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A B S T R A C T

In this article, we explore the lifetime of localized excitations in nonlinear lattices, called breathers, when
a thermalized lattice is perturbed with localized energy delivered to a single site. We develop a method
to measure the time it takes for the system to approach equilibrium based on a single scalar quantity, the
participation number, and deduce the value corresponding to thermal equilibrium. We observe the time to
achieve thermalization as a function of the energy of the excited site. We explore a variety of different physical
system models. The result is that the lifetime of breathers increases exponentially with the breather energy
for all the systems. This increase becomes observable when this energy is larger than approximately ten times
the local average thermal energy. These results may provide a method to detect the existence of breathers in
real systems.
1. Introduction

Discrete breathers (DB) are exact localized vibrations in nonlinear
lattices [1–4]. They are also called Intrinsic Localized Modes (ILM) [5],
to distinguish them from the localized Anderson modes due to disorder,
an external impurity, a defect, or an interface in a lattice [6,7]. It
is important to note that this definition applies only in the absence
of perturbations, noise, or temperature, conditions for which only
approximate breathers are possible.

Usually, discrete breather solutions cannot be obtained in closed
analytical form. However, they can be constructed numerically with
arbitrary machine precision, and, in that case, they are called ex-
act breathers [8–11]. Numerical simulations of the evolution of exact
solutions can continue forever at zero temperature. This is because
exact DB solutions are usually exponentially localized on an infinitely
large lattice, such that the energy of these solutions is finite, and
their average energy density is exactly zero. However, introducing the
concept of temperature or simply finite energy density usually implies
a finite lifetime for any coherent excitations, which is an important
feature to measure or estimate when studying breathers in physical
systems.

The existence and lifetime of breathers can be of importance in
environments where they will be created in large quantities, as fusion
tokamak reactors [12], where the impact of neutrons and alpha parti-
cles will produce many of them. Their slow relaxation may prevent the
evacuation of heat at the desired rate with undesirable consequences.
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The effect could be even more remarkable if breathers can bind to an
electric charge in the materials used [13].

An early attempt to quantify the lifetimes of DBs on a nonzero
thermal background was reported in [14], where simulations were
performed to detect long-lasting local fluctuations and their lifetimes
as a function of the energy density of the background. The fluctuation
lifetime grew with the energy density, seemingly in an exponentially
fast way. This approach was clearly not capable of measuring the
lifetimes of strongly excited breathers due to computational limitations.
Also, the energies of the longest-lasting local fluctuations depended on
the computational time — the longer the time, the more probable a
larger fluctuation becomes.

Molecular dynamics was used in different publications to measure
the lifetime of gap breathers in thermal equilibrium. Ref. [15] considers
a two-dimensional diatomic crystal. Wavelet imaging was used for non-
linear excitations that appear in the phonon gap of a NaI crystal [16].
In both systems, the lifetime appears to increase with temperature,
which is consistent with the creation of breathers with larger energies.
The approach in the present work is different from the previous works
since we consider the initial localization of energy not at thermal
equilibrium.

A recent study by Iubini et al. [17] planted local breather excitations
into a discrete nonlinear Schrödinger equation (DNLS). They were
motivated by the fact that the microcanonical DNLS dynamics features
thermal states with Gibbs statistics but also non-Gibbs ones with non-
ergodic features [18–22] due to the presence of an additional (to the
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already existing energy) integral of motion related to the total norm or
 classical analog of the total number of particles of quantum many-
ody systems. The study monitored the local norm at the original site
f the breather excitation, introduced an ad hoc threshold to its value
t which the breather was assumed to be destroyed, and measured the
ime to reach that threshold. The study found approximate exponential
ependence of the breather’s lifetime on its norm.

Finally, around the same time, Danieli et al. [23] introduced a
ethod to define and measure the lifetime of the fluctuation of any

bservable using the ergodic hypothesis. They applied this method suc-
essfully to measure the lifetime of long wavelength mode excitations
n Fermi–Pasta–Ulam–Tsingou (FPUT) systems to address the FPUT
aradox of lifetimes of anomalous initial states and quenches, but also

to address the statistics of lifetime fluctuations at thermal equilibrium.
e are going to use this method below.
In this article, we address the issue of breather lifetimes by studying

ystems that are more general than the DNLS one, which in general lack
ontrivial second integrals of motion, and which are supposed to show
roper Gibbs statistics and ergodicity for any choice of the relevant
nergy density. Instead of an ad hoc threshold value for local energy,
e use the participation number 𝑃 as an observable and measure the

nhomogeneity of energy density distribution in the system. At thermal
quilibrium, the participation number 𝑃 on any ergodic trajectory is
orced to fluctuate around its temporal and thus phase space average
ndlessly. We compute the thermal average of 𝑃 and measure the
ime interval it takes for a breather excitation on top of a thermal
ackground to decrease the participation number down to its thermal
verage for the first time. We find strong exponential dependence of
he thermalization time as a function of the breather excitation energy
y studying four different, fairly generic systems, consisting of units
escribed by a coordinate 𝑢𝑛, which can be a spacial coordinate or a
ifferent magnitude, and its momentum 𝑝𝑛. For simplicity, we will often
efer to each unit as an oscillator or particle. Moreover, we find that
he exponential dependence is strongly influenced by the temperature,
.e. energy density, of the system background.

The first three systems represent a lattice of particles that experience
an on-site potential 𝑉 (𝑢𝑛), where 𝑢𝑛 is the coordinate of the 𝑛th particle,
and the particles are coupled with their nearest neighbors through an
interaction potential 𝑈 (𝑢𝑛+1 − 𝑢𝑛). The on-site potential represents an
external field, or, if the described system is a subsystem of a larger
system, the interaction with the rest of the system. The first two systems
have a quartic on-site potential and harmonic coupling, that is:

𝐻 =
∑

𝑛

1
2
𝑝2𝑛+𝑉 (𝑢𝑛) +𝑈 (𝑢𝑛+1−𝑢𝑛) =

∑

𝑛

1
2
𝑝2𝑛+𝜔

2
0

(

𝑢2𝑛
2

+ 𝑠
𝑢4𝑛
4

)

+𝜅 1
2
(𝑢𝑛+1−𝑢𝑛)2 ,

(1)

where the nonlinearity parameter 𝑠 can be +1 or −1. If 𝑠 is positive,
n isolated particle will have a frequency that increases with the
scillation amplitude, or, as it is commonly called, a hard potential.
his system, labeled QH, will be the first system studied, followed by
he opposite case, that is, the quartic soft potential (QS) with 𝑠 = −1,
hich becomes the second system. The third, more realistic system,
as a Frenkel–Kontorova on-site potential [24,25], that is, a sinusoidal

function, which models the periodicity of the lattice. The coupling
otential is the Lennard-Jones potential, which represents a realistic
nteraction between atoms, that repel very strongly when they get
lose and gradually vanishes when they move apart [26–28]. We will

denote it as FKLJ. The fourth system will have no on-site potential,
but a sinusoidal type coupling, and represents a Josephson junction
network [29,30]. As the coordinate describing an oscillator is an angle,
t is also called a rotor, and the system can also represent a chain of
oupled pendula [29] that can rotate. We will often refer to this analog
s it is easier to understand. We will denote this system as JJN.

In this study, the first step is to obtain information about the discrete
reather energies and characteristics. In the appendices, we describe
2 
the method to obtain exact breathers from the anticontinuous limit and
their properties in the four different systems.

The paper is organized as follows: in Section 2, we introduce
the participation number 𝑃 , deduce its value at thermal equilibrium,
and demonstrate that numerical simulations are coherent with this
interpretation. Section 3 describes the creation of localized breather
energy over a thermalized system and the system’s time evolution
towards thermal equilibrium. The following Section 4 is dedicated to
the computation of breathers’ lifetime and analysis of differences in
numerical results in the systems under study. The different systems
are analyzed in four subsections: the quartic hard and soft potentials
in Section 4.1 and Section 4.2, respectively, the Frenkel–Kontorova,
ennard–Jones system in Section 4.3 and the model for Josephson junc-

tion arrays in Section 4.4. The paper concludes with the conclusions,
acknowledgments, funding, and a short reference to the computational
means that have been used. The appendices include analytical and
computational details about discrete breathers in the four different
systems.

2. Description of thermalization

We present here a suitable parameter to measure the thermalization
state of the system and explain the procedure to study the thermaliza-
ion of breathers and their lifetime. The considerations in this section
re generic, but we will illustrate them mainly with the QH and QS

models of Eq. (1), with 𝑠 = ±1.

2.1. Participation number and thermal equilibrium

We are interested in a simple magnitude that approximately mea-
ures the system’s arrival to thermal equilibrium. A good candidate for

this measure is the participation number defined as

𝑃 =

(
∑

𝑒𝑛
)2

∑

𝑒2𝑛
= 𝐸2

∑

𝑒2𝑛
, (2)

where 𝑒𝑛 the energy of the 𝑛th oscillator, 𝐸 =
∑

𝑒𝑛 is the total energy of
the system, that is, e.g., the Hamiltonian in Eq. (1), and the summation
is over all the oscillators, with periodic boundary conditions. The
participation number 𝑃 takes values between 𝑃 = 1, when all the
nergy is concentrated in a single oscillator, and 𝑃 = 𝑁 , if it is evenly
istributed among all the oscillators.

The system has a constant energy, and the statistical ensemble is,
therefore, microcanonical. If the system is ergodic and large enough,
we may expect to observe canonical distributions for local observables,
characterized by some temperature 𝑇 and constant thermodynamic
𝛽 = 1∕𝑘𝐵𝑇 . Note that although the values of 𝑘𝐵 and 𝑇 depend on the
specific units, 𝑘𝐵𝑇 = 1∕𝛽 is well defined, as the statistical meaning of
temperature is given by the virial theorem [31] and the average kinetic
ocal energy at thermal equilibrium is ⟨0.5𝑝2𝑛⟩ = 0.5∕𝛽 = 0.5𝑘𝐵𝑇 .

Each particle can be seen as interacting with a thermal reservoir
at constant temperature and the statistical ensemble of each particle is
canonical. Therefore, the probability that the energy of the 𝑛th particle
in thermal equilibrium is 𝑒𝑛 is given by [31]:

𝜌(𝑒𝑛) =
exp(−𝛽 𝑒𝑛)

𝑍
. (3)

The partition function 𝑍 can be obtained with the condition that the
total probability of finding some energy within the canonical ensemble
is the unity. Then:

𝑍 = ∫

∞

0
exp(−𝛽 𝑒𝑛)d𝑒𝑛 =

1
𝛽
. (4)

The actual upper limit of the integral cannot be infinity but a num-
ber of the order of the total system’s energy 𝐸 ∼ 𝑁 𝑘𝐵𝑇 = 𝑁∕𝛽, with
𝑁 the number of particles. However, the integral ∫ ∞

𝐸 exp(−𝛽 𝑒𝑛)d𝑒𝑛 =
exp(−𝛽 𝐸) ∼ exp(−𝑁) becomes negligible as it is smaller than 10−10 for
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Fig. 1. (Left:) System QH with 𝜔0 = 1 and 𝜅 = 0.05: Evolution of the participation number 𝑃 for the mean thermal energy ℎ = 0.02 with the hard quartic potential and with
umber of particles 𝑁 = 64. We can see that the time-averaged participation number ⟨𝑃 ⟩ is slightly above 𝑁∕2. (Right:) System QS: Identical representation for the soft potential
ith the same parameters. In both cases, generally speaking, ⟨𝑃 ⟩ is 1–2 particles above 𝑁∕2, but for some realizations, it can also be below depending on the length of the
bservation time window.
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𝑁 > 21. Thus, (4) and the derivations below should be justified good
pproximations for the systems with a large number of particles 𝑁 .

The average energy of a particle becomes

⟨𝑒𝑛⟩ =
1
𝑍 ∫

∞

0
exp(−𝛽 𝑒𝑛)𝑒𝑛 d𝑒𝑛 =

1
𝑍

𝜕
𝜕 𝛽 (−𝑍) = 𝛽 𝜕

𝜕 𝛽
(

− 1
𝛽

)

= 1
𝛽
= 𝑘𝐵𝑇 ,

as should be expected. This result is obtained with several approxima-
ions and the time averages of the local energies at thermal equilibrium
iffer slightly from it.

In the following, we will use the ergodic theorem [31,32] and
eplace the averages within the statistical ensemble with the time
verages at thermal equilibrium. This is valid only for infinite time
nterval averages and, of course, our simulations may be long but
lways finite. In addition, our approach implicitly assumes that any
nergy density distribution {𝑒𝑛} has the same probability to occur. This
ubtle assumption does not follow, in general, from the fundamental
rgodicity property that each microstate (some point in phase space)
as the same probability of occurring. Indeed, one can easily show that
rgodicity results in equal probabilities of energy density distributions
or small ratios of coupling to energy density 𝜅∕ℎ in (1) and (7). In

general, however, we have to expect systematic differences and will
check that these differences are smaller than the standard deviations
of the temporal fluctuations.

Let us calculate the infinity time average of the inverse of the
participation number 𝑃 , that is:

𝑃−1 =
∑

𝑛 𝑒
2
𝑛

𝐸2
.

The time average along any solution of the dynamical system is defined
and given in the following form:

𝑃−1 = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑃−1(𝑠)d𝑠 = lim

𝑇→∞
1
𝑇 ∫

𝑇

0

∑

𝑛 𝑒
2
𝑛(𝑠)

𝐸2
d𝑠

= 1
𝐸2

∑

𝑛
lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑒2𝑛(𝑠)d𝑠 = 1

𝐸2

∑

𝑛
𝑒2𝑛.

Through the ergodic theorem, we now identify 𝑃−1 = ⟨𝑃−1
⟩ and 𝑒2𝑛 =

⟨𝑒2𝑛⟩. Then:

⟨𝑃−1
⟩ = 1

𝐸2

∑

𝑛
⟨𝑒2𝑛⟩ =

𝑁(2∕𝛽2)
(𝑁∕𝛽)2

= 2
𝑁

.

Numerically we can suppose and it is confirmed by the numerical
imulations that 𝑃−1 ≃ (𝑃 )−1 and, therefore, ⟨𝑃−1

⟩ ≃ ⟨𝑃 ⟩−1, i.e.,

𝑃 ≃ ⟨𝑃 ⟩ ≃ 𝑁
2
. (5)

In the rest of the paper we will identify often the average over a
ong time with the infinitely time averages and the statistical ensemble
verages.
 s

3 
Note that the deduction cannot be done directly for ⟨𝑃 ⟩ from (2)
as the sum of particle energies would appear in the denominator and
thus we cannot express 𝑃 as a sum of ⟨𝑒2𝑛⟩ terms. We have used
many approximations that will be ultimately confirmed by numerical
simulations. It is interesting to note that the result (5) contradicts the
irst intuition that at thermal equilibrium 𝑃 would be close to 𝑁 .

It works surprisingly well for the first three systems under study.
t does not work so well for the JJN system, because as this system
as no on-site potential, the approximation that we can identify the
nergy of an oscillator as relatively independent is not really valid. See
ection 4.3 for details and Ref. [30] for another approach including

different approximations.

2.2. Participation number at thermal equilibrium in simulations

We produce a random vector of momenta 𝑝𝑛 values of numbers
etween (0, 1) and subtract its mean 𝑝𝑛 = 𝑝𝑛−⟨{𝑝𝑛}⟩ so that the system’s

initial momentum is zero. We re-scale the momenta so that the mean
kinetic energy is the desired mean thermal energy ℎ = 𝐸∕𝑁 , and set the
initial coordinates at zero 𝑢 = [𝑢1,… , 𝑢𝑁 ] = [0,… , 0]. After about 100𝑇0
time units, with 𝑇0 = 2𝜋∕𝜔0, we consider the system thermalized. We
let it evolve even for a longer time and compare the mean value of 𝑃
with the theoretical one 𝑁∕2. For both the hard and soft potentials, ⟨𝑃 ⟩
is generally about one or two particles above the theoretical position
of 𝑁∕2 but can also be below it for some realizations depending on the
observation time window. This property does not depend significantly
n the local energy ℎ. Particular realizations can be seen in Fig. 1 for

a lattice with 𝑁 = 64 particles and systems QH and QS.
We also obtain similar results for the FKLJ system, but for the JJN

system, ⟨𝑃 ⟩ is about 6 particles above 𝑁∕2. However, in this case,
the fluctuations of 𝑃 at thermal equilibrium surpass 𝑁∕2 frequently.
Being conscious that 𝑁∕2 is, therefore, not such a good measure of
thermal equilibrium for the JJN system, we still keep it as a useful
measure of the proximity to equilibrium for comparison of the breather
thermalization times.

We conclude that the approximate value of 𝑃 = 𝑁∕2 is an appro-
riate measure to indicate that the system has approached equilibrium.
owever, it does not guarantee it, as should not be expected of a single
arameter.

3. Evolution of initial localized energy in a thermalized back-
ground

After thermalization, see Section 2.2, we can add to the system’s
ariables the coordinates and momenta of a known breather, but it is
impler and more physical to add some kinetic energy to a single site
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Fig. 2. (Top left:) System QH with 𝜔0 = 1 and 𝜅 = 0.05: Evolution towards equilibrium of a breather in a thermalized system with 𝑁 = 64 particles, ℎ = 0.02 and 𝐸b = 10ℎ. The
thermalization is achieved relatively soon. (Top right:) System QH with the same parameters except the breather energy 𝐸b = 21ℎ. The breather is kept well localized although
it hops positions but without the system achieving equilibrium during the observation time. Note the different time span. (Bottom: left–right) Corresponding evolution of the
participation number 𝑃 . The operational definition of the thermalization time 𝑡𝑡ℎ is the first time when 𝑃 (𝑡) = 𝑁∕2.
so that the local energy becomes the intended breather energy 𝐸b, and
let the system evolve afterward. Then, we can consider that the system
attains the thermal equilibrium when 𝑃 > 𝑁∕2 for the first time at 𝑡th,
which data we collect for later analysis in Section 4.1. The time value
𝑡th is also indicative of the maximal discrete breather lifetime in a given
thermalized system. The participation number will continue changing
with considerable fluctuation dispersion around some mean value close
to 𝑁∕2. Fig. 2-top shows the energy density contours and Fig. 2-bottom
shows the evolution of 𝑃 for ℎ = 0.02 in numerical simulations with
two different breather energies 𝐸b = 10ℎ and 𝐸b = 21ℎ, respectively,
i.e., the energies of a single site excitations. Note that, in the second
case, thermal equilibrium is not achieved during the observation time.

3.1. Breather creation and statistics of the thermalization time

To prevent the existence of two sources of large localization, we first
localize the site with the largest local energy 𝑒𝑛 at site 𝑛 and if 𝐸b > 𝑒𝑛,
we change the momentum 𝑝𝑛 to 𝑝𝑏 such that the energy becomes the
desired breather energy 𝐸b, that is, 𝑝𝑏 =

√

2(𝐸b − 𝑒𝑛) + 𝑝2𝑛, with the
sign of the original 𝑝𝑛 value. The coordinates are not changed. After
that, we leave the system to evolve until the first time 𝑡th for which
𝑃 > 𝑁∕2. The collected time 𝑡th depends on each particular realization
of the numerical experiment. The standard deviation 𝜎 of 𝑡th is very
large, of the order of magnitude of its mean value, as it should be
expected because breathers are complex structures that will not always
be created with just the delivery of some kinetic energy to a single site.
Some of the initial localized energy may be closer or further away from
a breather or to breathers with different stability properties, which is
also highly influenced by the initial background noise. Despite that, the
standard deviation of the mean 𝜎𝑚 = 𝜎∕

√

𝑁𝑟, where 𝑁𝑟 is the number
of measurements, becomes very small, indicating that the mean value
4 
of 𝑡th is a well-defined quantity. In all numerical simulations, we use
𝑁𝑟 = 104, but then discard the experiments where 𝑡th = 0, because the
system is already found in the thermalized state at the beginning of a
simulation, even after the addition of a single site excitation.

For some systems and low 𝐸b, it is difficult to obtain nonzero 𝑡th,
and, therefore, a significant number of simulations are performed to
obtain statistics where the average value of 𝑡th seems reasonable and
𝜎𝑚 is small. This problem is dealt with by multiplying the number of
simulations many times. A more difficult problem for higher 𝐸b can
be the extremely long life of some breathers, sometimes with the need
for some days and many processors. Note that parallelization is only a
partial solution to this problem as we have to wait until every random
creation of a breather thermalizes, including the very stable ones, to
prevent favoring realizations with shorter 𝑡th in the statistics.1

3.2. Exponential dependence of the thermalization time with respect to
breather energies

The dependence of the average thermalization time ⟨𝑡th⟩ as a func-
tion of the relative breather energies 𝐸b∕ℎ for the different systems
are presented in the section below. Let us note here that, most likely,
the small deviation from the exponential dependence observed at some
curves at large energies can be attributed to the fact that the simulation
time is eventually limited, and some very long simulations are excluded
from the statistics.

Note that the exponential behavior of 𝑡𝑡ℎ with respect to 𝐸b∕ℎ
appears for sufficiently large values of 𝐸b. This approximate threshold

1 The OMP directive NO WAIT at the end of the loop running the
simulations cannot be used.
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Fig. 3. (Top-left:) System QH: Thermalization time as a function of the initial participation number 𝑃 after breather creation, with 𝑁 = 64, 𝜔0 = 1, 𝜅 = 0.05, ℎ = 0.02 and
𝐸b∕ℎ = 16. (Top-right:) System QS: Same representation with identical parameters. (Bottom-left:) System FKLJ: Same representation with identical parameters except 𝜅 = 0.20.
Bottom-right:) System JJN: Same representation with the same parameters as QH and QS. Also, the linear regression line is plotted. Note the different time scales. A random
ubsample of 500 points is represented for clarity.
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changes with the system and parameters, but it is about ten times
the ℎ value. Indeed, in most cases, there is an initial diminution of
the thermalization time. We conjecture that when the energy is not
enough to make probable the formation of breathers, the increase in

omentum of a particle brings about the creation of phonons and
he dissipation of localization. Only when the value of 𝐸b is large
nough such that many breathers are created the exponential behavior
onsolidates.

3.3. Dependence of the thermalization time with the participation number

There is a huge variability of the thermalization time 𝑡th even for
the same initial value of the participation number 𝑃 . The particular
values of 𝑢𝑛 and 𝑝𝑛 are of paramount importance for 𝑡th. However,
globally, as should be expected, for a given breather energy 𝐸b, the
larger the initial value of 𝑃 , the shorter the thermalization time 𝑡th,
where the smallest linear correlation between 𝑃 and 𝑡th is found for
the JJN system. Examples of the four systems are shown in Fig. 3.

4. Breather energies and thermalization times

In this section, we present the four systems under study and analyze
he dependence of the breather lifetimes on the breather energies, for
ifferent values of the coupling parameter 𝜅. The preferred parameter

for identifying breather energies is 𝐸b∕ℎ, that is, the breather energy
relative to the mean thermal energy. This is a logical parameter but the
lifetimes are strongly dependent on the specific system and value of 𝜅.
 o

5 
4.1. System with quartic hard on-site potential and harmonic coupling (QH)

The system with the hard quartic potential is described by Eq. (1),
ith 𝜔0 = 1, the frequency of isolated oscillators, and the nonlinearity
arameter 𝑠 = 1. The positive coupling constant 𝜅 may take different
alues. Exact breathers, their obtention method, and their properties
re presented in Appendix B, particularly, their energies are of the order

of a few tenths. We consider two values of the coupling parameter
𝜅 = 0.05 and 𝜅 = 0.10 and two values of the average initial local
mean thermal energy ℎ = 0.02 and ℎ = 0.04. Breather energies are
taken from 𝐸b = 5ℎ to 𝐸b = 21ℎ. Smaller breather energies do not
rovide enough localization for breathers to form and larger values

create exceptionally stable and long-lived breathers. Even during days
of simulations on a supercomputer using one hundred processors, we
do not achieve enough thermalization cases to provide good statistics.
Generally speaking, we reproduce the method presented in the previous
section 𝑁𝑟 = 104 times until thermalization is achieved. There is no
ime limit set for a simulation, but the supercomputer has a time limit
f several days. This means that very long thermalization times (or
nfinite) are excluded from the statistics.

Statistical results for the quartic hard potential case (QH) can be
seen in Fig. 4. The error bars are obtained by adding and subtracting
the standard deviation of the mean, but they are very small and
ifficult to observe. In total, the results were obtained for seventeen
ifferent breather energy values. The exponential dependence of the
hermalization time and averaged discrete breather lifetime can be
asily seen and estimated, especially for larger breather energies, since
he thermalization time 𝑡th axis is shown on a logarithmic scale. The
btained results can also be justified by the fact that larger energy
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Fig. 4. Quartic hard system (QH): Thermalization time 𝑡th on a logarithmic scale as a
function of the relative breather energy 𝐸b∕ℎ for coupling parameter values 𝜅 = 0.05
two upper curves) and 𝜅 = 0.10 (two lower curves) and mean thermal energies
= 0.02 (continuous lines) and ℎ = 0.04 (dashed lines). In this system, the breathers

re exceptionally stable and the approximate exponential dependence for mid-to-large
reather energies can be observed.

breathers are more resilient towards background noise or thermal
luctuations. In addition, notice that the breather lifetime decreases
s the coupling constant 𝜅 increases, whereas the breather lifetime
ncreases with the increase of the mean thermal energy value ℎ.

4.2. System with quartic soft on-site potential and harmonic coupling (QS)

The Hamiltonian in Eq. (1) with 𝑠 = −1 becomes soft. The on-site
potential has a potential barrier at 𝑢𝑛 = ±1 that separates the potential
well centered at 𝑢𝑛 = 0 from a non-physical negative infinite potential

ell. The quartic soft on-site potential can be considered a reasonable
pproximation for a given system only inside the central potential well.
hen, we write the code in such a way that if during a given simulation
ny 𝑢𝑛 leaves the safe well interval, the simulation is discarded. In

this way, we are selecting a more distributed localization energy and
iminishing the thermalization time. Therefore, the thermalization time

cannot have an approximate exponential dependence on 𝐸b∕ℎ. For
ower coupling 𝜅, existing breathers localized at a single site have

small energies, and as they are not created by an increase in 𝐸b, the
thermalization time 𝑡th increases linearly with 𝐸b∕ℎ. For a larger 𝜅,
when breathers have more energy and can be created, we observe again
he approximate exponential dependence of 𝑡th as shown in Fig. 5.

Results in Fig. 5 are shown only for a single mean thermal energy value
while varying the coupling parameter 𝜅 since for larger mean thermal
energy, e.g., ℎ = 0.04, the increase in energy favors delocalization and
particles are leaving the potential well towards a negative infinity well,
with nonphysical results. Nevertheless, we are still observing a clear
pattern that the average breather lifetime increases with the decreasing
value of the coupling parameter 𝜅 as already observed in the quartic
hard potential case in Fig. 4.

4.3. Frenkel-Kontorova system with Lennard-Jones interaction potential

In this section, we consider a Frenkel–Kontorova (FK) system [24],
that is, with cosine on-site potential, and with the Lennard-Jones (LJ)
interatomic interaction potential. This system provides a useful model
for atoms in a crystal, taking into account the periodicity of the crystal.
The on-site potential represents the interaction with other parts of the
crystal, and the LJ potential provides a strong repulsion when two
atoms approach each other and a potential well with a force that
6 
Fig. 5. Quartic soft system (QS): Thermalization time 𝑡th on a logarithmic scale as
a function of the relative breather energy 𝐸b∕ℎ for four different coupling parameter
values 𝜅 = 0.10, 0.15, 0.20, 0.25, corresponding to the curves from top to bottom, and
mean thermal energy ℎ = 0.02. The approximate exponential dependence for large
breather energies is evident. See the text for an explanation. Note that the hump at
he upper curve is a feature checked quite a few times with 20000 simulations per
oint. The reason is not known.

tends to zero when the atoms move apart, corresponding with the
physical characteristics of interatomic interactions [25]. From a more
technical point of view, the cosine potential provides a soft potential,
without the nonphysical characteristics of the quartic soft potential of
having an infinite negative well, and the need to continuously control
that the coordinates do not penetrate into that well. It has also been
used as a model for lattice excitations in silicates in 2D hexagonal
lattices by Bajārs, Eilbeck, and Leimkhuler (BEL) [33–35], and it has
een shown that it is extremely easy to generate both stationary and
oving breathers in one or two dimensions. Also, polarobreathers,

.e., breathers coupled to a charge, propagate in this system extremely
ell [36].

To compare with the quartic soft potential, we need an appropriate
scaling as commented in Appendix C. The Hamiltonian is given by:

𝐻 =
∑

𝑛

(

1
2
𝑝2𝑛+𝑈0

(

1 − cos
(

2𝜋
𝑢𝑛
𝜎

))

+ 𝑉0

⎡

⎢

⎢

⎢

⎣

1 + 1
(

1 + 𝑢𝑛+1−𝑢𝑛
𝜎

)12
− 2

(

1 + 𝑢𝑛+1−𝑢𝑛
𝜎

)6

⎤

⎥

⎥

⎥

⎦

)

.

(6)

As shown in Appendix C, we compare the FKLJ Hamiltonian with the
QS, so as the linearized dynamical equations become identical. The
result being that 𝑈0 = 𝜔2

0𝜎
2∕(2𝜋)2 and 𝜅 = (𝜔2

0𝜎
2∕72)𝑉0. For the QS

system, 𝜎 = 2 and 𝜔0 = 1, therefore, 𝑈0 = 1∕𝜋2 ≃ 0.103 and 𝑉0 = 𝜅∕18.
As this potential is soft and at low amplitudes is fitted with the

uartic soft potential, there are similar features to be expected. In
particular, for low coupling 𝜅 = 0.05, the thermalization time 𝑡th
shows a linear dependence with the delivered breather energy 𝐸b,
indicating that breathers are not formed because their energy is too
low. The energy is rapidly dissipated. For 𝜅 = 0.20 and 𝜅 = 0.30, we
again obtain the exponential dependence between 𝑡th and 𝐸b, indicating
hat breathers are formed and long-lived in the thermalized system.
ifferently from the QS case, we can increase the temperature or the

ocal mean thermal energy ℎ, and 𝐸b, without the control of 𝑢𝑛 going
utside the infinite potential well. These results are shown in Fig. 6.

Interestingly, thermalization times decrease as the coupling constant
𝜅 increases but decrease as well when the mean thermal energy ℎ is
increased, which is opposite to the quartic hard potential case and
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Fig. 6. Frenkel–Kontorova and Lennard–Jones system (FKLJ): Thermalization time 𝑡th
on a logarithmic scale as a function of the relative breather energy 𝐸b∕ℎ for coupling
parameter values 𝜅 = 0.20 (1st and 3rd from top) and 𝜅 = 0.30 (2nd and 4th from top)
and mean thermal energies ℎ = 0.02 (continuous line) and ℎ = 0.04 (dashed line). For
maller values of the coupling parameter 𝜅, breathers have very small energy and they
re destroyed when an extra energy 𝐸b is delivered. For relatively larger 𝜅, breathers
re formed and the exponential dependence of the thermalization time can be observed.

results in Fig. 4.
There are other techniques to create breathers in both the QS and

FKLJ systems consisting of adding and subtracting some momentum to
a couple of neighboring particles, favoring the creations of 𝜋-breathers
with energies above the phonon spectrum, but, in this paper, we limit
our research only to a single-site excited breathers.

4.4. Josephson Junction Network (JJN)

This system describes an array of Josephson Junctions (JJ), which
is described by the Hamiltonian:

𝐻 =
∑

𝑛

( 1
2
𝑝2𝑛 + 0.5𝜅 (

2 − cos(𝑞𝑛+1 − 𝑞𝑛) − cos(𝑞𝑛 − 𝑞𝑛−1)
)

)

, (7)

Corresponding to a dynamical equation 𝑝̇𝑛 = 𝑞𝑛 = −𝜕 𝐻∕𝜕 𝑞𝑛:
𝑞𝑛 = 𝜅(sin(𝑞𝑛+1 − 𝑞𝑛) − sin(𝑞𝑛 − 𝑞𝑛−1)). (8)

The variable 𝑞𝑛 is written differently, as it is an angle variable rep-
resenting the phase of the superconducting order parameter [29,30].
The kinetic energy 1

2 𝑝
2
𝑛 is the island Coulomb charging energy, and 𝜅

s the Josephson coupling between two neighboring superconducting
slands. It also represents the angle of a rotating coupled pendulum,
hich allows for an easier intuition of the phenomena. This system
as no on-site potential, which makes it a very different system from
he previous three. For example, the phonon band is not bounded from
elow and extends from 𝜔 = 0 to 𝜔 = 2√𝜅 as shown in Appendix D.

When increasing a momentum 𝑝𝑛 for breather creation it is convenient
o subtract an appropriate amount to all rotators to prevent a global
otation of the system, which is equivalent to set to zero the mean
lectric potential of the JJ network.

4.4.1. Breathers in JJN
In this system, exact single-site breathers do not exist as shown in

Appendix D, but there are long-lived transient localized entities, which
are formed during some time. The evolution to thermal equilibrium can
be seen in Fig. 8-left. The localization corresponds physically to a strong

C component of the superconducting currents across two neighboring
unctions, as shown in Fig. 8-right and explained below.
7 
4.4.2. Particularities of thermalization in JJNs
Interestingly, the numerical thermalization procedure leads to a

alue of ⟨𝑃 ⟩ 17% above 𝑁∕2, that is, about 5–6 particles for 𝑁 = 64.
his percentage continues when increasing the system size to 128 or
56. The reason is that the potential energy is localized completely at
he bonds, and then shared always between two particles. If we assign
he bond energy to a single particle, that is, 𝐸𝑛 =

1
2 𝑝

2
𝑛 + 𝜅(1 − cos(𝑞𝑛+1 −

𝑞𝑛)), then the thermalized 𝑃 becomes almost exactly 𝑁∕2. Note that
in the approximate deduction of ⟨𝑃 ⟩, we assumed a description of the
particles with energy 𝑒𝑛 relatively independent of the neighbors. This
hypothesis holds quite well for the systems with on-site potential but
it is clearly not valid for FPUT systems where the potential energy is
at the bonds. A different test is adding an on-site potential 𝑈 (𝑢𝑛) =
𝜔2
0(1 − cos(𝑞𝑛)) with 𝜔0 = 1. In this case, the value of ⟨𝑃 ⟩ at thermal
quilibrium is again slightly above 𝑁∕2. However, even for the FPUT
ystem the value of 𝑃 = 𝑁∕2 is well within the oscillations of 𝑃 at
hermal equilibrium, indicating that the system is fast approaching it.
his can be confirmed by changing the thermalization condition to

𝑃 > 𝑁∕2 + 6 or about the observed ⟨𝑃 ⟩. The differences are only
pparent at low breather energies 𝐸b before the exponential behavior
akes place.

Despite the differences and for similar values of the parameters, this
system also shows exponential dependence of the thermalization time
for the localized energy delivered, as shown in Fig. 7. Compared to
other systems, Figs. 4–6, for the JJN system the thermalization time
𝑡th increases with increasing coupling constant 𝜅 while decreases with
ecreasing mean thermal energy ℎ.

4.4.3. The physical meaning of localization in JJNs
Let us comment on the physical meaning of the localization for

JNs: the two fundamental equations of the junction are [29]:

𝐼𝑛+1,𝑛 = 𝐼𝑐 sin(𝜙𝑛+1,𝑛) and 𝑛+1,𝑛 =
ℏ
2𝑒

𝛺𝑛+1,𝑛, wit h (9)

𝜙𝑛+1,𝑛 = 𝑞𝑛+1 − 𝑞𝑛 and 𝛺𝑛+1,𝑛 =
d
d𝑡 𝜙𝑛+1,𝑛 = 𝑝𝑛+1 − 𝑝𝑛 , (10)

where 𝐼𝑛+1,𝑛 is the superconducting current across the junction between
two superconducting islands (SCI) 𝑛 and 𝑛+ 1, 𝜙𝑛+1,𝑛 is the different in
phase between the two SCI, 𝑛+1,𝑛 is the potential difference between
SCI, and 𝛺𝑛+1,𝑛 is the instantaneous frequency of the phase difference
between junctions. The critical current 𝐼𝑐 depends on the particular
unction, while ℏ and 𝑒 are physical constants, but in what follows, we
will just use 𝐼𝑐 = 1 and ℏ∕2𝑒 = 1.

If the potential difference across a junction is zero, then 𝛺𝑛+1.𝑛 = 0,
𝑛+1,𝑛 is constant, and 𝐼𝑛+1,𝑛 is a DC current. This is called the DC
osephson junction effect (DC JJE).

However, if the potential and the frequency 𝛺𝑛+1,𝑛 are constant, the
C current becomes an AC current with that frequency. This is called
he AC Josephson junction effect (AC JJE)

In our system the localization appears as a SCI where 𝑞̇𝑛 is large with
 definite sign and oscillations smaller than its value. The frequency
f the phase differences across the two neighboring junctions is then
ell defined and with opposite signs as can be seen in Fig. 8-right

and, therefore, these two junctions experience the JJ AC effect, having
well-defined frequencies larger than the other junctions. The rest of the
unctions experience badly defined and changing frequencies smaller
han the AC junctions. This is illustrated in Fig. 8-bottom for a short

life breather. For longer-lived breathers, the effect is similar but with
thousands of oscillations. This short-lived breather has been chosen so
hat Fig. 8-left can easily be seen in its entirety.

To conclude, for the JJN system, the localization appears not as the
amplitude of the SC current, which is bounded by 𝐼𝑐 , but by localization
in frequency. For the pendula chain analog, the localization is also an
angular frequency with a definite sign, that is a rotating pendulum.
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Fig. 7. (Left) Josephson junction network (JJN): Using thermalization condition 𝑃 > 𝑁∕2, thermalization time 𝑡th on a logarithmic scale as a function of the relative excitation
energy 𝐸b∕ℎ for coupling parameter values 𝜅 = 0.05 and (two upper curves) and 𝜅 = 0.10 (two lower curves) and mean thermal energies ℎ = 0.02 (continuous lines) and ℎ = 0.04
(dashed lines). The exponential behavior for sufficiently large energies is testimony to the nonlinear localization of energy. (Right) Same plot but results were obtained for
thermalization condition 𝑃 > 𝑁∕2 + 6. Differences are only at small 𝐸b as expected. See text.
Fig. 8. (Left:) Josephson junction network (JJN): Example of the route to thermal equilibrium for 𝜅 = 0.05, ℎ = 0.02, for a delivered energy of 𝐸b = 0.40 with 𝑃 = 13. This is a short
thermalization time example, where there are only a few localized oscillations before thermalization. (Right:) Time average value with the standard deviation of 𝛺𝑛+1,𝑛 = d𝜙𝑛+1,𝑛

d𝑡
across each junction. The averaging interval excludes the formation and decaying intervals. (Bottom:) Time dependence of the supercurrent 𝐼 = 𝐼𝑐 sin(𝜙𝑛+1,𝑛) across one the two
excited junctions and another one three sites apart. Other simulations are similar but with thousands of oscillations.
Conclusions

We have explored the route to thermalization in different systems
of oscillators, corresponding to a variety of physical systems. We have
introduced a parameter, the participation number 𝑃 , that measures
the degree of localization of energy in a given system, taking values
between 1 and 𝑁 , the particle number. We have deduced through
an approximate method that its value at thermal equilibrium is 𝑁∕2,
and observed in simulations that, although, not exact, this condition
8 
indicates that the system is very close to thermal equilibrium. We
have developed a method to create an initial thermalized system and
to deliver a defined amount of localized energy, observing the route
to thermalization afterward. For values of the parameters for which
breathers exist, it is observed that the thermalization time has an
approximate exponential dependence on the breather energy, if this
energy is larger than approximately ten times the local average thermal
energy. If breathers do not exist or are unstable, the route to equilib-
rium shows a linear dependence on the thermalization time. In some
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cases, as the quartic hard potential, breathers are extremely stable,
and the thermalization time poses problems to powerful computers,
including a supercomputer cluster, which eschews the statistics for
large breather energies to shorter thermalization times.

To conclude, the existence of breathers in a system has a mea-
surable consequence, an approximate exponential relaxation time to
equilibrium. Their long life may prevent the evacuation of heat in
environments where they are created in huge numbers, such as fusion
reactors.
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Appendix A. Breathers from the anticontinuous limit

We first construct breathers with a given frequency 𝜔𝑏 at the anti-
continuous limit, that is, with zero coupling 𝜅 = 0. They consist of one
r various isolated excited oscillators while the rest of the oscillators
re at rest.
9 
A.1. Anticontinuous limit

The details of the technique have been explained in detail in dif-
ferent publications [8,9,37]. We construct numerically the Fourier
omponents 𝑧𝑘 of the single oscillator of a given frequency, using as

a seed 𝑧𝑘 = 0.3 of values of that order obtaining the initial coordinates.
For stationary breathers, we can fix the initial phase by choosing
𝑝𝑛(0) = 0. Then the system is time-reversible and the solution becomes
etermined by their initial position. The solution becomes 𝑢𝑛(𝑡) =
0,𝑛 +

∑𝑘𝑚
𝑘=1 2𝑧𝑘,𝑛 cos(𝑘𝜔𝑏𝑡), with 𝑘𝑚 an arbitrary maximum value of the

armonic order, that we take as 𝑘𝑚 = 15. By path continuation, we can
btain the initial coordinate as a function of the frequency, i.e., 𝑢0 =
0(𝜔𝑏). We can also obtain the Floquet eigenvalues, which are trivial
ut useful. There are two eigenvalues at +1, corresponding to the phase
ode and growth mode of the isolated oscillator with frequency 𝜔𝑏.
hey are due to the proximity of a solution with slightly different phase
nd frequency, respectively. The rest of the eigenvalues correspond to
mall amplitude perturbation of the oscillators at rest, which produce
armonic oscillations with frequency 𝜔0 given by 𝑢𝑛 = exp(±i𝜔0𝑡),
ith Floquet eigenvalue exp(±i𝜔0𝑇𝑏) = exp(±i2𝜋 𝜔0∕𝜔𝑏). They will be
t angles ±327◦ = ∓33◦ for 𝜔𝑏 = 1.1 and ±240◦ = ∓120◦ for 𝜔𝑏 = 1.5 as
an be seen in Fig. B.1-right.

When we connect the oscillators with 𝜅 > 0, the linear modes will
ave frequencies 𝜔 =

√

𝜔2
0 + 4𝜅 sin2(𝑞∕2), with 𝑞, the wavenumber or

omentum. That is, they will be between frequencies 𝜔0 and 𝜔𝑚𝑎𝑥 =
𝜔2
0 + 4𝜅, with Floquet eigenvalues exp(i2𝜋 𝜔∕𝜔𝑏) approaching towards

+1 where they may produce an instability as they will have the same
frequency as the breather and therefore they will be excited.

Using the initial isolated solution, we can have just two possibilities
for every single time-reversible oscillator coded with the signature 𝜎 =
1 if 𝑢0 > 0 and 𝜎 = −1 if 𝑢0 < 0. Single breathers are obtained for the
signature [0...0100...0].

Appendix B. System with hard quartic potential and harmonic
coupling (QH)

We consider both symmetric hard and soft Klein–Gordon potentials
and harmonic coupling. Then, keeping only the first nonlinear term of
he on-site potential, the Hamiltonian of the system is given by:

𝐻 =
∑

𝑛

𝑝2𝑛
2𝑚

+ 𝑚𝜔2
0

(

𝑢2𝑛
2

+ 𝑠
𝑢4𝑛
4

)

+ 𝜅 1
2
(𝑢𝑛+1 − 𝑢𝑛)2 , (B.1)

where 𝜔0 is the frequency of the isolated oscillator at the linear limit.
Initially, we consider the hard potential, so 𝑠 = +1.

We can re-scale the system with units 𝑢𝐿 = 𝑎 the lattice distance,
𝑢𝑇 = 1∕𝜔0, and 𝑢𝑀 = 𝑚, then, the scaled equation is given by the
Hamiltonian (1):

𝐻 =
∑

𝑛

𝑝2𝑛
2

+ 𝜔2
0

(

𝑢2𝑛
2

+ 𝑠
𝑢4𝑛
4

)

+ 𝜅 1
2
(𝑢𝑛+1 − 𝑢𝑛)2 , (B.2)

where we use the same symbols for the scaled variables. The scaled
solated linear frequency is 𝜔0 = 1, although we keep the symbol to
eep its meaning explicit and such that it is easy to compare with
ther scaling. The value of 𝑢𝑛 should be generally speaking sufficiently

smaller than unity, which is now the lattice distance. Following the
procedure explained below, we find that for hard breathers, the nonlin-
earity parameter 𝑠 = 1 produces amplitudes of about 0.6 for a frequency
𝜔𝑏 = 1.2, which seems reasonable. Note that a change in the distance
cale in 𝑢̄ = 𝑎𝑢 is equivalent to a change in the parameter to 𝑠̄ = 𝑎2𝑠, so
can always be chosen to be the unity.

B.1. Breathers with hard quartic potential

When we increase the coupling parameter 𝜅 starting with a single
excited oscillator, by path continuation, we can obtain the Fourier com-
ponents of 𝑧 of the time-reversible, single breather with frequency
𝑘,𝑛
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Fig. A.1. System with quartic hard potential (QH): (Left:) Profile of breathers with 𝜔𝑏 = 1.2 as a function of the coupling parameter 𝜅. For 𝜅 = 1.1, the breather becomes unstable.
(Right:) Maximum value of the initial condition (dashed line) and energy (continuous line) as functions of the coupling parameter 𝜅.
Fig. B.1. System with quartic hard potential (QH): (Left:) Value of the initial coordinate 𝑢0 for a single oscillator with hard potential as a function of the frequency 𝜔𝑏. (Right:)
Angles of the Floquet eigenvalues with zero coupling corresponding to the 𝑁 − 2 oscillators at rest and the single excited oscillator.
e
a
a

b
w

p
a

𝜔𝑏, given by 𝑢𝑛(𝑡) = 𝑧0,𝑛 +
∑𝑘𝑚

𝑘=1 𝑧𝑘,𝑛 cos(𝑘𝜔𝑏𝑡), the Floquet eigenvalues
with modulus corresponding to the phonons having frequencies be-
tween 𝜔0 and 𝜔max =

√

𝜔2
0 + 4𝜅. Therefore, the maximum value for

corresponds to 𝜔𝑚𝑎𝑥 = 𝜔𝑏 or 𝜅max = (𝜔2
𝑏 − 𝜔2

0)∕4. In Fig. A.1-left we
can observe the profile of breathers when increasing 𝜅. For example,
for 𝜔𝑏 = 1.2, 𝜅max = 0.11 and 0.31 for 𝜔𝑏 = 1.5. Fig. A.1-right shows
the dependence of the maximum value of the initial coordinates of the
breather and its energy as functions of 𝜅. As predicted, the breather
annot be continued from 𝜅 ≃ 0.11.

We will use the value of 𝜅 = 0.05 so that the coupling is significant
but breathers are well localized and not too close to the instability.

B.2. System with soft quartic potential

We can modify the system so that the on-site potential becomes soft
hanging the sign in front of the anharmonic term. That is, 𝑈 (𝑢𝑛) =
𝜔2
0(

1
2 𝑢

2
𝑛 − 1

4 |𝑠| 𝑢
4
𝑛). In this case, the potential has a maximum at 𝑢𝑛 =

∕
√

|𝑠|. If 𝑢𝑛 crosses the potential barrier, then there is an infinite
negative potential well, which is not physically sound. Keeping with an
nterparticle distance of unity, it is therefore convenient to use |𝑠| = 1,
o that the values of |𝑢𝑛| < 1 are outside the negative well and inside
he safe well.

In this case, the single oscillator has a frequency that becomes
smaller as the amplitude increases and is, therefore, smaller than 𝜔0.
The Floquet eigenvalues corresponding to the oscillators at rest are
10 
exp(i2𝜋 𝜔0∕𝜔𝑏) and have angles larger than 2𝜋 that will attain 3𝜋 at
𝜔𝑏 = 2∕3𝜔0 and 4𝜋 at 𝜔𝑏 = 4𝜋. At those frequencies, the rest of the
igenvalues will cross with the possibility of leaving the unit circle,
nd the solution will become unstable for the coupled system. Both the
mplitudes and the Floquet angles are shown in Fig. B.2.

We can obtain the breathers by path continuation for 𝜅 > 0. The
reathers are bell-shaped as they derive from the mode with zero
avenumber and therefore the oscillators vibrate in phase. As the

phonon maximum frequency increases to 𝜔max =
√

𝜔2
0 + 4𝜅, it will

eventually coincide with the second harmonic of the breather, and the
ath continuation will fail. This corresponds to 𝜔𝑏 = 0.9 and 𝜅 = 0.49,
 fairly large value that we do not consider, limiting 𝜅 to 0.4 in this

calculation. The profile, energies, and maximum amplitude are shown
in Fig. B.3.

Appendix C. The Frenkel–Kontorova, Lennard-Jones system (FKLJ)

The Hamiltonian for the FKLJ system is given in Eq. (6). We choose
the parameters so that it is easy to compare with the previous systems
(QS). Specifically, the on-site potential and the interatomic potential
have the same first (zero) and second derivatives, i.e., 𝜔0 = 1, and, as
the negative quartic potential has a potential barrier at 𝑥 = ±1, we also
impose that condition. That means that the lattice distance is 𝜎 = 2. The
third condition is that the relative coupling parameter at low values of
𝑢 is also equal to the quartic soft potential coupling parameter.
𝑛
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Fig. B.2. (Left:) Value of the initial coordinate 𝑢0 for a single oscillator with soft potential with |𝑠| = 1 as a function of the frequency 𝜔𝑏. (Right:) Angles of the Floquet eigenvalues
with zero coupling corresponding to the 𝑁 − 2 oscillators at rest and the single excited oscillator for the same system.
Fig. B.3. System with quartic soft potential (QS): (Left:) Profile of breathers with soft potential and 𝜔𝑏 = 0.9 as a function of the coupling parameter 𝜅. For 𝜅 = 1.1, the breather
ecomes unstable. (Right:) Maximum value of the initial condition (dashed line) and energy (continuous line) as functions of the coupling parameter 𝜅.
a

𝑞

We choose a formulation (i.e., (6)) so that the scaling becomes
bvious:

𝐻 =
∑

𝑛

(

1
2
𝑝2𝑛+𝑈0

(

1 − cos
(

2𝜋
𝑢𝑛
𝜎

))

+ 𝑉0

⎡

⎢

⎢

⎢

⎣

1 + 1
(

1 + 𝑢𝑛+1−𝑢𝑛
𝜎

)12
− 2

(

1 + 𝑢𝑛+1−𝑢𝑛
𝜎

)6

⎤

⎥

⎥

⎥

⎦

)

,

(C.1)

where 𝑈0 = 𝜔2
0𝜎

2∕(2𝜋)2, and 𝜎 is both the interatomic distance and
he distance of the minimum of the LJ potential, i.e., the separation at
quilibrium between atoms. 𝑉0 is the depth of the LJ potential, which is
hifted so that the minimum energy is zero. The harmonic FK frequency
s 𝜔0 as shown below. The Taylor series up to the second power of the
amiltonian (C.1) yields:

𝐻𝐿 =
∑

𝑛

(1
2
𝑝2𝑛 +

1
2
𝜔2
0𝑢

2
𝑛 +

1
2
𝜔2
0𝜅(𝑢𝑛+1 − 𝑢𝑛)2

)

, (C.2)

where 𝜅 is the relative coupling with respect to the on-site potential
and it is given by 𝜅 = 72𝑉0∕𝜔2

0𝜎
2. In the BEL system [33], 𝜔0 = 2𝜋 and

= 1, so 𝜅 = 72𝑉0∕(2𝜋)2. In the present work, as 𝜔0 = 1 and 𝜎 = 2,
𝜅 = 72𝑉0∕22 = 18𝑉0, or 𝑉0 = 22𝜅∕72 = 𝜅∕18, that is, 𝑉0 = 0.00278 for
𝜅 = 0.05 and 𝑉0 = 0.00556 for 𝜅 = 0.1.

The comparison of the different potentials is shown in Fig. C.1. We
can see that the FK potential well has small energy, being the repulsive
interaction the most important component.

From the anticontinuous limit, we can construct bell-shaped, single
breathers (see Fig. C.2) with frequencies 𝜔𝑏 below the bottom of the
phonon band 𝜔 = 1, until 1.5𝜔 hits the top of the phonon band
0 𝑏

11 
𝜔𝑡 =
√

𝜔2
0 + 4𝜅. .

Appendix D. Breathers in the Josephson junction network (JJN)

As presented in Section 4.4, the JJN system (7) can also be written
as:

𝐻 =
∑

𝑛

( 1
2
𝑝2𝑛 + 𝜅(𝑉 (𝑞𝑛+1 − 𝑞𝑛) − 𝑉 (𝑞𝑛 − 𝑞𝑛−1))

)

, (D.1)

with 𝑉 (𝑥) = 1 − cos(𝑥).
This system has no on-site potential and it is a non-polynomial vari-

nt of the Fermi–Pasta–Ulam system (FPU) [38], for which breathers
are studied in Ref. [39], that provides conditions for the existence of
breathers that we use below.

The corresponding dynamical equations 𝑝̇𝑛 = 𝑞𝑛 = −𝜕 𝐻∕𝜕 𝑞𝑛 are:

̈𝑛 = 𝜅
(

𝑉 ′(𝑞𝑛+1 − 𝑞𝑛) − 𝑉 ′(𝑞𝑛 − 𝑞𝑛−1)
)

. (D.2)

To use the results in Ref. [39], we have to re-scale the time so that
𝜅 is substituted by the unity. It is easy to see that 𝜅 = 𝑐2, with 𝑐, the
sound velocity, that is, the limit of both the phase velocity and group
velocity when the wavenumber 𝑘 → 0. Then, 𝑡 = 𝑡∕𝑐, 𝜔 = 𝑐 ̃𝜔, where
the variables with tilde are the ones in the cited reference.

Then, we need to calculate the four derivatives of 𝑉 at zero:

𝑉 ′(0) = 0; 𝑉 ′′(0) = 1; 𝐾3 ≡ 𝑉 (3)(0) = 0; 𝐾4 ≡ 𝑉 (4)(0) = −1 . (D.3)

The phonon band is given by 𝜔(𝑘) = 2𝑐 sin(𝑘∕2). The minimal value
is 𝜔 = 𝜔(0) = 0, i.e., it is an acoustic dispersion law, and the
min
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Fig. C.1. (Left:) Plot of the different on-site potentials 𝜅 = 0.05. (Right:) Plot of the different interatomic interaction potentials for 𝜅 = 0.05.
Fig. C.2. System FKLJ: (Left:) Profile of the breathers with 𝜅 = 0.05 as a function of the frequency. (Right:) Plot of amplitude and energy with 𝜅 = 0.05 as a function of the
frequency.
maximum is 𝜔max = 𝜔(𝜋) = 2𝑐. The existence of small amplitude
reathers with frequency above 𝜔max = 𝜔(𝜋) = 2𝑐 depends on the sign
f the quantity 𝐵 = 0.5𝐾4 − 𝐾2

3 = 0.5(−1) − 03 = −0.5. If it is negative,
s in our case, then there are no small amplitude breathers.

With 𝐵 < 0, there are large amplitude breathers if 𝐾4 > 0 and
𝐾3| <

√

3𝐾4, conditions that do not hold in our system. Therefore, we
are not in the condition where there are proofs of breather existence.

To find out which type of localization is there we analyze the
evolution of the system for different values of the parameters, for

b = 0.40 and 𝜅 = 0.05. The localization shows a relatively long
thermalization time as shown in Section 4.4.

Data availability

Data will be made available on request.
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