two successive rotation operations and a 

nonlinear operation, as illustrated in Fig. 1. The rotation 

operations Ĉ  are unitary transformations that act on pairs 

of neighboring sites n  and 1n . Specifically, they are 

defined as  

 , 1
1 1

( ) ( )cos sinˆ = .
( ) ( )sin cos

n n
n n

n n

t t
C

t t


 

      
    
       

 (2) 

In addition to the rotation operations, the map includes a 

nonlinear operation ˆ
nG , which introduces site-dependent 

phase shifts that are proportional to the norm 2| ( ) |t  on 

site , = , 1n n   . The nonlinear operation is defined as  

 
2| |ˆ ( ) = e ( ).

ig
nG t t


    (3) 
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By combining the two rotation operations 1,
ˆ

n nC   and , 1
ˆ

n nC   

with the nonlinear operation ˆ
nG , we derive the evolution 

equations: 









2| ( )|

2 2
2 1

1

2| ( )|1
1 1

2
1 1

2
2 3

( 1) = e ( ),

( ) = sin ( ) cos sin ( ) cos ( )

sin cos ( ) ,

( 1) = e ( ),

( ) = sin cos ( ) cos ( )

sin cos ( ) sin ( ) ,

ig tn
n n

n n n n

n

ig tn
n n

n n n

n n

t t

t t t t

t

t t

t t t

t t



 



 
 

 

 

  

      

  

  

     

    

(4) 

where n  and 1n  denote the states n  and 1n , respec-

tively, after applying two rotation operations Ĉ . In the 

simulations, we use periodic boundary conditions 

2 1 1=N  . The map ensures that the total squared norm 

2= | ( ) |mm
t  is a conserved quantity. The local norm 

density 2| |m  is drawn from a Gibbs distribution 

2( ) = 2e xx   with an average squared-norm density of 

= / (2 ) =1 2a N , and the phases are chosen from a dis-

tribution which is uniform on the interval [0,2 ] . This map 

possesses two distinct integrable limits = 0g  (linear case) 

and = 0  (decoupled sites). The limit = 0  corresponds to 

the case where the sites are decoupled, and the norm 

of each site is conserved, resulting in 2N  independent con-

served quantities. The squared norms here can be regarded 

as the analog of the actions in time-continuous Hamiltoni-

an systems. In the limit = 0g  the nonlinearity vanishes, 

but the coupling between the sites remains, and the norms 

of the corresponding normal modes are conserved. Weak 

perturbations off the integrable limits result in LRN 

( ,g a ) and SRN ( ,a g ) universality classes [8, 9] 

(see also Appendix A). 

3. Lyapunov exponent computation 

We determine the time evolution of deviation vectors to 

obtain the time-dependent largest Lyapunov exponent. To 

derive the equations of motion for the deviation vectors, 

we decompose the trajectory ( )t  into an unperturbed tra-

jectory ( )t  and a deviation ( )tW . Thus, the trajectory can 

be expressed as ( ) = ( ) ( )t t t W . For convenience, we 

define the two operators, n  and 1n : 

____________________________________________________ 

 
2 2

2 1 1

2 2
1 1 1 2 3

: sin cos sin sin cos ,cos

: sin cos sin cos .cos sin

n n n n n n

n n n n n n

X X X X X

X X X X X

  

    

          

           
 (5) 

_______________________________________________

Expanding the nonlinear exponential term in the equa-

tions for ( )n t  and 1( )n t  followed by a linearization in 

( )W t  with = , 1n n  , we derive its linearized evolution 

equation  

2| ( )|

* *

( 1) = e ( ( ) ( ) ( )),

( ) = ( ) ( ) ( ) ( ).

ig t
W t W t ig t t

t t W t t W t

  
     

        

     

      
 (6) 

We are only interested in the largest time-dependent 

Lyapunov exponent ( )t , which is obtained from the running 

time-average of the Lyapunov observable ( ) = ln ( )r t tW , 

where ( )tW  is the length of the deviation vector ( )tW . 

Accordingly, we compute at each time step the Lyapunov 

observable ( )r t  and then the temporal average 

=0

1
( ) = ( )

t
t r

t 
  . After each calculation step, ( )tW  needs 

to be normalized. It follows that ( )t  is a running time 

average of the Lyapunov observable ( )r t . In contrast to 

usual observables, ( )r t  can not be simply expressed 

through a function of the phase space coordinates. It keeps 
correlations and memory along the trajectory as the trajec-

tory evolves. Attempts to replace its time average by a pro-

cedure of phase space averaging are notoriously compli-

cated, and usually only possible in certain limiting regimes 

[29, 30]. At the same time, and in the spirit of the ergodic 

theorem, the computational time average of ( )r t  is usually 

saturating at its ergodization time and becomes time-

independent. 

Since we are only calculating the largest Lyapunov ex-

ponent, ( )tW  is merely a random complex vector. The 

largest Lyapunov exponent represents the strongest expo-

nential divergence in the system. Calculating only the larg-

est exponent not only efficiently captures the key dynam-

ical features but also reduces computational complexity, 

allowing simulations to extend to longer time scales. 

Fig. 1. (Color online) A schematic representation of the unitary cir-

cuits map. It evolves from bottom to top and consists of alternating 

large yellow blocks and small light green blocks, representing unitary 

matrices Ĉ  parameterized by the angle  and local nonlinearity gen-

erating maps Ĝ  parameterized by the nonlinearity strength g , respec-

tively. The states ( )n t  and 1( )n t  evolve to ( 1)n t   and 

1( 1)n t  , respectively, through subsequent applications of these 

transformations. One time step contains three substeps.  
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4. Statistical properties of Lyapunov observables 

To understand the statistical behavior of Lyapunov ob-

servables in systems approaching an integrable limit, we 

analyze their probability-density function (PDF) ( )P r  of 

the Lyapunov observables ( )r t

910  iterations of the unitary map Eq. (1) yield-

ing 910  values of ( )r t  that were accounted for in the evalu-

ation of their PDF. Two distinct regimes are considered, 

namely LRN and SRN.  

Figure 2 shows the PDF ( )P r  for the SRN case with 

=1g  and various values of   ranging from 0.001 to 0.1. 

Panel (a) presents the PDF on a linear scale, while panel 

(b) uses a logarithmic scale (base 10 ) on the y axis. The 

results reveal a clear trend, namely as   decreases, ( )P r  

becomes increasingly symmetrically concentrated around 

= 0r , with the peak height near = 0r  growing signifi-

cantly. This behavior is particularly evident in panel (b), 

where the logarithmic scale highlights the increase of the 

peak height as   approaches smaller values. Physically, 

this reflects the system approach toward the marginal sta-

bility regime, where the Lyapunov observable ( )r t  remains 

close to zero for longer durations. At larger values of  , the 

distribution broadens, indicating stronger deviations from 

zero and a higher degree of dynamical instability. The slow 

yet observable steepening of peak of ( )P r  near = 0r  for 

small   highlights the system’s tendency to exhibit weaker 

chaotic dynamics as it approaches the integrable limit. 

Figure 3 shows the PDF ( )P r  for the LRN case with 

= 0.33 . Panel (a) presents the PDF on a linear scale, 

while panel (b) shows the same data with the y axis plotted 

on a logarithmic scale (base 10). The behavior of ( )P r  for 

different values of g  (ranging from 0.001 to 0.1) is qualita-

tively consistent with the SRN case shown in Fig. 2. As g  

decreases, the distribution becomes increasingly peaked 

around = 0r , reflecting the same trend observed in SRN, 

namely the Lyapunov observable spends more time near 

zero when approaching smaller g . Note, however, that the 

LRN PDF appears to become narrower much faster upon 

approaching its integrable limit than the SRN PDF. To 

quantify these observations, we compute the mean and 

standard deviations of the PDFs. 

Fig. 2. (Color online) Probability-density function P(r) of the 

Lyapunov observable r for the SRN case with g = 1. Panel (a) 

shows the PDF on linear scales, while panel (b) presents the same 

data with the y axis plotted on a 10log  scale. The colors corre-

sponding to different values of θ in (a) and (b) are shown in the 

legend of panel (a). The unitary map Eq. (1) is iterated 10
9
 times, 

yielding 109 values for r(t) that were all used to calculate P(r). 

The number of unit cells in the system is N = 100. 

Fig. 3. (Color online) Same as Fig. 2 for the LRN case with 

θ = 0.33π. The colors corresponding to the different values of g in 

(a) and (b) are shown in the legend of panel (a). 
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Figure 4 shows the average value and standard devia-

tion of the Lyapunov observable ( )r t , with panel (a) exhib-

iting the SRN case and panel (b) showing the LRN case. In 

the SRN case, as  approaches smaller values, both  and 

 decrease. However, the standard deviation remains larg-

er than the mean, while both  and   appear to saturate at 

a nonzero value. Extensive further computations (see Ap-

pendix B) indicate that both mean and standard deviation 

eventually tend towards zero upon approaching the 

integrable limit, yet this process appears to be rather slow. 

This behavior indicates that as 0 , the Lyapunov ob-

servable shows anomalous nonzero fluctuations, a possible 

prerequisite to prethermalization. 

For the LRN case, as 0g  , both  and   tend to zero 

much faster than in the SRN case. The standard deviation 

quickly approaches the mean and both quantities decrease 

rapidly towards zero. Note that the standard deviation reaches 

values by a factor of 310  smaller than for the SRN case, and 

the mean reaches values by a factor 210  smaller than for the 

SRN case. As we further reduce g , we start to see anomalies 

similar to those for the SRN case (see Appendix B). 

We conclude this section with the observation that the 

statistics of Lyapunov observables in the LRN regime ap-

pears to show expected features — no anomalous fluctua-

tions, and fast diminishing distribution width and peak 

position upon approaching the integrable limit. On the con-

trary, in the SRN regime we observe anomalous fluctua-

tions, and mean and standard deviation seemingly frozen at 

nonzero values which are 100–1000 times larger than the 

corresponding numbers from the LRN regime. 

5. Observation of prethermalization 

The statistical analysis of the Lyapunov observable 

does not account for temporal correlations between the 

measured observables generated by the flow along a given 

trajectory. Prethermalization is expected to result in long-

time periods with seemingly converged Lyapunov expo-

nents whose values nevertheless depend on the initial con-

ditions. That implies that temporal correlations do not de-

cay up to times beyond such time windows. In this section, 

we analyze the time evolution of ( )t  for the SRN and 

LRN systems, i.e., the running time averages of the 

Lyapunov observable along a given trajectory. 

Figure 5 shows the time evolution of the largest 

Lyapunov exponent ( )t  for the LRN system with a fixed 

coupling parameter = 0.33  for ( = 0.001,0.01g ), each for 

100 different trajectories with random initial conditions. For 

= 0.01g  the running time average quickly converges to a 

number which appears to be rather trajectory independent. 

This is the usual perception of a well thermalized ergodic 

system, with time averages of observables being independ-

ent of the chosen trajectory. Reducing the nonlinearity pa-

rameter to = 0.001g  does not change the outcome, except 

that it delays the final curve saturation time and the satura-

tion level, as discussed above. We conclude that for these 

parameter values, the LRN regime shows reasonable ergodic 

thermalization with an accompanying slowing down upon 

approaching the integrable limit. More data for intermediate 

values of g  are shown in Appendix C. 

The SRN regime shows a qualitatively different result 

in Fig. 6. We fix the nonlinearity parameter at =1g  and 

show the time evolution of the largest Lyapunov exponent 

( )t  for the SRN system for ( = 0.001,0.01 ), each for 100 

different trajectories with random initial conditions. For 

= 0.01  the outcome is qualitatively similar to the LRN 

plots in Fig. 5(a), with reasonable thermalization and 

ergodicity. However, the plot for = 0.001  exhibits an 

extraordinary behavior. Different trajectories for different 

initial conditions appear to saturate, but at different values 

of the Lyapunov exponent. This clearly indicates that the 

system is not yet thermalized and ergodic within these time 

Fig. 4. (Color online) Average value, μ, and standard deviation, 

σ, of the Lyapunov observable for the SRN and LRN cases, with 

both panels using a 10log  scale on the x axis. Panel (a) represents 

the SRN case with g = 1 and varying θ, while panel (b) shows the 

LRN case with θ = 0.33π and varying g. The red solid line repre-

sents the mean value (μ), and the blue dashed line represents the 

standard deviation (σ). The circles correspond to the specific 

values of g or θ used in the calculation. The unitary map Eq. (1) 

is iterated 109 times, yielding 109 values for r(t) that were all used 

to compute the mean and standard deviations. The system con-

sists of N = 100 unit cells. 
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scales. We observe prethermalization, i.e., the system 

shows practically saturated Lyapunov exponents and fi-

nite-strength chaos, but the quantitative characteristics de-

pend on the initial conditions. The only possibility is then 

that the seemingly saturated curves will ultimately merge 

into one proper asymptotic horizontal line for much larger 

times. More data for intermediate values of   are shown in 

Appendix C and confirm this expectation. 

In order to further quantify our findings, we compute 

the temporal evolution of the statistical properties of ( )t . 

After each iteration, we determine the values of ( )t  for 

each of the 100 trajectories, and compute their mean and 

standard deviation. We start with the LRN regime illustrat-

ed in Fig. 7(a) for g = 0.01, 0.008, 0.006, 0.004, 0.002, 

0.001. The mean deviations show proper saturation, while 

the standard deviations are decaying with increasing time, 

indicating asymptotic convergence to proper thermalization 

and ergodicity. Since the saturation (ergodization) time for 

each curve is different and roughly inversely proportional to 

the saturated mean value, we use the saturated values of 
10:= ( =10 )z t  and perform an additional rescaling =t zt , 

( ) = ( ) /t t z   and ( ) = ( ) /t t z  . The resulting plot in 

Fig. 7(b) shows very good merging of the curves for all 

except the smallest values of g  and the standard deviation 

( ) 1/t t  as expected and predicted for asymptotic 

thermalization and ergodicity. 

In contrast, the SRN case, shown in Fig. 8, exhibits a 

clearly different behavior. In the unscaled data, shown in 

Fig. 8(a), smaller values of   (e.g., = 0.001,0.002 ) dis-

play a nearly constant   which is almost not decaying with 

time after  stabilizes into a horizontal line. This behavior 

indicates the presence of a prethermalized state, where 

fluctuations around the mean persist over long periods, 

delaying full thermalization. For larger   values (e.g., 

= 0.01 ),   begins to decay after  stabilizes, suggesting 

faster convergence to thermalization as the coupling 

strength increases. Indeed, the rescaled data in Fig. 8(b) 

show an increasingly weaker decay of the rescaled stand-

ard deviation when approaching the integrable limit. The 

decay is much slower than the expected 1/ t  law shown 

by the dashed line. 

These results highlight a stark contrast between the 

LRN and SRN cases. The LRN regime shows consistent 

thermalization dynamics across all g  values, with   

steadily decaying and no evidence of prethermalization. 

Fig. 5. (Color online) Time evolution of the largest Lyapunov 

exponent Λ(t) on a 10log  scale for up to 10
10

 iterations for 

g = 0.001 (a) and 0.01 (b) in the LRN case for θ = 0.33π. Each 

panel shows 100 trajectories obtained from randomly chosen 

initial conditions. The system consists of N = 50 unit cells. 

Fig. 6. (Color online) Same as Fig. 5 for the SRN case with g = 1 

and θ = 0.001 (a) and 0.01 (b). 
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Conversely, the SRN system strongly depends on coupling 

strength, with smaller  values leading to prolonged pre-

thermalization and delayed thermalization. 

To investigate the role of system size in the thermali-

zation dynamics, we analyzed the time evolution of ( )t  

for the LRN and SRN regimes and different system sizes, 

as shown in Figs. 9. and 10. The analysis includes various 

system sizes (N = 50, 100, 200) for different values of g  

(LRN) and  (SRN). The black dashed line represents the 

theoretical temporal decay 1/2t , a hallmark of com-

plete thermalization. 

For the LRN regime, shown in Fig. 9, the results indi-

cate a deviation from fast thermalization and the slowing 

down of the   decay as compared to the predicted 1/ t  

law, for the smallest size = 50N  and close proximity to its 

integrable limit, albeit the effect appears to be rather weak. 

Likewise the SRN regime shows persistent signatures of 

prethermalization and anomalously slow decay of  , yet 

no speed-up is either observed for larger system sizes. 

6. Discussion 

We have investigated the thermalization dynamics of 

weakly nonintegrable unitary circuit maps, focusing on the 

statistical properties of Lyapunov observables and the time 

Fig. 7. (Color online) The unscaled (a) and scaled (b) average 

values of the mean and standard deviation of Λ(t) on a 10log  

scale for the LRN case with θ = 0.33π for different values of g 

(see main text for more information). The colors red, green, blue, 

black, magenta, and brown correspond to g = 0.001, 0.002, 0.004, 

0.006, 0.008, respectively. Averaging is performed over 100 trajec-

tories at each time step. In (b), the cyan dashed line indicates the 

temporal decay σ ~ t –1/2. The time evolution is plotted on a 10log  

scale, extending up to 1010. The number of unit cells is N = 50. 

Fig. 8. (Color online) Same as Fig. 7 for the SRN case with g = 1 

for different values of θ. The colors red, green, blue, black, ma-

genta, and brown correspond to θ = 0.001, 0.002, 0.004, 0.006, 

0.008, 0.01, respectively. 

Fig. 9. (Color online) Average scaled mean ( , dashed lines) and 

standard deviation (, solid lines) of Λ calculated from 100 tra-

jectories at each time step for the LRN case with θ = 0.33π. 

Panels (a)–(f) correspond to g = 0.001, 0.002, 0.004, 0.006, 0.008, 

0.01, respectively. The black dashed line shows the expected tem-

poral decay, σ ~ t –1/2. Green, red, and blue curves indicate system 

sizes N = 50, 100, 200, respectively. All data are plotted on a 

10log  scale. 
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evolution of the largest Lyapunov exponent. Our analysis 

reveals distinct thermalization behavior in the SRN and 

LRN regimes as the systems approach integrable limits. 

In the LRN regime, the mean and standard deviation of 

the Lyapunov observables rapidly converge to zero as the 

system approaches integrability. This behavior reflects 

strong ergodicity and stable thermalization. Meanwhile, 

the largest Lyapunov exponent quickly stabilizes to a tra-

jectory-independent value, exhibiting typical ergodic ther-

malization behavior. 

In contrast, the SRN regime exhibits pronounced pre-

thermalization phenomena. The statistical properties of the 

Lyapunov observables demonstrate anomalous fluctuations, 

with their mean and standard deviation remaining stable 

over long time scales, forming prethermalization plateaus. 

Furthermore, the time evolution of the largest Lyapunov 

exponent shows trajectory-dependent behavior, delaying the 

system convergence to complete thermalization. These 

findings highlight the complex dynamics of the SRN regime 

near integrability and emphasize the significant role of 

network connectivity in shaping thermalization processes. 

Our results demonstrate that the statistical properties of 

Lyapunov observables and the largest Lyapunov exponent 

play a crucial role in characterizing prethermalization and 

thermalization dynamics in many-body systems. The com-

parison between the LRN and SRN regimes underscores 

the profound influence of network topology on the slowing 

down of thermalization in nonintegrable systems. 
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Appendix A. On the derivation of short- and long-range 

network regimes 

In the short-range network, the integrable limit is reached 

for = 0 . The system turns integrable and the equations of 

motion preserve the local norm (action) 2 2
1| | , | |n n  . For 

small values of the parameter  , sin    and cos 1  , and 

neglecting higher-order terms like 2 , the equations can be 

approximated up to first order in   as 

___________________________________________________ 

 
 

     

2| ( )|
1 1

2| ( )|
1 1 1 1

( 1) = e ( ), ( ) ( ) ( ) ( ) ,

( 1) e ( ) ( ) ( ) ( ) ( ) ( ) ( ) c.c. .

ig tn
n n n n n n

ig tn
n n n n n n n n

t t t t t t

t t t t ig t t t t


 

 
   

        

             
 

 (A1) 

_______________________________________________

The equations of motion connect the actions through near-

est-neighbor interactions and can be categorized as a short-

range network. 
For the long-range network case we switch to the nota-

tions from Refs. 20, 21 for clarity, that is, replace 

 1( ), ( )n nt t   with odd n by  ( ), ( )A B
n nt t  . For the linear 

case = 0g , we use the standard ansatz  ( ), ( ) =
T

A B
n nt t   

 ( )
= e ,

Ti t kn A Bk
k k

  
  , where ( )A

n t  and ( )B
n t  represent 

the odd and even parts of ( )n t , respectively. The 

eigenfrequencies k  obey the dispersion relation  

  2 2= arccos cos sin cos ,k k     (A2) 

with two dispersive bands k
  ( =1,2)  and corresponding 

normal modes ,
= e ( = , )

pikn
k kn

p A B
  , which form a 

complete set. Generally, a state vector ( )t  may be de-

composed in terms of normal modes of the linear system:  

 ( ) = ( ) .k k

k

t c t    (A3) 

In the linear case = 0g , the evolution of the coeffi-

cients ( )kc t  only involves a phase rotation e
i t

k


; the abso-

lute values | |kc  are conserved in time, since they are the 

actions of the integrable limit. Introducing a small nonzero 

value of 0g   results in a coupling between all these ac-

tions. Approximating Eq. (4) for small values of g , we 

obtain 

Fig. 10. (Color online) Same as Fig. 9 for the SRN case with g = 1. 

Panels (a)–(f) correspond to θ = 0.001, 0.002, 0.004, 0.006, 

0.008, 0.01, respectively. 
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_______________________________________________

All kc are coupled due to the second term in Eq. (A4). For 

each action kc, the number of terms in the sum is propor-

tional to 2N  due to the constraints enforced by the overlap 

integrals in Eq. (A5), resulting in a long-range network. 

Appendix B. Further insights into the Lyapunov 

observable statistics 

To provide further details on the behavior of the Lyapunov 

observable ( )r t , we present additional numerical results ex-

ploring both the SRN and LRN cases with extended parame-

ter ranges closer to the integrable limits, and smaller system 

sizes to cope with the additional CPU time efforts.  

Figure 11 shows the average values () and standard 

deviation () of the Lyapunov observable distributions. In 

the SRN case ( =1g ), as  decreases from 110  to 410 , 

both the average and standard deviation appear to gradual-

ly saturate to nonzero values, with the standard deviation 

remaining significantly larger than the mean. This satura-

tion highlights the persistence of nonzero fluctuations near 

the integrable limit. However, further reducing the value of 

 and approaching the corresponding integrable limit, we 

observe diminishing of both the mean and standard devia-

tion, as expected. Yet this decay appears to be very slow. 

Further studies for larger system sizes and closer distance 

to the integrable limit are needed in future studies. 

For the LRN case ( = 0.33 ), where g  decreases from 
110  to 410 , both the average () and standard deviation () 

rapidly decrease and appear to converge towards zero. This 

trend contrasts sharply with the SRN case, where fluctua-

tions persist at smaller values of  . At the same time, we 

note a systematic relative increase of the standard devia-

tion over the mean for 4 310 < <10g  . This might be due 

to finite size effects. Further studies for larger system sizes 

and closer distance to the integrable limit are needed in 

future studies. 

Figure 12 shows the coefficient of variation v  (defined 

as = / v ), which measures the relative fluctuation of 

the standard deviation to the mean value. For the LRN case 

(red line), as g  decreases from 110  to 410 , v  appears to 

increase monotonically, especially for 3<10g  . This indi-

cates that while both the mean and standard deviation ap-

proach zero, the relative fluctuations become increasingly 

significant as the system nears the integrable limit. For 

the SRN case (blue line), v  is much larger to start with, 

and also increases when 3>10 , showing a stronger trend 

but similar to the LRN case. For 3<10 , noticeable fluc-

tuations in v  emerge. We can only speculate about their 

origins, and repeat again that detailed future studies are 

needed to clear the fog. 

Fig. 11. (Color online) The average value (μ) and standard devia-

tion (σ) of the Lyapunov observable for the SRN and LRN cases, 

with both axes in log10 scale. The red and blue lines represent the 

mean (μ) and standard deviation (σ) of SRN with g = 1 and vary-

ing θ (10–4 to 10–1). The green and black lines represent the mean 

(μ) and standard deviation (σ) of LRN with θ = 0.33π and varying 

g (10–4 to 10–1). The system size is N = 50, and the evolution time 

is 109. Similar to Fig. 4, the averages and standard deviations are 

calculated using 109 points. 

Fig. 12. (Color online) The coefficient of variation v  for the 

Lyapunov observable in the SRN and LRN cases, where 

= /v   is the ratio of the standard deviation (σ) to the mean 

value (μ). The blue line represents the SRN case with g = 1 and 

varying θ (10–4 to 10–1), while the red line corresponds to the 

LRN case with θ = 0.33π and varying g (10–4 to 10–1). The system 

size is N = 50, and the evolution time is 109.  
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Appendix C. Further insights into the time-dependent 

Lyapunov exponent for both LRN and SRN  

We provide more details on the time evolution of the 

largest Lyapunov exponent ( )t  in the LRN and SRN re-

gimes as they approach their integrable limits.  

Figure 13 shows results for the LRN case with fixed 

coupling θ = 0.33π and varying nonlinearity g . Panels (a)–(f) 

correspond to g = 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 

displaying 100 trajectories with different initial conditions. 

For large g , ( )t  quickly converges to a single value, indi-

cating fast thermalization. As g  decreases, convergence 

slows down, and fluctuations persist longer, but all trajecto-

ries eventually stabilize to the same ( )t . This suggests that 

prethermalization is absent in LRN systems, and therma-

lization proceeds robustly even near the integrable limit. 

In contrast, Fig. 14 presents results for the SRN case 

with fixed nonlinearity =1g  and varying coupling  . 

Panels (a)–(f) correspond to θ = 0.001, 0.002, 0.004, 0.006, 

0.008, 0.01. For large , ( )t  behaves similarly to the 

LRN case, stabilizing quickly. However, at small , trajec-

tories appear to saturate at distinct values of ( )t , forming 

long-lived prethermalization plateaus. These plateaus per-

sist over extended timescales ( 610t  to 1010 ), indicating a 

breakdown of delayed thermalization. 

Comparing Figs. 13 and 14, the LRN system shows 

smooth and rapid thermalization, while the SRN system 

exhibits prolonged prethermalization with strong depend-

ence on initial conditions. This highlights the role of net-

work structure in thermalization dynamics and establishes 

prethermalization as a key feature of SRN systems. 
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Спостереження претермалізації в слабко 

неінтегровних унітарних відображеннях 

Xiaodong Zhang, Gabriel M. Lando, Barbara Dietz, 

Sergej Flach 

Досліджено претермалізацію шляхом аналізу статистичних 

властивостей часової залежності найбільшого показника 

Ляпунова Λ(t) для унітарних відображень у вигляді квантових 

схем при наближенні до інтегрованості. Відстежено еволюцію 

траєкторій для різних початкових умов і обчислено середнє 

значення μ(t) та стандартне відхилення σ(t) показника Λ(t). 

У процесі термалізації середнє значення μ сходиться до скін-

ченного значення, а часовий розподіл демонструє спад за 

степеневим законом 1/2t . Виявлено плато претермалізації, 

яке зберігається протягом тривалого часу, при цьому як μ, 

так і σ, очевидно, сходяться до скінченних значень, що, на 

перший погляд, вказує на насичення показника Ляпунова до 

різних значень для різних траєкторій. Час життя таких плато 

визначає нову часову шкалу, що характеризує динаміку тер-

малізації багаточастинкових систем поблизу інтегрованості. 

Також встановлено, що за достатньо тривалого часу плато 

сходяться до відповідних термальних значень. 

Ключові слова: претермалізація, термалізація, залежна від часу 

експонента Ляпунова, мережі з довгим радіусом 

взаємодії, мережі з коротким радіусом взаємодії. 
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