
PHYSICAL REVIEW E 112, 044202 (2025)

Impact of on-site potentials on q breathers in nonlinear chains
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On-site potentials are ubiquitous in physical systems and strongly influence their heat transport and energy
localization. These potentials will inevitably affect the dynamical properties of q breathers (QBs), defined as
periodic orbits exponentially localized in normal mode space. By integrating on-site terms into the Fermi-
Pasta-Ulam-Tsingou-β system, this work utilizes numerical simulations and Floquet analysis to systematically
explore the influence of on-site potentials on QB stability. For most QBs, except those at the phonon band
edges, the instability is primarily governed by parametric resonance and effectively described by coupled
Mathieu equations. This approach provides a theoretical expression for the instability thresholds, which aligns
well with numerical results. The instability threshold is highly sensitive to the seed mode, in stark contrast to
systems without on-site potentials. In addition, a systematic stability analysis across three-dimensional parameter
space shows that quartic intersite nonlinearity monotonically enhances QB instability, while quartic on-site
nonlinearity yields nonmonotonic effects, in particular, an initial destabilization followed by restabilization at
high amplitudes. The quadratic on-site potential uniformly promotes stability. Furthermore, these instability
phase diagrams highlight both the individual contributions and combined effects of each possible component in
regulating the QB dynamics. These findings offer valuable insights into QB stability and the manipulation of
localized excitations in diverse physical systems with on-site potentials.

DOI: 10.1103/8c22-d1mw

I. INTRODUCTION

On-site potentials, or substrate potentials, are a key concept
in condensed matter physics and nonlinear dynamics, playing
a central role in the behavior of discrete lattices and extended
systems, such as ultracold atomic gases loaded into optical
potentials [1,2], light propagation through photonic crystals
[3] and respective theoretical modeling of networks of nonlin-
ear oscillators [4–6], and the Bose-Hubbard model [7], among
others. Mathematically, it is typically incorporated as an addi-
tive term in the system’s Hamiltonian, modifying the energy
landscape at specific sites [8–12]. These potentials serve as
useful models for a range of realistic scenarios, such as impu-
rities in crystalline solids [13], externally applied fields [14],
and local trapping potentials in cold atom systems [15,16],
which result in diverse phenomena [17–22]. For instance, in
the Bose-Hubbard model, an increase in the ratio of on-site
potential to tunneling strength leads to a superfluid-to-Mott-
insulator transition [7,23], and stronger three-body on-site
interactions expand the Mott-insulating region [24,25]. In the
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realm of nonequilibrium statistical physics, on-site potentials
significantly influence the heat transport behaviors of nonlin-
ear systems [26–28], and diffusive energy transport adhering
to Fourier’s law was observed in models like ding-a-ling
[29,30]. Nonlinear on-site potentials also lead to phenomena
like negative differential resistance, anomalous diffusion, and
rectification [31,32]. Additionally, soliton dynamics and de-
pinning forces are strongly influenced by substrate potential
shapes [33,34].

Energy localization in systems with on-site potentials
presents intriguing dynamics and has drawn significant in-
terest. Defined as an external potential acting locally on
individual sites, the on-site potential introduces spatial inho-
mogeneity that alters the dynamics and stability of localized
modes like discrete breathers (DBs) [35–37]. DBs, also
referred to as intrinsic localized modes, are time-periodic
oscillations characterized by spatially exponential localiza-
tion of the energy density distribution [38–41]. DB solutions,
commonly surviving in a strong nonlinear regime, have
been studied in diverse contexts, including discrete nonlin-
ear Schrödinger equations with alternating on-site potentials
[42] and Klein-Gordon chains [43]. On-site potentials under-
pin various energy localization phenomena [44], including
gap DBs [43] and moving breather collisions [45]. In
the nonlinear chain with sixth-order polynomial on-site
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potentials, DBs can affect the specific heat of the system
[46].

To characterize energy localization in normal mode space,
q breathers (QBs) are proposed as an analogy to DBs [47],
which are periodic orbits composed of a small fraction of
normal modes, with energy exponentially localized around
these modes [48]. Slight perturbations of QBs thereby approx-
imately form low-dimensional tori within the phase space.
This concept provides crucial insights into the Fermi-Pasta-
Ulam-Tsingou (FPUT) recurrence, which declares that the
state in phase space spanned by normal coordinates returns
close to its initial configuration in a quasi-periodic manner
rather than equilibrating as initially expected [48,49]. QBs
have been validated in various systems, including FPUT-β lat-
tices [50] and Bose-Hubbard chains [51,52]. QBs also survive
in disordered systems, with their stability depending on the
details of disorder [53]. The existence of QBs in systems with
on-site potential has been analyzed within the framework of
the discrete nonlinear Schrödinger model [54].

The stability of QBs is a central issue in understanding
their role in the dynamics and thermalization of nonlinear
systems [48]. For weak nonlinearity, QBs are stable and
isolated from energy exchange with other modes. However,
as the nonlinearity strength increases, instabilities of QBs
emerge due to mechanisms such as parametric resonance and
Chirikov resonances [55,56]. The instability thresholds can be
obtained from bifurcation points in the multipliers spectrum
of a Floquet analysis, which aligns with the onset of weak
chaos [47,57]. In the FPUT system, a notable feature is that
the instability threshold is independent of the choice of the
seed mode used to generate the QBs [47,48]. As QBs become
unstable, the energy initially localized in the QBs gradually
spreads to other modes, facilitating energy redistribution and
ultimately leading to thermalization [58]. Despite significant
advancements, a more systematic understanding of the effects
of on-site potentials on QB stability is still lacking. Moreover,
the combined influence of on-site potentials and nonlinear
intersite interactions on the QB instability dynamics remains
unexplored.

In this paper, we systematically investigate the impact of
on-site potentials on the QBs dynamics in nonlinear chains.
Section II introduces the model by incorporating on-site po-
tentials into the FPUT-β Hamiltonian, allowing it to better
represent realistic systems, such as the low-dimensional crys-
tal subject to external fields. Section III presents results for the
case where the nonlinear intersite potential is absent. Specif-
ically, QB solutions are obtained by solving for the roots of
the Poincaré map with a generalized Newton’s method. A
detailed stability analysis based on Floquet theory reveals the
combined effects of the quadratic and quartic on-site potential
coefficients on QB stability, along with an examination of the
associated modal dynamics. In Sec. IV, we extend the anal-
ysis to systems with nonlinear intersite potentials, offering
deeper insights into how on-site and intersite nonlinearities
jointly regulate the instability thresholds. Finally, a concise
summary and discussion are provided in Sec. V. Our results
highlight the crucial role of on-site potentials in engineering
localized energy states, providing valuable theoretical insights
for the design of robust systems with well-defined localized
modes.
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FIG. 1. (a) Schematic diagram of the anharmonic chain with
on-site potential. The red springs depict the on-site potential con-
tributions, while the blue springs represent intersite interactions.
(b) Dispersion relations for the system for different values of the
on-site potential strength φ2.

II. MODEL AND METHOD

A. Model

We consider a nonlinear lattice consisting of N identical
particles, as schematically shown in Fig. 1(a). The Hamilto-
nian is

H =
N∑

i=1

p2
i

2
+

N∑
i=0

[
1

2
(xi+1 − xi )

2 + β

4
(xi+1 − xi )

4

]

+
N∑

i=1

(
φ2

2
x2

i + φ4

4
x4

i

)
, (1)

where xi represents the displacement of the ith particle from
its equilibrium position, and pi is the conjugate momentum.
The coefficient β governs the strength of the quartic intersite
potential, while φ2 and φ4 control the quadratic and quartic
on-site potentials, respectively. This model extends the clas-
sical FPUT-β chain by adding on-site potentials, making it
applicable to more realistic scenarios where particles experi-
ence external forces, thus introducing additional complexity
to the system’s dynamics.

In this model, multiple potential terms can affect the stabil-
ity of the QBs. To systematically investigate the influence of
the parameters β, φ2, and φ4 on QB stability, we sequentially
set each parameter to zero and analyze the effects of the re-
maining two parameters. We specifically consider three cases:

(1) Case I: β = 0, with φ2 and φ4 nonzero, where the har-
monic chain has a gapped (away from zero) optical frequency
spectrum, and nonlinearity arises solely from the on-site po-
tential. Then the system is effectively a discrete Klein-Gordon
lattice.
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(2) Case II: φ4 = 0, with β and φ2 nonzero, which involves
both quartic intersite and quadratic on-site potentials. The
harmonic chain is identical to case I.

(3) Case III: φ2 = 0, with β and φ4 nonzero, where the
system is influenced by both quartic intersite and on-site po-
tentials. The harmonic chain has a gapless acoustic frequency
spectrum.

These cases allow us to systematically study how each
potential term and their interplay affect QB stability.

The quadratic on-site potential modifies the dispersion re-
lation of the system. By imposing fixed boundary conditions
(FBCs), x0 = xN+1 = p0 = pN+1 = 0, the dispersion relation
for the linearized system is derived as

ωq =
√

φ2 + �2
q, �q = 2 sin

(
qπ

2(N + 1)

)
, (2)

where q = 1, 2, . . . , N denotes the mode index, and �q corre-
sponds to the dispersion relation for a harmonic chain without
on-site potential. Figure 1(b) shows the dispersion relation of
the systems with varying quadratic on-site parameters φ2. The
on-site potential introduces an upward shift in the frequency
spectrum, raising the lower bound of the phonon band to a
size-independent value

√
φ2. Consequently, the frequencies

of all normal modes increase and are gapped away from
zero, resulting in stiffer oscillations. This effect has profound
implications for the system’s dynamics, which, for instance,
facilitates the existence of DBs below the phonon band in
systems with soft-type anharmonicity [36].

The normal modes of the system are introduced via a
canonical transformation(

Qq

Pq

)
=

N∑
i=1

(
xi

pi

)√
2

N + 1
sin

(
qiπ

N + 1

)
, (3)

where Qq and Pq represent the normal coordinates and their
conjugate momenta, respectively. The Hamiltonian in term of
normal coordinates becomes

H =
N∑

q=1

1

2

[
P2

q + ω2
qQ2

q

]

+
N∑

q,l,m,n=1

�q,l,m,n

8(N + 1)
Cq,l,m,nQqQlQmQn. (4)

The coefficient �q,l,m,n, characterizing the strength of nonlin-
earity, is given by

�q,l,m,n = β�q�l�m�n + φ4, (5)

and Cq,l,m,n is

Cq,l,m,n =
∑
±

[δq±l±m±n,0 − δq±l±m±n,±2(N+1)]. (6)

The Kronecker delta functions δq±l±m±n,[0,±2(N+1)] define the
selection rules governing the intermodal coupling. In the ab-
sence of nonlinearity, the quadratic energy of mode q is given
by Eq = (P2

q + ω2
qQ2

q )/2. The equation of motion for mode q
in the presence of nonlinearities reads

Q̈q+ω2
qQq = −

N∑
l,m,n=1

�q,l,m,n

2(N + 1)
Cq,l,m,n QlQmQn. (7)

B. Numerical method for searching QBs

This section briefly revisits the numerical method for
obtaining QBs in nonlinear systems [47,48,59]. Accord-
ing to its definition, the QB is the periodic orbit in the
phase space spanned by the normal coordinates, where the
points are parameterized by the 2N-dimensional vector s =
{Q1, Q2, . . . , QN , P1, P2, . . . , PN }. Consequently, finding QBs
involves identifying periodic orbits within this phase space.
To achieve this, the Poincaré map technique is utilized. In
the weak nonlinearity regime, QB solutions can be viewed as
perturbations of the normal mode orbits in the harmonic limit,
representing the trivial QB solutions.

The process begins by exciting the system with the seed
mode q0 under the initial conditions that all sites are placed at
the equilibrium positions and the initial momenta are formu-
lated in normal coordinates as

Pq =
{√

2Etotal, q = q0

0, otherwise,
(8)

where Etotal is the initial excitation energy. This setup corre-
sponds to the point s0 = {0, . . . , Pq0 = √

2Etotal, . . . , 0} in the
phase space, lying on the Poincaré section S : {Qq0 = 0, Pq0 >

0}. Starting from s0, the equations of motion for the whole
system are numerically integrated until the trajectory returns
to the section S again at a new point s1. This procedure defines
the Poincaré map s1 = I(s0). The fixed points of the map s∗,
satisfying s∗ = I(s∗), correspond to periodic orbits and are
identified as the potential QB solutions of the system.

Newton’s method is employed to search for the fixed
points of the map. To resolve the degeneracy caused by en-
ergy conservation and enable the application of the implicit
function theorem, the iterations are performed in a reduced
phase space of dimension 2N − 2, which is parameterized
by the vector r = {Q1, Q2, . . . , Qq0−1, Qq0+1, . . . , QN , P1, P2,

. . . , Pq0−1, Pq0+1, . . . , PN } by excluding the components Qq0

and Pq0 . The fixed point of the system is determined as the
root of the equation

G(r) = I(r) − r = 0. (9)

The Newton matrix N for the vector function G(r) is defined
as

Ni j = ∂Gi(r)

∂r j
= ∂Ii(r)

∂r j
− δi j, (10)

where ∂Ii(r)/∂r j is the Jacobian matrix of the mapping I on
the Poincaré section S. The iteration process follows

r′ = r − N−1G(r). (11)

After identifying the fixed point r∗, we adjust the com-
ponent Pq0 to maintain energy conservation, ensuring that
Pq0 = √

2E − ∑
q �=q0

P2
q . The iteration is carried out until the

convergence criterion ‖G‖ < 10−9 is satisfied, where ‖G‖ =
max{|G|}. This stringent condition ensures the precision nec-
essary for accurately identifying the periodic orbit.
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FIG. 2. (a) Energy spectra of QB solutions for varying nonlinear
parameters φ4, with fixed φ2 = 1, β = 0, N = 31, seed mode q0 =
4, and excitation energy Etotal = 1.53. Gray dashed lines represent
exponential fits based on Eq. (12). (b) Temporal evolution of the
harmonic energies of the dominant modes for a QB solution with
φ2 = 1 and φ4 = 0.1. (c) Time evolution of the normal coordinates
Qq, starting from the final time t = 1.0 × 108 in (b). To improve
visualization, the amplitudes of modes 12, 20, and 28 are scaled by
the factors of 1.70 × 102, 2.25 × 104, and 3.00 × 106, respectively.

III. QBs IN CASE I WITH β = 0

A. QB solutions

To isolate the effects of the on-site potential, we first ex-
amine the case where β = 0, with the quartic on-site term
being the sole source of nonlinearity. Following the outlined
methodology, we calculate the QB solutions by fixing the
system size at N = 31 and setting the specific energy to ε =
1.53/31, while varying the parameters of the on-site potential,
φ2 and φ4. As a representative example, we initialize our
analysis with the seed mode q0 = 4, whose harmonic period is
approximately Tq0 = 2π/ω4 ≈ 5.853. Numerical integration
was performed with the SBAB2 symplectic integrator [60,61],
with a time step of dt = 0.01, ensuring precise energy conser-
vation over the course of the extended simulations.

Figure 2(a) depicts the energy spectra of QB solutions
for varying φ4, with φ2 = 1 held constant. In the harmonic
limit (φ4 = 0), energy remains entirely localized in the seed
mode q0 = 4, while other modes exhibit negligible energy,
as depicted by the green squares. Here, the system reduces
to a chain of harmonic oscillators, and the energy remains
indefinitely trapped in the seed mode. This serves as a triv-
ial example of a QB solution with a fully compact energy

distribution in mode space. When φ4 �= 0, nonlinearity in-
troduces mode coupling, redistributing the energy initially
concentrated in the seed mode among other modes. This re-
distribution adheres to selection rules imposed by the quartic
on-site potential. The resulting energy spectra display pro-
nounced exponential localization, well-approximated by the
gray dashed lines with the expression

E (q) = Eq0 exp(−λq), (12)

where λ quantifies the localization strength. For φ4 = 0.01,
0.04, and 0.10, the values of λ are 2.008, 1.662, and 1.435,
respectively. As the nonlinearity parameter φ4 increases, more
energy flows into higher-frequency modes, which results in a
decrease in the parameter λ, indicating a less localized QB
solution.

The time-periodic nature of QBs is another defining char-
acteristic. Figure 2(b) illustrates the energy evolution of
dominant modes for φ2 = 1 and φ4 = 0.1 over a timescale
of 1.0 × 108, and the consistent spacing between adjacent
traces on a logarithmic scale further confirms the exponential
localization of QBs. It is clear that the energies of all the
modes remain practically constant throughout the simulation,
signifying the stability of the QB solution. Importantly, the
absence of visible energy exchange between modes suggests
that QB dynamics are confined to a low-dimensional torus in
phase space, which reflects the remarkable ability of QBs to
sustain localized energy distributions over exceptionally long
timescales, even in the presence of nonlinearity. To further
investigate this time-periodic behavior, Fig. 2(c) displays the
corresponding time evolutions of the normal coordinates Qq

over several oscillation periods, starting from the final time
t = 1.0 × 108 in Fig. 2(b). Each mode exhibits regular oscilla-
tions with an identical period of Tb = 2π/ω̂b ≈ 5.830, where
ω̂b denotes the characteristic frequency of QB. This consis-
tent periodicity indicates that all modes remain synchronized,
maintaining precise phase coherence throughout their evolu-
tion. This is a hallmark of QB dynamics and highlights the
intrinsic periodicity of QB solutions in nonlinear systems.

B. Stability analysis based on Floquet theory

To address QB stability, we calculate the Floquet multipli-
ers, which quantify the growth or decay of the perturbations
along the periodic trajectory of QBs. As revealed in Fig. 2,
QB solutions feature an exponential localization in the energy
spectrum, with the majority of the energy concentrated in the
seed mode. This property allows for an approximation of the
QB trajectory as Qq(t ) = δqq0 Aq cos(ωqt ), with Aq being the
amplitude of mode q. By ignoring the interaction between the
seed mode and other modes, the equation of motion for mode
q0 simplifies to

Q̈q0 + ω2
q0

Qq0 + 3φ4

2(N + 1)
Q3

q0
= 0. (13)

In the weakly nonlinear regime, where φ4ε � 1, an approxi-
mate solution for Qq0 (t ) can be derived as [55]

Qq0 (t ) = a
√

N + 1 cos(ω′
q0

t ). (14)
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Here a2 = 2(
√

ω4
q0

+ 6φ4ε − ω2
q0

)/(3φ4), and

ω′
q0

= ωq0

{
1 + 9

8

(
φ4

ω4
q0

ε

)
− 621

256

(
φ4

ω4
q0

ε

)2
}

+ O(ε3) (15)

is the frequency of mode q0 corrected by the frequency shifts
due to nonlinearity. Notably, the frequency ω′

q0
aligns with the

fundamental frequency ω̂b of QBs, as the latter is primarily
governed by the periodic oscillation of the seed mode.

To evaluate the linear stability of a given QB solution, an
infinitesimal perturbation ξq is introduced around the QB solu-
tion, i.e., Qq = Q̂q + ξq. The evolution of these perturbations
is governed by coupled Hill equations:

ξ̈q + ω2
qξq +

N∑
l,m,n=1

3φ4

2(N + 1)
Cq,l,m,n Q̂l Q̂mξn = 0. (16)

According to the Floquet theory [55,62], the solutions of
Eq. (16) at t = 0 and t = Tb = 2π/ω̂b are related through the
monodromy matrix M,(

ξ(Tb)
ξ̇(Tb)

)
= M

(
ξ(0)
ξ̇(0)

)
, (17)

where ξ = [ξ1, ..., ξN ]T and ξ̇ = [ξ̇1, ..., ξ̇N ]T . The Floquet
multipliers {μi ∈ C, i = 1, ..., 2N} are the eigenvalues of ma-
trix M. Ordered by their moduli, i.e., |μ1| � ... � |μ2N |, these
multipliers exhibit symmetry properties due to the symplectic
nature of the Hill equation, satisfying the relationships μ1 =
μ−1

2N , ..., μN = μ−1
N+1. For a QB to be stable, all Floquet multi-

pliers have to lie on the unit circle in the complex plane, with
|μi| = 1 for all i. This condition ensures that the amplitudes
of perturbations remain constant over time, maintaining the
QB’s stability. Conversely, if any Floquet multiplier deviates
from the unit circle, the QB becomes unstable, with the degree
of deviation quantifying the instability rate.

Figure 3 systematically explores the impact of on-site
potentials on the stability of QBs. For simplicity, we first
focus on the system with only quartic on-site potentials with
φ2 = 0 and examine how the Floquet multipliers depend on
the strength of quartic on-site potentials φ4, as shown in
Figs. 3(a)–3(d). In the weak nonlinear regime, all QBs remain
stable, with all the multipliers falling on the line of |μ| = 1.0.
However, when φ4 surpasses a critical threshold φ4c, marked
by the red arrows in each panel, a bifurcation emerges in the
Floquet spectrum. Specifically, certain eigenvalues develop
moduli greater than unity, while their reciprocals fall below
unity. This spectral shift signals a loss of stability, and the
QB enters an unstable regime, with energy leaking from the
initially localized QB modes to other modes.

In addition, Fig. 3 offers deeper insights into the di-
verse instability mechanisms of QBs, intricately linked to
the choice of seed mode q0, which is demonstrated by the
strikingly different patterns in the Floquet multiplier spec-
tra. For q0 = 1, the Floquet multiplier spectrum exhibits a
parabolic structure [Fig. 3(a)], reminiscent of the instability
mechanisms observed in FPUT systems [47]. However, for
seed modes q0 = 2, 3, 4, instability exhibits a more complex
behavior characterized by the emergence of ringlike structures
in the multiplier spectrum [Figs. 3(b)–3(d)], which resemble

FIG. 3. (a)–(d) Floquet multipliers |μi| of QB solutions as func-
tions of the nonlinear parameter φ4 with the excitation energy Etotal =
1.53 and φ2 = 0. (e)–(h) Contour plot of the deviation magnitude
of the largest multiplier from the unit circle, i.e., |μ1| − 1, in the
parameter space spanned by φ2 and φ4. All panels share a common
color bar. The dashed white lines represent the theoretical instability
threshold given by Eq. (20). In all panels, the indices of the seed
modes q0 are indicated in the top-right corner of each panel, and the
instability thresholds φ4c are indicated by red arrows.

instability islands observed in the FPUT lattices with long-
range interaction, as reported in a prior study [63]. Moreover,
the complexity of the Floquet multiplier spectrum increases
systematically with the seed mode q0. Specifically, the number
of ring structures in the spectrum is q0 − 1, meaning that seed
modes with higher frequency possess a greater number of
distinct instability channels.

To explore the combined effect of the quadratic and quartic
on-site potential coefficients on QB stability, Figs. 3(e)–3(h)
display the contour maps of the deviation of the largest
Floquet multiplier from unity, |μ1| − 1, as a function of φ2

and φ4, with well-defined boundaries demarcating instability
regions. For q0 = 1, as φ2 increases, the instability region
divides into two distinct regions, and the Floquet multiplier
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spectrum experiences a transition from the parabolic structure
to two separate rings [Fig. 3(e)]. In contrast, for q0 = 2, the
instability region assumes a triangular shape [Fig. 3(f)], where
QBs are unstable inside and stable outside the triangle. Here
φ2 can serve as a control parameter. When φ2 = 0, the system
reaches its maximum instability threshold φ4c marked by the
red arrow, corresponding to the widest instability interval.
As φ2 increases, φ4c progressively decreases, and the insta-
bility region contracts, vanishing entirely at approximately
φ2 = 2.84 × 10−4, beyond which QBs remain stable for any
φ4 value. For seed modes q0 = 3 and q0 = 4, the instability
phase diagrams exhibit more intricate structures, as shown
in Figs. 3(g) and 3(h), with multiple overlapping instability
regions. Despite these intricacies, the general trends observed
for q0 = 2 are retained, with φ2 and φ4 acting as key parame-
ters in regulating QB stability.

C. Instability dynamics

To delve into the instability mechanism of QBs, we track
the temporal evolution of mode energy under various sys-
tem parameters. Figures 4(a)–4(d) show the simulation results
for systems with the parameters marked by white crosses in
Fig. 3(h). For case (a), the multiplier |μ1| is effectively unity,
signifying a stable QB. As a result, the energy of dominant
modes evolved in QBs remains unchanged throughout the
evolution, as illustrated in Fig. 4(a). This stability is further
confirmed by the energy spectrum at t 	 1.25 × 106, where
the energy is predominantly concentrated in the QB modes,
with negligible contributions from other modes [Fig. 4(e)]. In
contrast, case (b) exhibits a deviation of |μ1| from unity, sig-
naling the onset of QB instability. Figures 4(b) and 4(f) reveal
that the nearest-neighbor modes of all modes q evolved in the
QB, specifically {q ± 1}, gradually lose stability, character-
ized by an exponential growth in their energy, as highlighted
by the blue lines in Fig. 4(b). The instability triggers energy
redistribution, leading to QB destabilization. The instabil-
ity becomes more pronounced in cases (c) and (d), where
multiple Floquet multipliers exceed unity. This implies that
additional mode pairs become unstable, leading to more com-
plex energy transfer dynamics. In case (c), the unstable mode
set expands to {q ± 1, q ± 2}, as shown in Fig. 4(c) and the
corresponding spectrum in Fig. 4(g). Similarly, for case (d),
the unstable modes include {q ± 1, q ± 2, q ± 3}, as indicated
in Figs. 4(d) and 4(h).

Based on these observations, we hypothesize that the in-
stability of QBs is primarily governed by the parametric
resonance of modes k = q0 − m and l = q0 + m, where m =
1, 2, ..., q0 − 1. These resonances are primarily driven by the
seed mode q0. For each mode pair, the equations governing
the perturbations, given in Eq. (16), can be reformulated as

d2ξk

dt2
+ ω2

kξk + 3φ4Q̂2
q0

2(N + 1)
[2ξk + ξl ] = 0,

d2ξl

dt2
+ ω2

l ξl + 3φ4Q̂2
q0

2(N + 1)
[2ξl + ξk] = 0, (18)

where Q̂q0 (t ) = a
√

N + 1 cos(ω̂bt ) represents the oscillatory
behavior of the seed mode q0. To proceed, the dimensionless
time variable τ = ωq0t is introduced, allowing Eq. (18) to be

FIG. 4. (a)–(d) Temporal evolution of mode energies Eq for sys-
tems with parameters indicated by the white crosses in Fig. 3(h),
where |μ1| − 1 are 4.85 × 10−3 (b), 1.19 × 10−2 (c), 1.65 × 10−2

(d), respectively. The dashed lines mark the relaxation time T derived
from Eq. (25). (e)–(h) Energy spectra corresponding to panels (a)–
(d), captured at the instants indicated by red arrows. In all cases, the
seed mode is q0 = 4.

recast in the following form:

d2ξk

dτ 2
+ r2

k ξk = −γ [1 + cos(2�τ )]
(
2Bkkr2

k ξk + Bkl rkrlξl
)
,

d2ξl

dτ 2
+ r2

l ξl = −γ [1 + cos(2�τ )]
(
Blkrl rkξk + 2Bll r

2
l ξl

)
,

(19)

where rk = ωk/ωq0 , rl = ωl/ωq0 , γ = 3φ4a2/(4ω2
q0

), � =
ω̂b/ωq0 , and Bi j = ω2

q0
/ωiω j . This formulation can be ana-

lyzed using an averaging method to delineate the instability
boundaries in the (φ2, φ4) parameter space [55,64]. Specifi-
cally, the boundary separating stable and unstable regions is
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FIG. 5. Dependence of the stability threshold φ4c on the seed
mode q0 for φ2 = 0. The gray solid lines are the theoretical results
based on Eq. (21). The data corresponding to q0 = N are not shown,
as they lie outside the plotted range of the coordinate axes.

explicitly expressed as (see Appendix A for more details)

φ2 = sec

(
πq0

N + 1

)(
1 − 3ε

8ζ 2
φ4

)
+ cos

(
πq0

N + 1

)
− 2,

(20)
where ζ = mπ/[2(N + 1)]. The theoretical predictions from
Eq. (20) are depicted by the white dashed lines in Fig. 3,
which show noticeable deviations from the instability bound-
aries derived from Floquet analysis for q0 = 1 and q0 = 2.
However, for q0 � 3, the theoretical curves closely match the
instability boundaries and intersect the x axis at the point
marked by the red arrows, demonstrating excellent agreement
(see Appendix B for more cases).

In the special case where φ2 = 0, the critical value φ4c for
the QB instability is given by

φ4c = 8π2

3(N + 1)2ε
sin4

[
q0π

2(N + 1)

]
, (21)

which establishes a direct relationship between the instability
threshold φ4c, system size N , and seed mode q0. The critical
value φ4c is strongly influenced by the seed mode q0, with
a pronounced increase in φ4c as q0 increases, as illustrated
in Fig. 5. This trend is fundamentally different from that ob-
served in FPUT-β systems, where the instability threshold is
independent of q0 [47,48]. Such a distinct contrast highlights
the critical role played by on-site potentials in modulating the
stability of QBs. Note that these analyses are based on the
assumption that the instability of QBs is primarily dominated
by the parametric resonance of mode pairs q0 ± m. However,
this assumption ceases to hold for specific modes located
near the band edges. For q0 = 1 or q0 = N , the boundary
constraints prevent the formation of mode pairs, thereby pre-
cluding the parametric resonance mechanism. Consequently,
numerical results for these edge modes exhibit significant de-
viations from the theoretical predictions based on parametric
resonance.

In our analysis, we have primarily employed FBC. It
is instructive to consider how the results change under

periodic boundary conditions (PBCs). For PBC, the normal
mode spectrum becomes doubly degenerate, effectively halv-
ing the number of distinct wave vectors. As a consequence,
the instability threshold φ4c expressed in Eq. (21) becomes

φ
(PBC)
4c = 32π2

3(N + 1)2ε
sin4

[
q0π

2(N + 1)

]
, (22)

which is four times the FBC result. To verify this prediction,
we performed additional numerical simulations for N = 63
under PBCs. Remarkably, as shown in Fig. 5, the resulting
thresholds φ4c nearly coincide with those obtained for N = 31
under FBCs, confirming the expected scaling behavior. More-
over, the anomalous behavior observed near the band edges
remains present under both types of boundary conditions. This
indicates that such behavior arises from intrinsic features of
the dispersion relation and mode localization rather than from
boundary effects.

To quantify the instability, we estimate the relaxation
timescale of QBs in the unstable region. Specifically, we mon-
itor the energy in modes other than those initially excited by
the QB, defined as

�E (t ) =
∑

q/∈QB

1

2

[
P2

q (t ) + ω2
qQ2

q(t )
]
. (23)

In the unstable region, �E (t ) grows exponentially over time,
given by

�E (t ) ≈ �E (0)e2λ1t , (24)

where the exponent λ1 is determined from the largest char-
acteristic exponent λ1 = ln|μ1|/Tb. The relaxation time T is
defined as the time at which �E (t ) becomes comparable to
the total energy Etotal of the system, i.e., �E (T ) = O(Etotal ).
Using this condition, the relaxation time can be approximated
as

T ≈ 1

2 λ1
ln

Etotal

�E0
, (25)

which is marked by the gray dashed lines in Figs. 4(b)–4(d).
At this point, the seed mode has dissipated the majority of its
energy, transferring it to other initially inactive modes. This
redistribution signifies a gradual evolution toward thermal
equilibrium.

Similarly, another class of periodic orbits, known as stand-
ing wave solutions, has been identified in Klein-Gordon
chains [65,66]. These solutions can be systematically con-
structed by continuing multibreather configurations from the
anticontinuous limit, where oscillators are uncoupled. These
standing waves often become unstable near the linear limit
due to oscillatory instabilities (Krein collisions) or, as in the
case of incommensurate wave vectors, through a breaking of
analyticity.

IV. QBs IN CASES II AND III

In this section, we extend our analysis to cases II and
III, providing a comprehensive understanding of how the
combined effects of on-site potentials and nonlinear intersite
interactions influence the QB stability.

For case II with φ4 = 0, the Hamiltonian contains a sum
of the FPUT-β potential and the quadratic on-site term, where
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FIG. 6. Contour plot of the deviation magnitude of the largest
multiplier from the unit circle, i.e., |μ1| − 1, for case II, displayed in
the plane of β and φ2 for different seed modes: q0 = 1(a), q0 = 2(b),
q0 = 3(c), and q0 = 4(d ). All panels use a consistent color scale. The
dashed white lines are the theoretical results based on Eq. (26).

the latter modifies the spectrum of normal mode frequencies.
Figure 6 illustrates the phase diagrams depicting the instabil-
ity regions of QBs, where Figs. 6(a)–6(d) correspond to QBs
seeded by modes q0 = 1, 2, 3, 4, respectively. In the linear
regime (β = 0), the system reduces to a harmonic chain,
where all modes represent trivial QBs without coupling, re-
gardless of the on-site potential strength φ2. When φ2 = 0,
the model simplifies to the FPUT-β system, where the insta-
bility threshold is given by βc = π2/[6(N + 1)2ε] 	 0.034,
independent of the seed mode for q0 � 2, as indicated by the
red arrows in each panel [47,48].

Analogous to case I, the instability threshold depends on
the strength of the on-site potential. For q0 = 1 [Fig. 6(a)], in-
creasing φ2 shifts the instability threshold βc to higher values.
It is accompanied by larger Floquet multipliers, indicating an
enhanced instability rate. Conversely, for higher seed modes,
i.e., q0 = 2, 3, 4 in Figs. 6(b)–6(d), increasing φ2 progres-
sively reduces the instability threshold βc. The transition curve
separating stable and unstable regions in the (φ2, β ) parameter
plane is derived as (see Appendix A for details)

φ2 = 2(2ζ 2 − 3βε) sec
(

πq0

N+1

)
ζ 2

sin4

[
πq0

2(N + 1)

]
. (26)

This expression is plotted with the white dashed lines in
Figs. 6(b)–6(d), which demonstrate the dependence of in-
stability threshold on the seed mode q0 and align well with
numerical results for q0 � 3. An additional feature of the
phase diagrams is that QBs remain stable when φ2 exceeds a
critical value, regardless of the nonlinearity parameter β. This
highlights the stabilizing role of strong on-site potentials in
suppressing QB instability.

Similarly, Fig. 7 shows the phase diagrams of the instability
regions for case III, which exhibit similar structures to those
of case II. A key distinction arises at β = 0, where the system

FIG. 7. Similar to Fig. 6, but for case III.

reduces to the one for case I with φ2 = 0. In this case, QBs
are unstable within a specific parameter range of φ4. The
transition curve for instability threshold is

φ4 = 16(2ζ 2 − 3βε)

3ε
sin4

[
πq0

2(N + 1)

]
, (27)

which is represented by the white dashed lines in Figs. 7(b)–
7(d). It is found that the Floquet multiplier contours evolve
smoothly as φ4 varies from positive to negative values, with-
out any abrupt changes. The instability boundaries remain in
excellent agreement with theoretical predictions across the
entire parameter space for q0 > 2. Furthermore, QBs become
fully stable when the magnitude of φ4 exceeds a critical value,
independent of its sign. This demonstrates that both soft and
hard on-site nonlinearities can effectively suppress QB insta-
bilities when sufficiently strong.

To further explore how all three potential terms jointly
affect QB stability, we extend our analysis to the full three-
dimensional parameter space (β, φ2, φ4). Figure 8 presents
contour plots of the maximum deviation of Floquet multipliers
from the unit circle for increasing values of φ2. The results
show that the instability region gradually shrinks with grow-
ing φ2 and vanishes entirely at φ2 = 1.6 × 10−3 [Fig. 8(i)],
confirming that a sufficiently strong quadratic on-site potential
can fully stabilize QBs, even in the presence of both intersite
and quartic on-site nonlinearities. These findings highlight
that the three potential terms affect QB stability in distinct
and largely independent ways. The parameters β and φ4 both
introduce nonlinearity and can trigger parametric instabili-
ties, but differ in effect: β increases instability monotonically,
whereas φ4 initially destabilizes and then restabilizes QBs
at higher values. In contrast, the quadratic on-site term φ2

consistently promotes stability. Together, these results clarify
the individual roles and combined impact of each potential
component on QB dynamics.
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FIG. 8. Contour plots of |μ1| − 1 in the (β, φ4) parameter space
with q0 = 3 and N = 31. Each panel corresponds to a different value
of φ2, as indicated above the respective plots. All panels share the
same colorbar.

V. CONCLUSION AND DISCUSSION

In conclusion, the effects of on-site potentials on the stabil-
ity of QBs have been systematically investigated in nonlinear
lattices, where the on-site potentials are incorporated in the
Hamiltonian of the FPUT-β system. Using numerical sim-
ulations and analytical approaches based on Floquet theory,
we identified the conditions and parameter ranges governing
QB stability. A key finding is that the stability of QBs is
highly sensitive to the strength of the on-site potential, where
tuning the on-site potential can shift the instability threshold
profoundly. Our analysis demonstrates that QB instability is
often driven by parametric resonance, effectively modeled by
coupled Mathieu equations. The derived theoretical instability
thresholds exhibit excellent agreement with numerical results,
particularly for QBs originating from higher-frequency seed
modes. Moreover, the sensitivity of the instability threshold
on the seed mode choice highlights the intricate dependence
of properties of localized excitations on the on-site potential,
which is in contrast to previous studies in systems without
substrate potentials.

A comprehensive stability analysis in the full three-
dimensional parameter space reveals that the three types of
potential terms influence QB stability in distinct and largely
independent ways. Both the quartic intersite nonlinearity (β)
and the quartic on-site term (φ4) introduce parametric in-
stabilities, but their effects differ qualitatively. Specifically,
increasing β leads to a monotonic enhancement of QB in-
stability, while φ4 exhibits a nonmonotonic influence by first
destabilizing QBs and then restabilizing them as its value
increases. In contrast, the quadratic on-site potential con-
sistently enhances QB stability across the parameter range.
These findings disentangle the individual contributions of

each nonlinear term and highlight how their interplay shapes
the overall dynamical landscape of QB solutions.

Our study provides a comprehensive framework for un-
derstanding and analyzing the stability of QBs in nonlinear
lattice systems. It highlights the importance of on-site poten-
tials in shaping the behavior of localized excitations, thereby
significantly advancing the theoretical understanding of QB
dynamics. The implications of these findings extend beyond
the systems studied here. The ability to manipulate QB stabil-
ity using on-site potentials opens possibilities for controlling
localized excitations in a wide range of nonlinear analogous
FPUT systems. This is especially important for systems that
require localization, including the design of cold atom arrays
[1,2], Josephson junction arrays [67,68], optical waveguide
arrays [69,70], among others. Furthermore, while this study
focuses on one-dimensional systems, the insights gained here
provide a solid foundation for future research into higher-
dimensional systems, where more complex interactions and
nonlinear effects may come into play.
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APPENDIX A: DERIVATION OF THE TRANSITION CURVE

This Appendix briefly reviews the method for estimating
the exponential growth rate of the solution to Eq. (19) [55].
Infinitesimal perturbations, ξq, are introduced around the QB
solution Q̂q(t ), such that Qq = Q̂q + ξq. The evolution of
these perturbations follows the coupled Hill equations:

ξ̈q + ω2
qξq = −

N∑
l,m,n=1

3�q,l,m,n

2(N + 1)
Cq,l,m,n Q̂l Q̂mξn. (A1)

For each mode pair, Eq. (A1) can be reformulated as

d2ξ1

dt2
+ ω2

1ξ1 = − 3Q̂2
q0

2(N + 1)

[
2�1,q0,q0,1ξ1 + �1,q0,q0,2ξ2

]
,

d2ξ2

dt2
+ ω2

2ξ2 = − 3Q̂2
q0

2(N + 1)

[
2�2,q0,q0,2ξ2 + �2,q0,q0,1ξ1

]
,

(A2)

044202-9



LIN DENG et al. PHYSICAL REVIEW E 112, 044202 (2025)

where Q̂q0 (t ) = a
√

N + 1 cos(ω̂bt ). By introducing the dimensionless time variable τ = ωq0t , this equation becomes

d2ξ1

dτ 2
+ r2

1ξ1 = −γ [1 + cos(2�τ )]
(
2B11r2

1ξ1 + B12r1r2ξ2
)
,

d2ξ2

dτ 2
+ r2

2ξ2 = −γ [1 + cos(2�τ )]
(
2B22r2

2ξ2 + B21r2r1ξ1
)
, (A3)

where r1 = ωk/ωq0 , r2 = ωl/ωq0 , γ = 3�0a2/(4ω2
q0

), � = ω̂b/ωq0 , and Bi j = (�i,q0,q0, jω
2
q0

)/(�0ωiω j ).
We assume a solution to Eq. (A3) in the form

ξi = ui(τ )sin(�τ ) + vi(τ )cos(�τ ),

dξi

dτ
= �ui(τ )cos(�τ ) − �vi(τ )sin(�τ ), (A4)

where i = 1, 2. Then, Eqs. (A3) can be rewritten as

d

dτ
u1(τ ) = γ

�

[
1

2
a13v1(τ ) − 3

4
b12v2(τ ) +

(
1

2
a12u1(τ ) − 1

2
b12u2(τ )

)
sin(2�τ ) +

(
1

2
a14v1(τ ) − b12v2(τ )

)
cos(2�τ )

+
(

−1

2
b11u1(τ ) − 1

4
b12u2(τ )

)
sin(4�τ ) +

(
−1

2
b11v1(τ ) − 1

4
b12v2(τ )

)
cos(4�τ )

]
,

d

dτ
v1(τ ) = γ

�

[
−1

2
a11u1(τ ) + 1

4
b12u2(τ ) +

(
−1

2
a12v1(τ ) + 1

2
b12v2(τ )

)
sin(2�τ ) + 1

2
a10u1(τ ) cos(2�τ )

+
(

1

2
b11v1(τ ) + 1

4
b12v2(τ )

)
sin(4�τ ) +

(
−1

2
b11u1(τ ) − 1

4
b12u2(τ )

)
cos(4�τ )

]
,

d

dτ
u2(τ ) = γ

�

[
1

2
a23v2(τ ) − 3

4
b12v1(τ ) +

(
1

2
a22u2(τ ) − 1

2
b12u1(τ )

)
sin(2�τ ) +

(
1

2
a24v2(τ ) − b12v1(τ )

)
cos(2�τ )

+
(

−1

2
b22u2(τ ) − 1

4
b12u1(τ )

)
sin(4�τ ) +

(
−1

4
b12v1(τ ) − 1

2
b22v2(τ )

)
cos(4�τ )

]
,

d

dτ
v2(τ ) = γ

�

[
−1

2
a21u2(τ ) + 1

4
b12u1(τ ) +

(
−1

2
a22v2(τ ) + 1

2
b12v1(τ )

)
sin(2�τ ) + 1

2
a20u2(τ ) cos(2�τ )

+
(

1

4
b12v1(τ ) + 1

2
b22v2(τ )

)
sin(4�τ ) +

(
−1

2
b22u2(τ ) − 1

4
b12u1(τ )

)
cos(4�τ )

]
, (A5)

where the coefficients ai j and bi j are given by ai j =
1
γ

[�2 − (1 + jγ Bii )r2
i ] and bi j = Bi jrir j , respectively. As-

suming m/N � q0/N , this condition ensures that r1 ≈ 1 and
r2 ≈ 1. In addition, for sufficiently small ε, one has � ≈ 1.
Under these conditions, it follows that ai j � O(γ −1) and
bi j = O(1).

The derived equation is in the standard form for the av-
eraging method, which is applicable when m/N � q0/N and
ε � 1. By calculating the second-order averaged equations,
we arrive at

d

dτ

⎛
⎜⎜⎝

u1

v1

u2

v2

⎞
⎟⎟⎠ = γ

4�

⎛
⎜⎜⎜⎜⎝

0 2�1u 0 −3R1

−2�1v 0 R2 0

0 −3R1 0 2�2u

R2 0 −2�2v 0

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

u1

v1

u2

v2

⎞
⎟⎟⎠, (A6)

where

�1u = a13 + γ

32�2

(
8a12a14 + 4b2

11 + 17b2
12

)
,

�1v = a11 + γ

32�2

(
8a10a12 + 4b2

11 + b2
12

)
,

�2u = a23 + γ

32�2

(
8a22a24 + 4b2

22 + 17b2
12

)
,

�2v = a21 + γ

32�2

(
8a20a22 + 4b2

22 + b2
12

)
,

and

R1 = b12 + γ

48�2
[4b12(2a12 + a14 + a24 + 2a22)

−2b12(b11 + b22)],

R2 = b12 + γ

16�2
[4b12(a10 + a20) − 2b12(b11 + b22)].

The eigenvalues λ of the coefficient matrix in Eq. (A6) can be
explicitly obtained as

λ = ± γ

4�

√
G ± 2

√
F , (A7)
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where

F = (�1uR2 + 3�2vR1)(�2uR2 + 3�1vR1)

+ (�1u�1v − �2u�2v )2 (A8)

and

G = −3R1R2 − 2(�1u�1v + �2u�2v ). (A9)

The polynomials F and G are functions of ε. By examining
their dependence on ε, we observe that, for fixed values of
m/N and q0/N , the polynomial F experiences a transition
from positive to negative values as ε increases, while G re-
mains negative throughout. Moreover, the magnitude of |G| is
much larger than |F |. When F is positive, all the eigenvalues
λ are purely imaginary, implying that the solution to Eq. (A6)
is stable. In this scenario, the system does not exhibit any
exponential growth, and the solution remains bounded. Con-
versely, when F becomes negative, the eigenvalues take the
form ±(x ± iy), with x and y being real numbers. In this case,
the solution of Eq. (A6) becomes unstable, and the system
undergoes exponential growth at a rate determined by the
positive real part of the eigenvalues Re[λ]. This exponential
growth rate is also applicable to the solution (ξ1, ξ2) of the

coupled Mathieu equations, i.e., Eq. (19), as the solution’s
expressions are linear in ui and vi.

When F < 0 and G < 0, one of the eigenvalues can be
written as

λ = γ

4�

√
G + 2i

√
|F | = γ

4�
(G2 + 4|F |)1/4eiθ/2,

where cos θ = G/
√

G2 + 4|F | and cos(θ/2) =√
(1 + cos θ )/2. In this case, the solution of Eq. (A6) is

unstable and grows at a rate given by

Re[λ] = γ

4
√

2�
[G +

√
G2 + 4|F |]1/2. (A10)

For the regime where −F � 1, the growth rate Re[λ] can be
expanded as

Re[λ] ≈ γ

4
√

2�

[
G − G

(
1 + 2|F |

G2

)]1/2

= γ

4�

√
F

G
.

(A11)

By introducing ζ = πm/[2(N + 1)] and expanding Eq. (A11)
to the order of εζ 4, we arrive at

Re[λ] ≈
ζ csc4

(
πq0

2(N+1)

)
[
4 + φ2 csc2

(
πq0

2(N+1)

)]2

√
3 − 2(2 + φ2) cos

(
πq0

N + 1

)
+ cos

(
2πq0

N + 1

)

×
[

3

4
ε(6β + φ4) + 2[ζ 2(2 + φ2) − 3βε] cos

(
πq0

N + 1

)
− 3ζ 2 −

(
ζ 2 − 3

2
βε

)
cos

(
2πq0

N + 1

)]1/2

. (A12)

Based on Eq. (A12), the transition curve for the QB in-
stability can be derived. In the special case where φ2 = 0 and
φ4 = 0, the system reduces to the FPUT-β model, yielding the
following expression for the growth rate:

Re[λ] = 1
4

√
2ζ 2(3βε − 2ζ 2). (A13)

To determine the transition point, we solve the equation
Re[λ] = 0, yielding the critical value

ζ0 =
√

3βε

2
, (A14)

indicating that ζ0 decreases with decreasing ε. When ε is suf-
ficiently small, the growth rate of the mode pair corresponding
to m = 1 becomes zero, namely, ζ0 � π/[2(N + 1)], with all
modes being stable, which leads to the instability threshold βc

expressed as

βc = π2

6(N + 1)2ε
. (A15)

For case I where β = 0, the system simplifies to the Klein-
Gordon model. Solving the equation Re[λ] = 0, the transition
curve between the stable and unstable regions in the parameter
plane (φ2, φ4) is given by

φ2 = sec

(
πq0

N + 1

)(
1 − 3ε

8ζ 2
φ4

)
+ cos

(
πq0

N + 1

)
− 2.

(A16)

When φ2 = 0, the instability threshold of φ4c is

φ4c =
32ζ 2 sin4

(
πq0

2(N+1)

)
3ε

. (A17)

FIG. 9. Similar to Fig. 3, but for the seed modes q0 = 5 (a), (c)
and q0 = 6 (b), (d).
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The instability corresponding to the mode pair m = 1 yields
ζ = π/[2(N + 1)], the stability threshold becomes

φ4c = 8π2

3(N + 1)2ε
sin4

[
πq0

2(N + 1)

]
. (A18)

The transition curves for case II and case III can be obtained
using the same method, which are

φ2 = 2(2ζ 2 − 3βε) sec
(

πq0

N+1

)
ζ 2

sin4

[
πq0

2(N + 1)

]
(A19)

and

φ4 = 16(2ζ 2 − 3βε)

3ε
sin4

[
πq0

2(N + 1)

]
, (A20)

respectively.

APPENDIX B: RESULTS FOR MODES 5 AND 6 IN CASE I

Here we supply more evidence for the verification of the
theoretical analysis. Figure 9 shows the Floquet multipliers
spectrums when q0 = 5 and q0 = 6 are chosen as the seed
modes in case I. The theoretical prediction given by Eq. (20)
also matches the lower instability boundaries very well, as
indicated by the white dashed lines.
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