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The observation of the Fermi-Pasta-Ulam-Tsingou (FPUT) paradox, namely the lack of equipartition in the
evolution of a normal mode in a nonlinear chain on unexpectedly long times, is arguably the most famous
numerical experiment in the history of physics. Seventy years after the original publication, most studies in
FPUT chains still focus on long wavelength initial states similar to the original paper. It is shown here that all
characteristic features of the FPUT paradox are rendered even more striking if modes with short(er) wavelengths
are evolved instead. Since not every normal mode leads to equipartition, we also provide a simple technique
to predict which modes, and in what perturbation order, are excited starting from an initial mode (root) in α-
FPUT chains. The excitation sequences associated with a root are then numerically shown to spread energy
at different speeds, leading to prethermalization regimes that become longer as a function of mode excitation
number. This effect is visible in observables such as mode energies and spectral entropies and, surprisingly,
also in the time evolution of invariant quantities such as Lyapunov times and Kolmogorov-Sinai entropies. Our
findings generalize the original FPUT experiment, provide an original look at the paradox’s source, and enrich
the vast literature dedicated to studying equipartition in classical many-body systems.
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I. INTRODUCTION

The numerical experiment of Fermi, Pasta, Ulam, and
Tsingou (FPUT) [1] was simultaneously the first computa-
tional approach in the study of out-of-equilibrium many-body
systems and a source of considerable headache shared
by generations of physicists in the past 70 years [1–4].
A proper understanding of FPUT’s findings—which con-
tradicted the standard knowledge of the time and were
considered paradoxical—relies heavily on modern mathemat-
ical and physical tools unavailable to the original authors, e.g.,
a mature formulation of Kolmogorov-Arnol’d-Moser (KAM)
theory [5–7], resonance overlap criteria [8], and Birkhoff-
Gustavson normalization [9–13], and also on the power of
modern computers. Sitting at the intersection of several fields,
it is no surprise that this topic has drawn sustained interest
from researchers in nonlinear dynamical systems and statisti-
cal mechanics.

The original FPUT experiment consists of evolving the
fundamental mode of a harmonic chain in a weakly per-
turbed, nonintegrable system in which this mode is no longer
a stationary state. More specifically, the authors studied the
evolution of the first normal mode of a discretized string
governed by the Hamiltonian

H (p, x) =
N∑

j=0

[
p2

j

2
+ (x j+1 − x j )2

2
+ α(x j+1 − x j )3

3

]
, (1)

where p j and x j are the momentum and position of each
discretized mass in the chain, α=1/4 and fixed boundary
conditions were used, namely x0=xN+1 = 0. A very small en-
ergy density was chosen for the initial state, i.e., h=H (p, x)/
N � 1, which limited the contribution of the cubic term and
rendered the system a weak perturbation of the integrable
harmonic chain obtained by setting α=0. Even with such a

weak perturbation, the dynamics under (1) is chaotic, which
motivated the original expectation that the energy of the ini-
tially excited mode would rapidly spread among all other
normal modes, leading to equipartition. However, what was
observed was quite different: Not only did energy equipar-
tition fail to occur over long timescales, but the system
exhibited near recurrences, with energy periodically returning
to the initial mode and many other modes remaining only
weakly excited throughout the evolution [14].

Today, the convergence of numerous studies provides a
coherent explanation for the originally observed lack of en-
ergy equipartition in finite, weakly anharmonic systems (for
reviews, see Refs. [2,4,15–18])—although speculations on
whether or not the original FPUT setup would eventually
reach equilibrium have become a prominent topic in meta-
physics. First, it is important to note that the energy density
chosen by FPUT was extremely small; indeed, a subsequent
investigation by Chirikov and Izrailev showed that larger en-
ergy densities do lead to energy equipartition [19]. Second,
KAM theory was later shown to apply to many FPUT-like
systems, rigorously proving the existence of an energy thresh-
old below which equipartition does not take place [20–23].
Third, and most relevant to this manuscript, is the fact that
the initial condition used by FPUT is highly atypical, corre-
sponding to a stationary solution of the nearby harmonic chain
[24]. Moreover, this atypical initial state lies close to exact,
time-periodic stationary solutions of the anharmonic system,
known as q-breathers [25,26]. This stands in sharp contrast to
typical initial conditions which, when expressed in the nor-
mal mode basis, involve combinations of all of its elements.
Since these modes form the canonical action variables of the
harmonic chain, perturbing a typical initial condition leads to
an immediate coupling of all actions, whereas in the FPUT
case, only a single action is perturbed. It is therefore natural
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that the resulting time evolution in the original FPUT study
was highly atypical, reflecting the atypicality already present
in the initial state itself.

A further important point is that atypical initial states are
not all alike. Their time evolution depends sensitively on
which initial mode, or root, is excited. The dynamics of roots
is characterized by excitation sequences that spread in mode
space and, depending on relatively simple algebraic rules,
completely or only partially fill it. The case of complete fill-
ing corresponds to thermal roots, for which time-dependent
observables generally reach equipartition. In contrast, if the
root excites only a subset of modes, known as its bush [27],
then equipartition fails to occur, and the corresponding root is
termed nonthermal.

A particularly striking example of nonthermal roots is
provided by q-breathers: families of exact, time-periodic so-
lutions that remain localized in mode space and reduce to
a single-mode excitation as the anharmonicity tends to zero
[25,26]. These states show that certain normal modes and
their perturbations can remain stationary even in the pres-
ence of nonlinearity, offering remarkable counterexamples to
the expectation that observables in nonlinear classical many-
body systems necessarily undergo some form of equilibration.
They also reveal that ergodicity-breaking behavior can arise
not only as a function of decreasing energy density, as in
the original FPUT experiment, but also as a consequence
of the choice of initial state, as we shall explore in detail
here.

This manuscript is devoted to investigating the proper-
ties of atypical initial conditions (normal modes) in FPUT
chains, and also comparing them to the ones of typical (ran-
dom) ones. We provide explicit algebraic rules to determine
which modes are excited given an initial root, together with
their short-time perturbation order in α. We then numerically
investigate the time evolution of thermal roots of several
different excitation numbers, showing that the paradox asso-
ciated to the fundamental mode is substantially maximized
for higher excited roots, e.g., the prethermal regime and its
metastable plateaus become increasingly longer as a function
of root excitation number for a fixed energy density. This is
shown both by a direct tracking of mode energies as a function
of time and by computing equipartition times from spectral
entropies.

We also show that the root excitation number impacts
quantities that do not depend on the initial state. Indeed, albeit
Lyapunov times and Kolmogorov-Sinai (KS) entropies being
invariant with respect to a large number of transformations
and being constant in an ergodic system regardless of the
initial state used for computing them [28], we show here that
their transient properties are strikingly different from those
of typical initial states and clearly reflect the fact that the
system is trapped in phase space [24]. More specifically, both
the maximal Lyapunov exponent (the inverse of the Lyapunov
time) and the Kolmogorov-Sinai entropy show a dip in their
time evolution when computed from roots, which is absent
if the initial state chosen is typical. Moreover, the duration
and depth of this dip increases with excitation number, show-
ing that excited modes remain trapped for even longer in
near-integrable portions of phase space, likely due to their
proximity to q-breathers.

The paper is structured as follows. Section II discusses
the model, which is entirely focused in Eq. (1), introducing
normal modes, spectral entropies and Lyapunov data which
will be thoroughly employed in the rest of the paper. Sec-
tion III presents the rules for computing excitation sequences
for roots, which are then evolved in an FPUT chain with
N = 63 masses in Sec. IV. A discussion of our findings can
be found in Sec. V, together with a conclusion in Sec. VI. An
Appendix is also included providing examples of pathological
numerical behavior due to bush instability.

II. MODEL AND OBSERVABLES

We restrict our analysis to cubic FPUT chains, also known
as the α-FPUT model, with Hamiltonian (1). In the fol-
lowing we recall how to rewrite the FPUT Hamiltonian in
normal mode (or phonon, or eigenmode) basis, and intro-
duce quantities such as mode energies, spectral entropies and
equipartition times. We then describe how to obtain important
invariant quantities that will be used in the following sections,
such as Lyapunov times and Kolmogorov-Sinai entropies.

A. Normal mode basis

Since Eq. (1) has N degrees of freedom its harmonic limit
has a set of N normal modes, denoted {Pj, Qj} j , with which
we can rewrite the position and momentum in Eq. (1) at any
time t as(

p j (t )
x j (t )

)
=

√
2

N + 1

N∑
n=1

(
Pj (t )
Qj (t )

)
sin

(
π jn

N + 1

)
, (2)

each mode having frequency and energy

ω j = 2 sin

[
π j

2(N + 1)

]
, Ej = P2

j + ω2
j Q

2
j

2
. (3)

In these canonical coordinates, the Hamiltonian (1) takes the
form [20]

H (P, Q) = 1

2

N∑
j=1

(
P2

j + ω2
j Q

2
j

) + α

3
√

2(N + 1)

×
N∑

i, j,k=1

Bi, j,k ωi ω j ωk QiQjQk, (4)

where [29]

Bi, j,k = δi+ j,k + δk+i, j + δ j+k,i − δi+ j+k,2(N+1). (5)

Note that Bi, j,k is invariant with respect to permutations of its
indices.

B. Spectral entropy

Equation (1) is much easier to numerically deal with
than Eq. (4). However, we are interested in several properties
that need to be computed in the normal mode basis, such as
the mode energies themselves and the [normalized] spectral
entropy

η(t ) = S(t ) − log N

S(0) − log N
, (6)
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where the Shannon entropy and normalized energies are
given, respectively, by

S(t ) = −
N∑

j=1

ρ j (t ) log ρ j (t ), ρ j (t ) = Ej∑N
j=1 Ej

. (7)

Spectral entropy has been used several times to quantify
equipartition in nonlinear systems [4,24,30,31]. The logic for
employing it is simple: If equipartition is reached, then ρ j (t )
will be stationary and the same for every mode j, freezing
η(t ) at some value 〈η〉. If one assumes a Gibbs distribution
at equilibrium, then 〈η〉 can be calculated analytically as a
function of the Shannon entropy of the initial state and is
given by

〈η〉 = 1 − γ

log N − S(0)
, (8)

where γ ≈ 0.5772 is the Euler constant [32]. Since η(0) = 1
for any initial state, one expects η(t ) to decrease and follow
a complicated and possibly highly oscillatory evolution until
eventually hitting its stationary value. Once this happens the
dynamics cannot, at least on average, depart significantly from
thermal oscillations around 〈η〉. It is then natural to consider
that equipartition is reached once η(t ) hits its equilibrium
value for the first time [31]. Such first-passage time furnishes
our definition of equipartition time, τeq, and is appealing be-
cause it does not require any ad hoc assumptions.

C. Lyapunov invariants and Kolmogorov-Sinai entropy

Equipartition time as defined in Sec. II B is, evidently,
attached to the observables being monitored, namely the
mode energies. Different observables will generally reach
equipartition at different times (if at all), such that observable
equipartition does not actually measure properties intrinsic to
the system. Nevertheless, since mode energies are conserved
in the unperturbed harmonic chain, one knows well how these
observables should behave upon approaching an integrable
limit, i.e., equipartition should slow down and eventually stop
for sufficiently small energy densities.

There is, however, an observable-independent timescale
that is completely intrinsic to the system and should
not depend on the initial state, given by the Lyapunov
time (the inverse of the maximal Lyapunov exponent). Since,
like the maximal Lyapunov exponent (MLE), all exponents
in the Lyapunov spectrum (LS) are invariant with respect
to homeomorphisms [28], the LS provides a valuable set
of timescales related to the average “pull” along each 1-
dimensional submanifold that forms the hyperbolic skeleton
of the system’s dynamics in phase space [33]. The information
in the LS can also be condensed in the form of a scalar, the
Kolmogorov-Sinai entropy, which by Pesin’s theorem can be
obtained as the sum of all positive exponents in the LS [34].

To compute the LS we employ the well-known prescription
of [35,36], which amounts to computing the spectrum of the
symmetric matrix


(p0, x0) = lim
t→∞[MT (p0, x0; t )M(p0, x0; t )]1/2t . (9)

In the above, M represents the system’s stability matrix,
obtained by solving Hamilton’s equations in tangent space:

dM(p, x; t )

dt
= JHess[H (p, x)]M(p, x; t ), (10)

where Hess is the Hessian with respect to (p, x). Since the sta-
bility matrix has to be computed along a trajectory, the above
equation is solved in parallel with Hamilton’s equations for
an initial phase-space point (p0, x0) until a final time long
enough to result in a converged LS. During this evolution,
one must also perform QR-diagonalizations of M to avoid
numerical denegenacies, as is well-known and described in,
e.g., Eq. [36].

As can be seen in Eq. (9), the stability matrix will gen-
erally depend on the trajectory along which it is calculated,
i.e., on the initial phase-space point (p0, x0). However, for
a sufficiently large number of degrees of freedom and en-
ergy density, phase space will consist of a single metrically
intransitive set that is equally accessible to all trajectories
in the system [37,38]. Equivalently, one can formulate this
previous property as stating that, for sufficiently large N
and h=H (p, x)/N , the system lies outside the KAM regime
in which phase space can be split into a chaotic web and
pockets of near-integrability. Thus, all trajectories are “free
to roam” around the entire accessible phase space, and the LS
is expected to be independent of the trajectory along which
it is computed. This independence is a stronger evidence of
ergodicity than any conclusion drawn from time-dependent
observables, and can be verified more succinctly by compar-
ing KS entropies instead of full LS.

III. EXCITATION SEQUENCES

We start this section by writing an abridged version of
Newton’s second law for a given mode i, obtained from
Eq. (4):

Q̈i + ω2
i Qi ∼ α

N∑
j,k=1

Bi, j,k QjQk . (11)

Thus, the mode Qi is excited by a single mode Qj or a mixture
of modes Qj and Qk . Excitations from single modes have j=k
and the coupling tensor assumes the form

Bi, j, j = δi+ j, j + δ j+i, j + δ2 j,i − δi+2 j,2(N+1)


⇒ Bi, j, j = δi,2 j − δi,2(N+1)−2 j, (12)

where the first two terms vanished because j and i are never
zero. Now, for mixed excitations we have j �=k, so

Bi, j,k = δi+ j,k + δk+i, j + δ j+k,i − δi+ j+k,2(N+1)


⇒ Bi, j,k = δi,k+ j + δi,|k− j| − δi,2(N+1)−( j+k). (13)

The above expression is composed of an ascending term,
namely δi,k+ j , which dictates which higher-order mode
to excite starting from j and k; a right reflection term,
δi,2(N+1)−( j+k), which dictates which term to excite if
j+k>(N+1), i.e., if the next mode is too large and leaves
mode space; and a descending term, δi,|k− j|, which propagates
the excitation backward in mode space and is also responsible
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for controlling left reflections, which take place when the next
excited mode is smaller than zero.

A. First excited mode and q-breathers

Initializing the system in a root Qr means setting Qj = 0
unless j = r. The first excitation cycle, therefore, starts with
a lone mode Qr , which by (12) excites the modes i = 2r and
i = 2(N−r+1). If the first condition is met, then the second
δ will be one iff r = (N+1)/2, with N+1 even. Thus, if
the chain has an odd number of sites and the chosen root is
Q(N+1)/2, then all coefficients of the coupling tensor vanish
and the energy remains forever localized in the root: this mode
is a q-breather.

Now, assuming that only the second Kronecker δ in Eq.
(12) vanishes, then the only mode that is excited starting from
Qr is Q2r [26,39,40]. If, however, only the first δ vanishes,
then the first excited mode is obtained after a reflection and is
given by Q2(N−r+1). These scenarios are fundamentally iden-
tical but, for simplifying writing excitation sequences, we will
always assume that the root mode fulfills 2(r−1) < N , so that
the first excited mode will always be Q2r .

Moving foward, a naïve perturbative argument allows us
to estimate how the amplitude of Q2r scales with the anhar-
monicity parameter, α, for short times. It goes as follows:
Since Qr carries all the initial energy in the system and α is
small, the solution Qr (t ) starts close to a sine or a cosine, as
can be seen by setting α = 0 in Eq. (11). This approximation
scales as O(α0) [26]. Now, Q2r emerges from the product
QrQr in Eq. (11), which is also of 0th order in α, but the
α multiplying the right-hand side of Eq. (11) gives Q2r (t ) a
O(α1) dependence for short times [41].

B. First ascending sequence

The second excited mode is obtained from Qr and Q2r .
Evidently, Q2r excites Q4r due to Eq. (12) and, since Q2r is
of O(α1), the amplitude of Q4r (t ) goes as α Q2rQ2r = O(α4)
for short times. Mode Q3r=r+2r is also excited according
to Eq. (13), but now the short-time amplitude will scale as
α QrQ2r = O(α2). By induction, the first ascending sequence
for a root Qr is given by

{Qr, Q2r, Q3r, Q4r, Q5r, . . . , Qar}. (14)

It includes all multiples of the root mode ordered by how their
short-time dynamics scales with α, namely O(αa−1), until a
reflection takes place in Eq. (13), i.e., until j+k = 2(N+1)
for some Qj and Qk . The reflection, however, will only excite
new modes if 2(N+1)−( j+k) is not a multiple of r, since
otherwise the terms would have already been excited during
the ascending sequence.

C. First descending sequence

At the end of the first ascending sequence every term is
a multiple of the root, r. Thus, at the reflection, substituting
j+k = a r in the last δ of Eq. (13) singles out r = 2(N+1)/a,
allowing us to state two important facts:

(1) If r divides 2(N+1), then the first ascending sequence
is reflected into itself. This shows, in particular, that Q2 is
nonthermal for all N , since 2(N+1) is a always divisible by 2

[39,40]. It also shows that Q1 is a trivial thermal root, since it
excites all modes in the first ascending sequence for any N ;

(2) The reflection takes place when a multiple of r is larger
than N for the first time, i.e., when Qj = Q(a+1)r . Evidently
this mode lies outside mode space and the excited mode is
actually Q2(N+1)−(a+1) r after the reflection. A consequence is
that even roots can never excite odd modes, since for even
modes 2(N+1)−(a+1) r is always even [40]. This shows that
Q2r are nonthermal roots for all r and all N .

Once a reflection occurs, the selection rule for | j−k| gen-
erates a descending sequence starting from Q2(N+1)−(a+1) r ,
namely,

(Q2(N+1)−(a+2) r, Q2(N+1)−(a+3) r, . . . ). (15)

The descent continues in multiples of r until the next mode
would exit the chain, i.e., until 2(N + 1) − (a + b) r < 0. De-
spite the reflection, it is important to note that each term in the
descending sequence comes from a product like QarQbr , and
will therefore have an amplitude that scales perturbatively as
O(αa+b−1) for short times, just as in the ascending sequence.
This shows both ascending and descending sequences can be
tied together and monotonically ordered based on how their
short-time solutions scale with α.

D. Full excitation sequences

Once the first descending sequence is over, another re-
flection takes place, now going from left to right, mediated
by δi,| j−k| in Eq. (13). Substituting the last mode number
from the descending sequence in this δ, we see that the
excited mode after this reflection is Q2(N+1)−(a+b) r+r . The
second ascending sequence will start from this mode num-
ber, once again ascending in steps of r until 2(N + 1) −
(a + b − c)r > N . Then, we have another reflection from left
to right that excites mode 2(N + 1) − [2(N + 1) − (a + b −
c)r − r] = (a + b − c + 1)r, and so on. Instead of writing full
abstract sequences, we now provide a few examples showing
how easy it is to write them in practice.

Let us start with a chain with N = 11 masses. Since
2(N+1) = 24, the only three nontrivial thermal roots in this
chain are Q5, Q7 and Q11. The root Q3 is evidently nonthermal
since it divides 24 (cf. Sec. III C), but let’s take a look at its
excitation sequence. Denoting a sequence starting from root r
in a system with N normal modes by SN

r , the first ascending
sequence is S11

3 = {Q3, Q6, Q9}, and we stop here because the
next term falls outside mode space. The reflection term comes
from i = 2(N+1)−(6+9) = 9, which is already excited. This
will be now propagated backwards to Q6 and Q3 according
to Eq. (13), retracing the ascending sequence and never ex-
citing any new mode. Now, for the leftmost reflection, the
excited mode is Q|3−3|, which does not exist. Thus, the bush
of Q3 is given by {Q3, Q6, Q9}. This contradicts a statement
made in Ref. [40], which states that all odd modes should
be excited if r and N are relatively prime, but is verified
numerically in Fig. 1(a).

Let us now consider what happens to Q3 for
N = 12 instead. The first ascending sequence is now
updated to {Q3, Q6, Q9, Q12}. The reflection gives
i = 2(N+1)−(12+3) = 11, which was not previously
excited and is not a multiple of r. The next excited modes
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FIG. 1. Evolution of mode energies for the root Q3 in an α-FPUT
chain with (a) N = 11 and (b) N = 12 masses, both for h ≈ 0.16 and
α = 1/4. The root Q3 is only thermal in the latter case, while in the
former its bush is composed of all multiples of 3 that are smaller than
11. The mode excitation sequence in panel (b) is the same as the one
predicted using the coupling coefficients, Eq. (17).

will then be 11−3 = 8, 11−6 = 5, etc, and the full excitation
sequence is

S12
3 = {Q3, Q6, Q9, Q12, Q11=26−(12+3),

Q8, Q5, Q2, Q1=|2−3|, Q4, Q7, Q10}, (16)

where modes are ordered by how their short-time solutions
scale with α. This excitation sequence is seen to match nu-
merics in Fig. 1(b).

As another example, for S13
3 we have

S13
3 = {Q3, Q6, Q9, Q12, Q13=28−(12+3),

Q10, Q7, Q4, Q1, Q2=|1−3|, Q5, Q8, Q11}, (17)

and, for S13
5 ,

S13
3 = {Q5, Q10, Q13=28−(10+5), Q8, Q3, Q2=|3−5|,

Q7, Q12, Q11=28−(12+5),

Q6, Q1, Q4=|1−5|, Q9}. (18)

E. Mode connections and amplitudes

Excitation sequences such as Eqs. (17) and (18), and also
the trivial sequence generated by Q1, completely fill mode
space for N = 13. However, these sequences do not pro-
vide insight into how energy is exchanged between excited
modes—an aspect we will briefly explore in the following.

Starting from Eq. (17), we see that the pair that most
strongly connects to Q13 in S13

5 is (Q5, Q10), since the right-
hand side of Eq. (11) gives α Q5Q10 = O(α2). There are also
connections formed by other pairs, such as Q5 and Q8, but
these connections are of higher order in α, e.g., α Q8Q5 =
O(α4). Thus, the short-time regime will see Q13 exchanging
energy primarily with Q5 and Q10. The situation is similar in
S13

3 in Eq. (18), where (Q12, Q3) and (Q9, Q6) both connect
to Q13 and have weighs of O(α4). The case of S13

1 is rather
extreme, since the sum or difference of any two mode numbers
that equals 13 or 15 all connect to Q13, and all connections
scale as O(α12).

The argument above sheds light on why energy remains lo-
calized in a subset of modes for short times, but the simplified
form of Eq. (11) glosses over the multiplier ωiω jωk in Eq. (4).
These frequencies ω, as seen in Eq. (3), increase monotoni-
cally for higher mode numbers. A consequence is that, despite
Q3 in S13

1 and Q13 in S13
5 both scaling perturbatively as O(α2),

the amplitude of Q13 in S13
5 will lie above the one of Q3 in S13

1
for short times if the roots are excited with the same energy
density. The same conclusion could be drawn from noticing
that, for a fixed energy density, energy has to be shared among
a smaller subset of excited modes in S13

5 when compared to
S13

1 in the short-time regime, rendering local energies larger.
These larger energies take longer to spread to other modes,
since Q13 in S13

5 has exactly the same number of connections
as Q3 in S13

1 (and they are also of the same order). Note also
that the next thermal root in S13

r would be r = 7, but this mode
is a q-breather for N = 13. Thus, increasing mode number is
tantamount to approaching a state for which energy does not
spread in mode space, which offers a more qualitative way
of interpreting the slowing down of energy equipartition for
increasing r.

IV. NUMERICAL EXPERIMENTS

In this section we perform computations in the α-FPUT
chain (1) with N = 63 sites. This value of N is chosen because
2(N+1) = 128 is not divisible by any odd integer other than
1, such that all odd roots are thermal for this chain. Although
initial states, final propagation times and energy densities will
vary, evolution is always computed using an optimized second
order symplectic integrator with step size �t = 0.2 [42]. This
results in a maximum relative energy error of around 10−3

for the largest energy densities chosen, and much smaller
for most of them. We will focus on the evolution of random
initial conditions and the first five odd roots Q1, Q3, Q5,
Q7, and Q9. The sampling of all initial conditions starts by
setting x(0) = 0. Then, for random states, each momentum
component is drawn from a Maxwell-Boltzmann distribution,
while for mode Qk we have momentum components fixed as
p j (0) = sin[πk j/(N+1)]. Once sampled, momenta are then
renormalized to achieve the desired energy density for both
types of initial conditions.

A. Metastable plateaus

Section III described how energy can remain localized
within a small subset of modes before spreading throughout
mode space: The higher excited the root, the smaller the subset
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FIG. 2. Evolution of mode energies for the first five odd modes, namely: (a) Q1; (b) Q3; (c) Q5; (d) Q7; (e) Q9; and (f) a random initial
condition, all with energy density h = H (p, x)/N ≈ 0.085 in an α-FPUT chain with N = 63 and α = 1/4. Line colors correspond to mode
frequencies, going from lower (blue) to higher (green), with their equilibrium value shown as a black dashed line. Equipartition times (orange
triangles) are defined as the instant the time-evolving spectral entropy, shown in black in the inset, first attains its equilibrium value 〈η〉, given
by the horizontal red line.

of excited modes and the larger their amplitudes, such that
more time is needed to distribute their energy among other
modes. During this transfer time the dynamics is mostly lo-
calized within the subset of excited modes, which essentially
“wait” and form the metastable plateaus prominent in FPUT
literature [14,18,43].

The well-known fact that the metastable plateaus associ-
ated to roots become more visible at lower energy densities
is unsurprising, since in the limit of zero energy density such
modes are normal modes of the associated harmonic lattice.
However, the behavior of plateaus for excited roots was not
previously addressed. To this end, Fig. 2 shows a comparison
of evolving mode energies and spectral entropies for the α-
FPUT chain and initial states described in the introduction
to this section. Figure 2(a) displays the standard mode en-
ergy dynamics found in literature: energy initially placed in

Q1 monotonically spreads to all other modes and eventually
results in energy equipartition, with all Ek’s converging to the
mean energy h = H (p, x)/N (black dashed line). Metastable
plateaus are clearly visible in the prethermal regime, in which
a measurement would indicate that the system is not ergodic
and cannot be described by equilibrium statistical mechanics.
This statement is evidently incorrect, as waiting longer would
result in a system that does display statistical behavior.

The approach from an out-of-equilibrium initial state to-
ward a thermal one is most clearly seen in tracking the spectral
entropy as a function of time, shown in the insets: the moment
it touches the red line, which represents its equilibrium value
(8), is where we consider equipartition to have been achieved.
The associated equipartition times are displayed in the main
plots as an orange triangle and slowly increase as we move
from Q1 up to Q9, with the shortest time corresponding to
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FIG. 3. Mode energies, Ej , as a function of mode number, j, for roots Q1, Q3 and Q9 for fixed times, with their equilibrium (average) value,
h, shown as a black dashed line. Each panel is a vertical slice of a panel in Fig. 2 at (a) t = τeq/100; (b) t = τeq; and (c) t = 10τeq (note that
τeq is different for each root). The short time of panel (a) allows for a clear visualization of the energy cascade flowing between modes that are
multiples of 1, 3, and 9, as described in Sec. III. At equipartition most of the site energies have the same order of magnitude, as seen in panel
(b), with stronger mixing still taking place at high mode numbers while the lower half of the excitation sequence remains slightly isolated from
the other modes. Even after ten equipartition times the nearly homogeneous energy distribution hints at which root was initially excited, as can
be seen in the above-average energies of modes Q9 and Q18 for the root Q9 in panel (c).

the random initial condition. Evidently, this latter case is
less interesting since the equipartition time depends strongly
on the initial sampling, but for roots the structures formed
by mode energies as they evolve in time show that, indeed,
higher-excited roots isolate an increasingly smaller subset of
modes in mode space. Figure 2(a) also shows a dense subset of
modes homogeneously concentrated around the mean, while
Fig. 2(e) clearly shows that two modes, namely Q9 and Q18,
remain relatively isolated from the others for much longer
times. To see this more clearly, in Fig. 3 we take vertical
slices of Fig. 2 at three different fixed times for Q1, Q3 and
Q9. At t = τeq/100 the contents of Sec. III E can be clearly
visualized, namely the fact that increasing root number traps
energy in a smaller subset of modes with higher amplitudes
in the short-time regime. At t = τeq low frequency modes that
are multiples of 3 and 9 can still be seen to have above-average
energies for roots Q3 and Q9. At t = 10τeq this effect has
already dissipated for Q3, but the energies of modes Q9 and
Q18 remain slightly above the mean energy when evolving Q9,
as visible in Fig. 3(c).

Evidently, the longer it takes for a subset of modes to
reach equipartition, the longer the prethermal regime. This is
clearly seen in Fig. 2: The relatively obfuscated metastability
associated to the Q1-root seen in Fig. 2(a) is already maxi-
mized in Fig. 2(b), where Q3 is evolved, and becomes more
and more blatant as higher-excited modes are used as roots.
Evidently, the random initial condition in Fig. 2(f) does not
display metastability, since here all modes are excited at once
and the slow, selection-rule-mediated transferring of energy
from excited modes to previously unexcited ones does not
take place. Since the mean energy is a constant of motion, the
prethermal regime’s duration can also be visualized by plot-
ting the time-dependent standard deviation of mode energies
in Eq. (2),

σE (t ) =
√√√√ 1

N − 1

N∑
j=1

(Ej (t ) − h)2, (19)

which will be approximately constant while the energy is
still strongly localized in a subset of normal modes. This is
indeed seen to be true in Fig. 4, where it is also clear that the
metastability’s lifetime increases monotonically as a function
of root number for this energy density.

B. Equipartition and Lyapunov times

Spectral entropy (6) is a function of the initial state, so it
is no surprise that the equipartition times computed from it
in Fig. 2 depend on it. These times have no direct relation to
the duration of prethermalization, except for the fact that they
are necessarily longer than the length of metastable plateaus.
Since random initial conditions do not, at least generally, un-
dergo prethermal regimes, it is expected that the equipartition
times of such typical initial conditions will be shorter than the
ones of roots for any energy density chosen. This expectation
is confirmed in Fig. 5, where we compare equipartition times
for 280 typical conditions with the ones obtained from odd
roots as a function of the energy density. Clearly, the former
are bounded from above by the latter, which slowly increase
as a function of excitation number.

FIG. 4. Standard deviation of mode energies in Fig. 2 as a func-
tion of time for h ≈ 0.085. Despite keeping the energy density fixed,
the prethermal regime becomes longer as a function of root number.
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FIG. 5. Equipartition times computed by evolving the first five
odd roots (rainbow colors) and 280 random initial states (tones of
magenta and orange) at several different energy densities in a chain
with N = 63 and α = 1/4. These data were obtained from spectral
entropies computed up to t = 108, such that the top left equipartition
times, which are of O(108), are likely slightly overestimated by
being of the order of the computation time. The equipartition time
for Q1 (red diamonds) clearly forms an upper bound that the ones
computed from random initial states essentially never cross. The
equipartition times computed from excited modes consistently do so,
albeit slowly as a function of increasing root number.

If equipartition times reach the order of the propagation
time used to compute them, namely O(108), then convergence
can no longer be achieved for these parameters, which is clear
in Fig. 5 by the presence of missing data for some values
of energy density. However, the “disappearance” of points
does not increase fully monotonically with mode excitation
number, with some data displaying what could be described
as “erratic behavior.” Since dependence on initial conditions
is tantamount to ergodicity breaking, investigating quantities
that are proved to be invariant in any ergodic system will shed
light into the source of the instabilities seen in Fig. 5. The most
important of such quantities is the MLE, λ1, which indicates
the presence of chaotic behavior and is not only invariant
with respect to diffeomorphisms but also constant for ergodic
dynamical systems [28]. From this exponent one can extract
the Lyapunov time, τ1 = 1/λ1, which measures the time a
vector tangent to a trajectory takes to align with the maximally
chaotic, one-dimensional submanifold in the tangent bundle
[33,44,45]. Since the Lyapunov time is computed from the
divergence of two initially close trajectories, it takes a finite
time to converge and it is often useful to observe its evolution
as a function of time, as done in Fig. 6.

Figures 6(a) and 6(b) display the evolution of τ1(t )
extracted from propagating odd roots and random initial
conditions for an energy density of h ≈ 0.085. Not only is
convergence achieved for all initial states employed, but the
time-dependent portrait of both typical and atypical initial
conditions is identical. Upon decreasing the energy density,
however, Fig. 6(c) shows that atypical initial conditions start

FIG. 6. (a) Time-dependent Lyapunov times computed by evolv-
ing the first five odd modes of a chain with N = 63 and α = 1/4 at a
fixed energy density h≈0.085 up to t f = 109. Clearly, at this energy
density all modes behave similarly and indistinguishably from the
random initial states shown in panel (b), for which the propagation
time was set to t f = 108. (c) By lowering the energy density down
to h ≈ 0.033, roots start to behave differently as a function of time
when compared to the random states used in panel (d). The differ-
ences appear to grow with excitation number, resulting in high-order
modes such Q9 not converging at all within this propagation interval
(which is more than enough for all other initial states).

behaving very differently not only with respect to typical
ones, but also among themselves. While the Lyapunov times
obtained from Q1 and Q3 are similar to the ones of the random
initial conditions in Fig. 6(d), the data obtained from evolving
Q5 is seen to start forming a “belly” before convergence.
Thus, it shows that Q5 lies in a region of phase space that
takes longer to align with the maximally chaotic direction,
similarly to the trapping times described in Ref. [24]. The
difference here is that we observe longer trapping times at
fixed energy density as the root number increases. By evolving
even higher excited roots such as Q7, Fig. 6(c) shows that
the “belly” increases when compared to the one of Q5, such
that Q7 is trapped for a time one order of magnitude longer.
Extrapolating to Q9 this transient trapping regime, which is a
manifestation of prethermalization in an invariant quantity and
therefore must disappear for sufficiently long times, ends up
being longer than the propagation time and does not converge
in our computations. The reason for the longer transient times
as we go up from Q1 to Q9 is that the higher the excitation
number, the smaller the subspace of mode space to which
dynamics is approximately restricted during the prethermal
regime and the higher the mode energies, as discussed in
Sec. III E. Indeed, Fig. 3 shows that a large fraction of the
energy is still concentrated in multiples of the initial excitation
number at equipartition time, which as seen by comparing
Figs. 6 and 7 is always longer than Lyapunov time when deal-
ing with atypical initial conditions. Thus, the trapping time
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FIG. 7. (a) Lyapunov times computed by evolving the first five
odd roots (rainbow colors) of a chain with N = 63 and α = 1/4
at several different energy densities. Propagation time used was
t f = 109, for which τ1’s computed by evolving Q1 converge well for
all energy densities used. Other modes, however, did not converge
for the whole range of energy densities employed here, requiring
longer and unpractical propagation times (see text for explanation).
(b) Lyapunov times computed by evolving 10 random initial states
at the same energy densities as panel (a). Propagation times in this
case were only t f = 107, which is enough to obtain converged results
starting from typical initial conditions. Error bars in all plots are the
standard deviation of the corresponding τ1(t ) between t f and t f /10.

will increase with the excitation number, which is also a con-
sequence of higher-excited modes lying closer to q-breathers.

Figure 7, which shows the final (converged) Lyapunov
times as a function of energy density for typical and atypical
initial conditions, is clear evidence that the system we are
dealing with is numerically ergodic: The times are the same,
no matter what initial conditions are chosen (although the
larger error bars and spread for h ≈ 10−2 show that t f = 109

is barely long enough to reach numerical ergodicity for the
smallest values of h used here). This does not mean, as
discussed before, that all data for roots converges, with the
main reason for failure being the presence of extremely long
prethermal regimes as seen in Fig. 6.

C. Kolmogorov-Sinai entropies

Given the imprint prethermalization has in a dynamical
invariant such as the Lyapunov time, in Fig. 8 we display the
time evolution of one of the most meaningful, yet computa-
tionally expensive, invariant quantities in dynamical systems,
namely the Kolmogorov-Sinai entropy, κKS. This quantity, just

like the Lyapunov time and the associated maximal exponent,
displays a clear dip when computed by propagating roots,
while for a typical initial condition it approaches its converged
value from above. Since κKS is the sum of all positive Lya-
punov exponents, what Fig. 8 shows is that the prethermal
regime is present in all phase-space directions, not only the
maximal one associated to the MLE. Upon decreasing the
energy density we also see a tendency of a larger dip for
higher-excited modes, in accordance with our expectation
that the prethermal regime is more pronounced for higher
excitation numbers. It is worth noting that the convergence
of Kolmogorov–Sinai entropies to the same asymptotic value
likely constitutes the most compelling numerical evidence of
ergodicity attainable in simulations.

V. DISCUSSION

The root chosen in the original FPUT experiment and
most subsequent investigations of the FPUT paradox was
the fundamental mode. In essence, and as previously shown
by comparisons with the nearby and integrable Toda chain
[24], the proximity of the fundamental mode to a stationary
state of the FPUT chain ends up trapping it in a near-regular
portion of phase space for a finite time. We have shown here
that higher-excited roots are trapped for even longer than the
fundamental mode in such near-regular regions, even though
all other parameters in the system are held constant.

Traditionally, the Lyapunov time is considered to charac-
terize alignment along the maximally chaotic direction in a
decomposition of the tangent space known as Oseledec split-
ting, which is covariant with respect to the Hamiltonian flow
[33,45]. Evidently, such decomposition is meaningless in the
case of a near-regular trajectory, and it is expected that the
transient regime of λ1(t ) will be different depending on how
close the initial state is to a near-integrable region. However,
the Lyapunov time itself is an invariant quantity in ergodic
systems, such that at the end all initial states must provide the
same value for the converged MLE [that is, the asymptotic
limit of λ1(t )]. This was verified in Figs. 6 and 7. Thus,
the time needed to escape a region of near-integrability is
more related to the equipartition time than to Lyapunov time,
since we expect mode space to be fully covered only once a
trajectory starting in a root becomes sufficiently chaotic. The
Lyapunov time itself then carries absolutely no information on

FIG. 8. Time-dependent Kolmogorov-Sinai entropy in an α-FPUT chain with N = 63 and α = 1/4 computed from roots (rainbow colors)
and from a random state (black). Each panel is computed for initial states with decreasing energy densities, h, shown in the left corner.
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FIG. 9. Comparison of Lyapunov times in Fig. 7, where here
both panels are superposed, and its corresponding linear fit. The
equipartition times for root modes in Fig. 5 are also displayed,
together with a linear fit for those of Q1, showing that they are orders
of magnitude longer than the Lyapunov times for all energy densities.

prethermalization, although its time-evolution certainly does.
This leads to a reinterpretation of τ1 as the time a typical initial
condition takes to align with the maximally chaotic covariant
direction in tangent space, since atypical ones might not align
with it at all. This results in the Lyapunov time being always
shorter than the equipartition time of a root, as seen by plotting
them together in Fig. 9.

The only timescale longer than the equipartition time
of roots appears to be the convergence time of their time-
dependent Kolmogorov-Sinai entropies, κKS(t ). Like λ1(t ),
this quantity will only converge once the trajectory leaves
a near-regular region, but now alignment with respect to a
large fraction of covariant Lyapunov directions is required
instead of only the maximal one. Since several directions are
associated to small Lyapunov exponents it is not necessary
to align with all of them to have a well-converged result, but
Fig. 8(c) shows that the convergence times are, nevertheless,
longer than the equipartition times shown in Fig. 2. Thus, the
inescapable conclusion is that equipartition is reached before
the trajectory has fully explored the chaotic sea.

It would be interesting to attempt a computation of the
Lyapunov time of a submanifold, i.e., calculate τ1 starting
from a nonthermal mode, e.g., Q2, and see how this exponent
relates to the true τ1 obtained from a thermal initial condition.
Unfortunately this type of numerical investigation is hard, if
not impossible, to carry on. This is due to the fact that the
bushes associated to nonthermal modes in α-FPUT chains
are unstable and will not be preserved in long-time evolution
no matter which numerical integrator is chosen [27]. Indeed,
if the chosen root is nonthermal, then the time evolution of
the mode energies reveals that the initial excitation eventually
escapes the bush and spreads throughout mode space, as nu-
merical integration does not preserve the discrete symmetries
of bushes. This might be behind the observation that the evo-
lution of nonthermal modes results in approximately the same

FIG. 10. Examples of error-induced equipartition due to numer-
ical instability of bushes in a chain with N = 11, h≈0.16, and α =
1/4. (a) Same as Fig. 1(a) but for longer times. (b) The evolution of
Q2, which as all even roots is nonthermal. In both panels, states that
are proven to be nonthermal end up reaching equipartition due to nu-
merical errors. Panels (a) and (b) use different symplectic integrators
(second and fourth orders), showing that the phenomenon happens
independently of the solver, although it happens at different times
depending on the time step (attesting for its numerical source).

Lyapunov times as thermal ones [24], which is surprising
given that bush dynamics takes place only in a submanifold
of mode space. Nevertheless, it is unclear how ergodicity in
mode space relates to that of phase space, such that it is pos-
sible that a partial covering of mode space by a large enough
bush is enough to resolve the “true” MLE. Besides, it might
even happen that dynamics in phase space is ergodic while
that in mode space is not, since ergodicity always depends on
the observables chosen [46] unless it is tracked by means of
invariant quantities [47]. At present, the authors are unaware
of a special type of integrator that is capable of preserving
bushes of excitations, such that studies regarding dynamical
properties of chaotic subspaces cannot be performed in a
numerically meaningful fashion. A consequence of this is that
the energy in Fig. 1(a), which is correctly localized in the
bush associated to Q3, will eventually spread to all modes
for long enough times. Nevertheless, the way “equipartition”
takes place in this case is pathological and clearly traceable to
numerical errors, as can be seen in the Appendix.

VI. CONCLUSION

We have extended previous studies on the cubic Fermi-
Pasta-Ulam-Tsingou (α-FPUT) model by investigating the
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consequences of evolving higher-excited normal modes in-
stead of the fundamental. The evolution of such atypical
initial conditions was also compared to that obtained from
typical (random) ones. We provided an explicit and simple
way of ordering excited modes perturbatively in α when
starting from a single normal mode (the root), and showed
that higher-excited roots take longer to cover mode space.
Thorough numerical investigations based on computing Lya-
punov exponents and Kolmogorov-Sinai entropies showed
that even invariant quantities carry imprints of the atypical
initial states used to compute them in their transient regime,
despite converging to the correct invariant value for long
times. The prethermal dynamics taking place before conver-
gence is confirmed to be a consequence of some select roots
lying close to stationary states also in the α-FPUT system, and
therefore being trapped in near-regular regions. The escape
from such regions is what puts an end to the paradigmatic
metastable plateaus in mode energies, whose end marks the
moment invariant quantities computed from roots start to
converge.
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APPENDIX: NUMERICAL INSTABILITY OF BUSHES

The bushes associated with nonthermal roots in α-FPUT
chains obey discrete symmetries that are not respected by the
integrators, being therefore unstable in numerical simulations.
The main consequence of this instability is that energy, which
should only be shared among modes in the bush and never
leave for any finite time, ends up exciting other modes due
to numerical errors. In Fig. 10 we provide two examples of
this behavior when evolving provenly nonthermal modes: the
roots Q3 and Q2 in a N = 11 chain. The first case is essentially
a continuation of Fig. 1 for much longer times, until one can
see an anomalous and simultaneous jump in the energy of
modes that should not be excited starting from Q3; the root Q2,
however, is even and therefore always nonthermal, undergoing
a very similar pathological jump and reaching equipartition in
Fig. 10 exclusively due to numerical errors.
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