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Thermalization slowing down of weakly nonintegrable quantum spin dynamics
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We study thermalization slowing down of a quantum many-body spin system upon approach to two distinct in-
tegrability limits. Motivated by previous studies of classical systems, we identify two thermalization timescales:
one quantum Lyapunov timescale is extracted by quantifying operator growth in time on an appropriately defined
basis, while another ergodization timescale is related to the statistics of fluctuations of the time-evolved operator
around its mean value based on the eigenstate thermalization hypothesis. Using a paradigmatic quantum Ising
chain, we find that both timescales diverge upon approach to integrability. We investigate the relative strength
of the divergence in the two limits and find that, despite significant qualitative differences in the mechanism of
integrability breaking, the timescales diverge in a similar fashion. This allows us to establish a universality of
integrability breaking in quantum spin dynamics.
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I. INTRODUCTION

The study of integrable and chaotic dynamics in quan-
tum systems is an area of active investigation with the
goal of explaining the emergence of statistical mechan-
ics in interacting quantum systems, among others. Multiple
observables have been identified and studied as probes of inte-
grable/chaotic dynamics. One class of such probes is based on
spectral properties of the system [1–8] rooted in the Bohigas-
Giannoni-Schmit (BGS) and Berry-Tabor conjectures [1,2]
and the expected random matrixlike behavior of quantum
systems [9,10]. Another class of observables is based on the
operator growth or state evolution under integrable/chaotic
Hamiltonians. Observables such as out-of-time-ordered corre-
lation (OTOC) functions [11–23], circuit complexity [24–27],
operator size [28–31], and Krylov complexity [32–39] fall
into this category.

Thermalization is a closely related phenomenon to the
study of chaos. It describes late-time physics at equilibrium
and leads to the emergence of statistical mechanics. Thermal-
ization is a universal property of nonintegrable systems, found
in both classical and quantum dynamics. Specifically, we are
interested in the nature of thermalization near integrability,
where it is expected to slow down. This has been explored
extensively in classical systems. Some of the key features
studied in this respect are the relevant timescales: Lyapunov
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time, ergodization time, etc. These timescales are obtained by
computing different observables and studying their divergence
upon approach to integrability [40–49].

In quantum mechanical systems, the eigenstate thermaliza-
tion hypothesis (ETH) [50–56] is often used to characterize
thermalization. Within the purview of ETH, there are er-
godization timescales (e.g., Thouless time) [52,57–60] which
have been explored in various systems. These timescales dif-
fer between chaotic and integrable systems, and their exact
nature has been studied extensively. Another active direc-
tion of investigation involves the notion of Lyapunov-like
timescales for quantum systems. Operator growth serves as a
potential path (via OTOCs) to define an appropriate spectrum
[61–63]. Similarly, the spectral function is also used [64]. In
quantum systems without well-defined classical limits (e.g.,
spin- 1

2 chains) the quantum Lyapunov spectra behave quite
differently from classical spectra and may suffer from def-
inition ambiguities [62,63]. There are better-defined notions
of the maximum Lyapunov exponent, which is typically ex-
tracted from the growth exponent of an appropriately defined
observable. These include the exponent of the OTOC [65] and
Krylov complexity [32,37].

In this paper, we extend the concept of timescales,
originally developed for classical networks, to quantum me-
chanical systems near integrability. We introduce the notion
of quantum networks near integrability and characterize them
by studying the dynamics of conserved quantities of the lim-
iting integrable Hamiltonian. We employ the operator growth
approach (using Krylov complexity) to define an appropriate
notion of Lyapunov time. Operator growth is captured through
the lens of Krylov complexity, which describes the evolution
of an operator on a minimal basis. We then use ETH principles
to extract another timescale, which we coin the ergodiza-
tion timescale (in analogy to classical systems). The system
that we study is a prototypical one-dimensional (1D) quan-
tum Ising spin- 1

2 chain. Near the integrable limits, the two
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timescales are compared. Their behavior is used to identify
universal features of integrability breaking, by considering
qualitatively different mechanisms of integrability breaking,
which we call short-range network (SRN) and long-range
network (LRN) by analogy with the classical case [40–47].

II. THE MODEL

The prototypical spin system we employ to characterize
LRNs and SRNs is the quantum Ising chain (QIC) [66,67]
given by the following Hamiltonian:

H = −
N∑

i=1

(
Jσ z

i σ z
i+1 + gσ z

i + hσ x
i

)
, (1)

where J, g, and h are real numbers describing nearest-
neighbor interaction and longitudinal and transverse magnetic
fields, respectively. The σ x,z

i ’s are Pauli matrices, describ-
ing spin- 1

2 algebra. The system is, in general, nonintegrable
and has been extensively studied through various probes of
quantum chaos [68–73]. In the limits g → 0 [transverse field
Ising model (TFIM)] or h → 0 [longitudinal field Ising model
(LFIM)], the Hamiltonian in Eq. (1) becomes integrable. We
study chaos and thermalization timescales in the vicinity of
these limits to observe and quantify the possible differences
between the two limits.

In classical systems near integrable limits, the way the
actions are coupled by the integrability-breaking perturbations
defines different classes of networks with different properties.
The system is defined as a LRN if the connectivity (defined
through an appropriately defined coupling range) is extensive
in the number of actions N . In a SRN, the connectivity of the
actions (i.e., the coupling range) is independent of the number
of actions.

Inspired by the classical definition, we focus on the con-
served quantities of the QIC in its integrable limits. In the limit
h = 0, the spin chain becomes effectively decoupled in real
space, and the conserved quantities are local, with the simplest
one being σ z

i . Adding a small nonzero value of h will couple
these conserved quantities in a local manner of a SRN.

In the limit g = 0, the spin chain is extensively connected
while still being integrable. This is reflected by the fact that the
conserved quantities are nonlocal [74]. Some of these opera-
tors correspond to simple symmetry operations. For example,
the spin-flip operation σ z → −σ z for all spins leaves the
Hamiltonian invariant. The corresponding conserved quantity
is

∏N
i=1 σ x

i . Other conserved quantities are similarly repre-
sented as extensive (nonlocal) combinations of the local spin
matrices or as sums of local terms. The support of such quan-
tities grows with system size [75].

Thus, by analogy with the classical definition [45–47],
we classify the quantum weakly nonintegrable models by
the character of coupling of conserved quantities in the in-
tegrable limit by the integrability breaking perturbation. We
consider the following two types of networks: (i) Quan-
tum SRN—a conserved quantity in the integrable limit
is coupled by the integrability-breaking perturbation to a
system size–independent number of other conserved quan-
tities, as observed from the operator dynamics defined
by standard commutator relations. (ii) Quantum LRN—a

conserved quantity in the integrable limit is coupled by the
integrability-breaking perturbation to a number of other con-
served quantities that scale with the system size.

In what follows, we probe the ergodicity (ETH) and op-
erator growth timescales of the above operators near the two
respective limits. We then compare the divergence of these
two timescales upon approaching each of the two limits.

III. KRYLOV COMPLEXITY

There exists a large class of observables that quantify
operator growth under Hamiltonian dynamics. A common
feature among most of these probes is the choice of a basis to
expand the time-evolved operator. Once the basis is chosen,
then appropriate expectation values are defined and evaluated,
which then serve to distinguish between chaotic and integrable
systems.

One such probe is Krylov complexity [32]. The steps to
evaluate Krylov complexity begin with generating a minimal
basis [76], which is called the Krylov basis. The Krylov
complexity captures the average position of an operator
in a minimal basis under the unitary evolution in time of
the operator with the Hamiltonian H . The construction of
the Krylov basis relies on an appropriately chosen norm
in the Hilbert space of operators. We employ the infinite-
temperature Hilbert-Schmidt norm for our analysis

(A|B) = Tr(A†B)

D . (2)

Upon adopting the norm, one chooses an operator O whose
evolution is studied. The unitary evolution of O governed by
the Hamiltonian H is defined as

O(t ) = eiHtOe−iHt = eiLtO, (3)

where L(∗) ≡ [H, ∗] is the Louivillian superoperator. The el-
ements On of the minimal (Krylov) basis corresponding to the
operator O and Hamiltonian H are generated via the Lanczos
algorithm [32,77], as described in Appendix A. The operator
O(t ) has the following expansion in this basis:

O(t ) =
∑

n

inψn(t )On. (4)

The dynamical properties of O(t ) under the Hamiltonian H
are encoded in the behavior of the Krylov wave functions
ψn(t ). These properties allow us to diagnose chaotic behavior
in quantum many-body systems [32,34–38].

It was argued in Ref. [32] that the average position of the
time-evolved operator

K (t ) =
K∑
n

n|ψn(t )|2, (5)

known as Krylov complexity, grows exponentially with t for
chaotic dynamics: K (t ) ∼ e2αt . The exponent α captures the
strength of the chaotic dynamics and is bounded from above
by the Maladcena-Shenker-Stanford [65] bound. One can then
define a natural timescale for a chaotic system as α−1, which
we denote as Tλ throughout this paper since it captures the
growth of operators under the Hamiltonian H .
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IV. ERGODIZATION TIME

The ETH [50,54] provides a powerful tool to study and
characterize thermalization in quantum mechanical systems.
It serves as a way to probe the chaotic or integrable dynamics
of a system through the evolution of operators and states.
The essential statement of ETH can be encapsulated in the
following equation:

〈O(t )〉|t→∞ = O + 1√
D

R(t ), (6)

where the expectation value 〈· · ·〉 of the time-evolved operator
is taken in a typical state, and the long time-averaged expec-
tation value of the operator O can be evaluated analytically in
the diagonal ensemble. The function R(t ) represents sublead-
ing fluctuations, suppressed by the Hilbert space dimension D.
The nature of the function R(t ) has been studied extensively in
different chaotic and integrable systems [78–81]. We use the
fluctuations of R(t ) to extract a timescale that we refer to as the
ergodization timescale TE . The definition of this scale largely
follows that in the classical case, discussed in Ref. [40]. We
choose a random initial state |ψ〉 as the typical state and
track the evolution of O(t ). As the function 〈O(t )〉 evolves, it
eventually starts to fluctuate around the mean value O, going
above and below the mean with time. This defines the pas-
sage times ti of the function across the mean value 〈O(ti )〉 =
O [40–47]. Time intervals between the two subsequent
passages

τi = ti+1 − ti (7)

are called excursion times since they reflect the time spent
by the expectation value 〈O(t )〉 away from its mean value.
We distinguish additionally positive τi,+ and negative τi,−
excursion times for excursions above and below the mean
value O. For a given system and operator, the collected
excursion times τi obey some distribution. We use the
moments—mean and variance—of this distribution to extract
an ergodization timescale, as defined later and discussed in the
Appendix D.

V. RESULTS

We study numerically the dynamical properties close to
integrability of the quantum SRNs and LRNs, respectively,
using the definitions and the methods outlined above. The
Hamiltonian is given by Eq. (1), and we choose the follow-
ing conserved quantities in the two integrable limits of the
Hamiltonian as the time-evolved operators/observables whose
dynamical properties we study:

Oh→0 = σ z
i , (8)

O(k)
g→0 = I (k), k = 1, . . . , N, (9)

where I (k) denotes the set of conserved quantities for the TFIM

I (k) = iJ
N∑

j=1

(
Szy

j: j+k − Syz
j: j+k

)
, (10)

FIG. 1. Lyapunov time Tλ for N = 8 spins extracted from the
linear growth of the Lanczos coefficients of time-evolved operator
O(t ) in the Krylov basis as a function of h for short-range network
(SRN) and g for long-range network (LRN; averaged), respectively.
In both limits, Tλ shows a clear increase upon approach to the inte-
grable limit.

where we have the following shorthand

Sαβ

j: j+l = σα
j

(
l−1∏
n=1

σ x
j+n

)
σ

β

j+l . (11)

The conserved quantity O(k)
h→0 comprises sums of q-local

quantities, which have support on q lattice sites. For I (k),
we have q = k + 1. At the respective integrable limits, the
operators are conserved, their corresponding Lyapunov expo-
nents are 0, and their Lyapunov times are defined through
the Krylov complexity diverge. Like the classical case, we
are interested in quantifying the divergence of the Lya-
punov and ergodization times (from the two probes) upon
approaching the integrable limits. For the following discus-
sion, we will present the timescales obtained by averaging
over the N operators O(k)

g→0 in the LRN case. The individual
timescales are presented in Appendix C. For the SRN case,
averaging over the N possible σ z

i gives quantitatively similar
timescales to that of an individual σ z

i . This is discussed in the
Appendix B.

Figure 1 shows the Lyapunov times Tλ extracted from
the linear growth of the Lanczos coefficients in the Krylov
basis of the operators in Eqs. (8) and (9) and plotted in
the log-log scale as functions of the integrability break-
ing parameters g (LRN) or h (SRN). Our LRN data for
Tλ are in semiquantitative agreement with similar compu-
tations in Ref. [32], although the Hamiltonian parameters
do not completely match, and different operators were
used.

In both LRN and SRN cases, the observed behavior of Tλ

is fitted with a (weak) power-law divergence for small values
of g or h. One may consider other fitting attempts for different
model families in Ref. [32], which involve logarithmic fits.
The differences are small in the considered parameter range,
and all that matters for our purpose here is to use the same
fitting procedure for all measured timescales. The exponents
are extracted for a system of N = 8 spins via a linear fit of the
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FIG. 2. Comparison of the ergodization time TE and Lyapunov
time Tλ for the short-range network (SRN; near-Ising limit) and long-
range network (LRN; near-Free limit).

data on the log-log scale

log10 Tλ,SRN = −0.083 log10(h) + 0.218, (12)

log10 Tλ,LRN = −0.155 log10(g) + 0.010. (13)

To study the thermalization properties, we collect the
statistics of the excursion times τ± in Eq. (7) of the expec-
tation value of the respective operators in Eqs. (8) and (9)
(denoted by the subscripts σ z

SRN and 〈I (k)
LRN〉k in the numer-

ical plots) in a random state (different choices of the state
yielded similar results). We average the timescales over the
N conserved quantities I (k) for the LRN case. The results
for individual quantities I (k) in Eq. (10) are discussed in
the Appendix C. We study the mean μ and variance σ 2 of
the positive and negative excursion times in Eq. (7). To define
an appropriate ergodization time TE , we study the relative
behavior of mean μ and variance σ 2, with the integrability-
breaking parameter, by collecting 104 excursions. Increasing
this number does not change the moments significantly. The
following behavior of the moments is observed, which follows
rather closely the classical weakly nonintegrable systems: We
observe that the values of σ are exponentially larger than μ

close to the integrable limit for both SRN and LRN, suggest-
ing that the typical timescale of fluctuations is dominated by
the distribution tail rather than its mean. A natural ergodiza-
tion timescale is then defined as TE = σ 2/μ [40–47].

In Fig. 2, we compare the ergodization times TE ,± for the
SRN and LRN based on positive/negative excursion times
with the Lyapunov time Tλ obtained via the Krylov method.
Like the Lyapunov time Tλ, the ergodization time TE also
shows a power-law divergence with the decrease of the
integrability-breaking parameter. The linear fits of the data in
the log-log scale are

log10 TE ,SRN = −2.263 log10(h) − 0.137, (14)

log10 TE ,LRN = −2.073 log10(g) − 1.150. (15)

Ergodization times extracted from positive and negative
excursion times τ± show similar scaling close to integrability.
Here, we discuss the result obtained from τ+.

FIG. 3. TE/Tλ for long-range network (LRN) and short-range
network (SRN), plotted with respect to Tλ/T ∗

λ . The dashed lines
represent the linear fit in the log-linear scale. The slopes correspond
to α = 6.16 for LRN (in red) and α = 12.63 for SRN (in blue).

Our findings indicate that, in the two integrable limits,
the timescales Tλ and TE diverge with exponents that differ
by at least an order of magnitude. This follows from com-
paring Eq. (12) with Eq. (14) and Eq. (13) with Eq. (15).
Therefore, the timescale associated with ETH diverges ex-
ponentially faster than that associated with operator growth.
For the two network classes, the Lyapunov and Ergodization
timescales, respectively, diverge with comparable exponents.
This suggests a universality in the mechanism of integrability
breaking in quantum many-body spin systems. The SRN,
characterized by local conserved quantities in the integrable
limit, demonstrates a slowing down of thermalization at a rate
which appears to be like the LRN, which is characterized by
nonlocal conserved quantities (which appear as sums of local
terms) in the integrable limit. However, such a conclusion can
be partially deceiving since we vary different parameters g
and h. To properly compare the timescales from both network
regimes, we replot them in units of the corresponding largest
Lyapunov times. This is done in Fig. 3, which is our central
result and shows the ratio TE ,±/Tλ as a function of Tλ/T ∗

λ .
Now we put the timescale analysis of both classes on a similar
footing [82]. Here, T ∗

λ is the maximum value of Tλ for each
(SRN, LRN) of the networks and is required for effective com-
parison of the two networks since the range of Tλ observed in
Fig. 1 is different for the SRN and LRN. It is evident from
Fig. 3 that, for the two network classes, TE ,±/Tλ scales in
qualitatively different ways as T α

λ with α 
 1, especially near
Tλ/T ∗

λ = 1. We find a rather weak scaling α = 6.16 for the
LRN as compared with a much stronger scaling α = 12.63
for the SRN.

VI. CONCLUSIONS

In this paper, we investigated the universality classes of
thermalization of classical weakly nonintegrable systems in
the case of weakly nonintegrable quantum many-body spin
systems. The classes are defined by the two timescales quan-
tifying thermalization: One timescale comes from the Krylov
complexity of operator growth. In the nonintegrable regime,
the K-complexity grows as exp(t/Tλ), defining a Lyapunov
timescale.
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Another timescale, the ergodization time TE , is inspired by
ETH and is defined through the statistics of the time intervals
between consecutive crossings of the expectation of time-
evolved operator 〈O(t )〉 around its mean value O. Here, TE is
then defined through the appropriate moments of the intervals.

For O conserved in the integrable limit, both timescales are
expected to diverge.

The SRN is defined by the locality of interaction between
the conserved quantities (in the integrable limit) as integra-
bility is weakly broken. We find that the distribution of the
crossing intervals is fat-tailed in this case, and therefore, TE is
defined as the ratio of the variance and the mean.

Conversely, the LRN is defined by the nonlocality of
interaction between the conserved quantities upon weak inte-
grability breaking. Like the classical observation [45], we find
that the two timescales respond in a qualitatively different way
as compared with the SRN case, underscoring the difference
of the integrability-breaking mechanisms.

In the 1D spin- 1
2 chain we study, both timescales, Tλ and

TE , diverge as power laws with a decreasing integrability-
breaking parameter. We compare the exponents of both TE

and Tλ in the two network classes. We find that the expo-
nents of TE and Tλ are comparable with each other for LRN
and SRN. However, this result uses varying different model
parameters. To quantitatively compare the relative growth of
the timescales for both regimes, we measure TE in units of
Tλ and plot the outcome as a function of Tλ. We then find
that the LRN regime shows a relatively small rate at which
thermalization (in the ETH sense) slows down upon approach-
ing the integrable limit compared with operator spreading. For
the SRN case instead, the rate at which thermalization (in the
ETH sense) slows down upon approaching the integrable limit
compared with operator spreading is much larger. Therefore,
in the SRN case, it takes more and more time to thermalize as
compared with the operator growth timescales.

This implies that, in the SRN regime, ETH-like thermaliza-
tion slows down exponentially faster than operator spreading
as integrability is approached.

We identify this drastic difference in the relative slowdown
of thermalization, and operator spreading as the universal fea-
ture of SRNs, as opposed to LRNs. This is like the character
of thermalization slowing down in classical systems [40,41],
where classical Lyapunov time is compared with classical
ergodization time, and the two network classes respond in
very different manners.

Many open questions naturally emerge from this inves-
tigation. One natural direction is testing this classification
for other types of quantum systems. Further, other probes
might be able to distinguish and be sensitive to these two
network classes. In the classical case, the Lyapunov spec-
trum scaling close to integrability proved to be instrumental
in classifying network classes [41]. It would be interesting
to study probes that do not have classical analogs, such as
quantum entanglement [83], in such phenomena. Our inves-
tigation was restricted to finite system sizes; the scaling of
the two timescales with system size (and therefore in the
thermodynamic limit) is also worth investigating. There has
also been a large body of work in which authors have investi-
gated the exact nature of the fluctuations of operator evolution
[e.g., R(t ) in Eq. (6)]. This suggests that a more concrete

connection between ETH and ergodization time might exist.
Random matrix theory is also expected to play a crucial role
in this characterization. It would also be interesting to study
the effective random matrix theory near integrability for the
two network classes.
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APPENDIX A: KRYLOV COMPLEXITY

The Krylov complexity of an operator O under the effect of
the Hamiltonian H is computed with the following algorithm
[32], which generates a basis in the space of operators:

(1) First element of the basis: O0 = O.
(2) Evaluate the commutator of the operator with the

Hamiltonian A1 = [H,O0]. Note that this is orthogonal to O0.
(3) Normalize this operator O1 = 1

b1
A1 with b1 =√

(A1|A1). This forms the second element O1 of the basis.
(4) The nth element of the Krylov basis is obtained by first

evaluating

An = [H,On−1] − bn−1On−2.

(5) This An is orthonogonal to all Ok ∀ k < n.
(6) Finally, normalize An to obtain On = 1

bn
An. This is the

nth Krylov vector.
(7) Terminate this process at K where bK = 0 and bK−1 >

0.
This is a version of the Lanczos algorithm [77]. The time-

evolved operator O(t ) can now be written in the Krylov basis

O(t ) = eiHtO0e−iHt =
K∑

n=0

inψn(t )On. (A1)

The functions ψn(t ) capture the time evolution of the operator
O. Note that this algorithm rewrites the Baker-Campbell-
Hausdorff expansion of O(t ) in a more compact form by
essentially orthonormalizing each term with respect to all the
others. For the Hermitian initial operator (and Hamiltonian),
ikOk is also Hermitian.

The numbers bn that have been collected from this algo-
rithm uniquely fix all the functions ψn(t ). This is done by
utilizing the fact that the autocorrelation function ψ0(t ) =
(O(t )|O0) can be expanded in a Taylor series [32,77] of the
form

ψ0(t ) =
∑

k

μ2k

(2k)!
t2k, (A2)

where b2
1b2

2 . . . b2
n = det(μi+ j )0�i, j�n. Once the function ψ0 is

known, the remaining ψk can be figured by using the recursion
relation

∂tψk (t ) = −bk+1ψk+1(t ) + bkψk−1(t ), ψk (0) = δk0,

(A3)

which follows from applying Heisenberg’s equation on O(t ).
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The sequence bn, called the Lanczos coefficients, can be
used to distinguish between chaotic and integrable dynamics
in certain cases. The operator growth hypothesis [32] states
that chaotic dynamics is characterized by an (asymptotic)
linear growth of the Lanczos coefficients, i.e., bn ∼ αn. The
average position of the operator can also be demonstrated on
this basis

K (t ) =
K∑
n

n|ψn(t )|2, (A4)

called the Krylov complexity, which grows (asymptotically)
as K (t ) ∼ e2αt for chaotic systems. It is worth noting that
this exponent also appears in the asymptotic decay rate of the
spectral function 
(ω) = ∫ ∞

−∞ ψ0(t )eiωt dt :


(ω → ∞) ∼ e−π |ω|/2α. (A5)

The decay of the spectral function for large ω has been the
subject of intense investigation in recent years and has been
found to be a useful indicator of chaotic and integrable dy-
namics [55,81,84–86].

A natural candidate for a Lyapunov exponent is the growth
exponent α of the Lanczos coefficients. For systems that
demonstrate chaotic dynamics, it has been argued [32] that
the autocorrelation function ψ0(t ) has poles on the imaginary
axes, and the lowest-lying one is given by t0 = ± π

2α
. There-

fore, the growth exponent α can be extracted from the pole
structure of the autocorrelation function.

In the systems that we study in the main text, we present
the behavior of α (rather, the behavior of the Lyapunov time
Tλ = α−1) by choosing an appropriate initial operator O [87].

APPENDIX B: CONSERVED QUANTITIES: SRN

When studying the SRN limit and computing the thermal-
ization timescales, we choose the conserved quantity (in the
integrable limit h → 0) to be the Pauli matrix σ z

i , at some
lattice site i. This quantity is local, and so the integrability
breaking induces extra terms that are also local (but not nec-
essarily 1− local). It is interesting to consider what would
happen if a nonlocal conserved quantity is instead considered
in the SRN case. The results do not change much for the fol-
lowing reasons: Let us consider the nonlocal initial operator

O(N ) =
N∑

i=1

σ z
i , (B1)

where the superscript (N ) is used to indicate that the operator
is nonlocal. Correspondingly, the local operator is denoted as
O(1) = σ z

1 . The time evolution of the operator can be broken
into that of individual σ z

i . The evolutions for each of these
should be equivalent since the state (with respect to which
the expectation value is calculated) |ψ〉 is a random state and
hence has roughly equal weight at each site i. This allows us
to approximate the fluctuation equation as

〈O(N )(t )〉 − O(N ) ≈ N (〈O(1)(t )〉 − O(1) ), (B2)

which has a similar distribution of zeros and hence similar
moments as that of O(1).

FIG. 4. Comparison of ergodization times and Lyapunov times
for short-range network (SRN) with local and nonlocal operators.
The superscript (N ) stands for the nonlocal operator. The initial states
are different but chosen from the same random distribution, for the
local and nonlocal cases.

The Krylov complexity (or Lanczos growth) of such nonlo-
cal operators should also be the same as that of local operators.
This is because we are working with translation symmetric
systems, and therefore, each σi can be replaced by σ1 in the
BCH expansion. The resulting overall factor of N is taken care
of via normalization.

To support this argument, we present the numerical results
for the two cases in Fig. 4. The nonlocal timescales are repre-
sented by a superscript (N ).

It is interesting to note that the ergodization timescales for
τ± are much more similar for the case of O(N ) than for O(1).
This is due to the sum of local operators having a smoothing
effect on the random state |ψ〉. This causes the timescales
obtained from τ+ and τ− to almost exactly overlap in the
weakly integrable limit.

APPENDIX C: CONSERVED QUANTITIES: LRN

Here, we discuss the conserved quantities of the integrable
limit g → 0 of the LRN class. This integrable Hamiltonian
is known as the TFIM and has a complete set of conserved
quantities. These are given by

I (k) = iJ
N∑

j=1

(
Szy

j: j+k − Syz
j: j+k

)
, k = 1, . . . , N − 1, (C1)

where we have the following shorthand

Sαβ

j: j+l = σα
j

(
l−1∏
n=1

σ x
j+n

)
σ

β

j+l . (C2)

It is straightforward to see that [HTFIM, I (k)] = 0. These quan-
tities can be interpreted as linear combinations of mode
occupation numbers in the Jordan-Wigner fermion theory
[88]. For k = N , the conserved quantity corresponds to∏N

i=1 σ x
i , which is a symmetry operation corresponding to the

replacement σ z,y → −σ z,y.
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FIG. 5. Scaling of ergodization times for long-range network
[LRN; for all conserved quantities I (k)] and comparison with the
same for short-range network (SRN; single operator).

We compare the ergodization times TE ,± for each Ik , with
the respective Lyapunov time Tλ obtained via the Krylov
method. The results are presented in Fig. 5. It is evident that
the scaling is different for different I (k). Note that, despite
different scaling behavior of the ergodization time TE for
different conserved quantities I (k), the ergodization time for
the σ z operator in the SRN case bounds the TE for all I (k)

from above. Assuming a power-law scaling behavior for the
timescales

log TE ,λ =
{

αE ,λ log g + δE ,λ, LRN,

αE ,λ log h + δE ,λ, SRN,
(C3)

we obtain the exponents listed in Table I.
For the corresponding SRN case, we observe that the coef-

ficients are

α+
E ,SRN = −2.26301, δ+

E ,SRN = −0.136552,

αλ,SRN = −0.0817788, δλ,SRN = 0.217633.

It is also instructive to compare the scaling of the ratio of
timescales TE/Tλ as a function of Tλ. This ratio is expected
to diverge upon approaching the integrable limit (i.e., as
Tλ increases). Since different conserved quantities will, in
general, have different ranges of values of Tλ (although within
the same order), it is better to instead study the ratio as a
function of Tλ/max(Tλ). We present this result in Fig. 6.

TABLE I. Power-law coefficients for all I (k) for the LRN case.
The superscript + stands for results extracted from positive passage
times. The results for negative passage times are comparable.

k α+
E δ+

E αλ δλ

1 −1.65828 −0.395546 −0.046659 0.262234
2 −1.28645 −0.592328 −0.0204276 0.248453
3 −1.9492 −0.638931 −0.151105 0.00884637
4 −0.734752 −0.356261 −0.169417 −0.0685405
5 −3.03973 −2.60729 −0.154005 −0.0406314
6 −1.54398 −0.570509 −0.155603 −0.0419308
7 −2.49685 −1.76273 −0.196703 −0.11035

FIG. 6. Behavior of the ratio TE/Tλ as a function of Tλ/T ∗
λ , where

T ∗
λ = max(Tλ). The scaling for all I (k) [long-range network (LRN)] is

compared with that of σ z [short-range network (SRN)]. These results
are presented for the integrability-breaking parameter ∼ 0.

Finally, we consider the scaling of Tλ and TE/Tλ with the
integrability-breaking parameter g, h for completeness. This is
presented in Figs. 7 and 8, respectively. The results of Figs. 7
and 5 explain the observation in Fig. 8 since the Lyapnuov
times Tλ for all I (k) (LRN) and σ z (SRN) remain compa-
rable throughout the range of g, h explored. However, the
ergodization times scale in a different manner (significantly
different, on the log-scale, as seen in Fig. 5). Thus, the ratio
TE/Tλ is also highly sensitive to initial operator choice and the
universality classification.

APPENDIX D: PASSAGE TIMES

The expectation value of an operator mop oscillates around
its mean value at long times. Consider a Hamiltonian H and
some operator O whose time evolution is studied under this
Hamiltonian. This is schematically shown in the Fig. 9. The
time-evolved operator is given by

O(t ) = e−iHtO(t )eiHt . (D1)

FIG. 7. Behavior of the Lyapunov times Tλ as a function of
the integrability-breaking parameter g, h. The region close to the
integrable limit is explored. It is observed that, for all conserved
quantities I (k) [long-range network (LRN)] as well as for the
short-range network (SRN) observable σ z, the Lyapunov times are
comparable.
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FIG. 8. Behavior of the ratio TE/Tλ as a function of the
integrability-breaking parameter g, h. The results support the con-
clusion of Fig. 5.

The expectation value of this operator in a generic state |ψ〉 is
given by

〈O(t )〉 = 〈ψ |e−iHtOeiHt |ψ〉. (D2)

The generic state is written as follows in terms of the eigen-
states |n〉 of the Hamiltonian H :

|ψ〉 =
∑

n

cn|n〉. (D3)

The expectation value 〈O(t )〉 can now be rewritten as

〈O(t )〉 =
∑
m,n

cnc∗
m exp[i(En − Em)t]〈m|O|n〉. (D4)

The time-averaged value of this expectation is given as

Ō = lim
T →∞

1

T

∫ T

0
〈O(t )〉dt (D5)

= lim
T →∞

∑
m,n

cnc∗
m〈m|O|n〉

{
1

T

∫ T

0
exp[i(En − Em)t]dt

}
.

(D6)

FIG. 9. Schematic representation of time-evolution of 〈O(t )〉
around the mean value O. We have used a log scale on the t axis.

FIG. 10. Mean and variance of ergodization times for all opera-
tors I (k) and the short-range network (SRN) operator σ z, as a function
of g and h, respectively. (a) Mean of ergodization times μ(τ ) and (b)
Variance of ergodization times σ 2(τ ).

The integral over t gives δ(En − Em). Therefore, the final
result is

Ō =
∑

n

|cn|2〈n|O|n〉 +
∑
n′,m′

cn′c∗
m′ 〈m′|O|n′〉, (D7)

where the second sum is over all n′, m′ for which E (n′) =
E (m′). Thus, if the mean value is subtracted from 〈O(t )〉, we
obtain

fO(t ) = 〈O(t )〉 − Ō

=
∑

m,n−{m′,n′}
cnc∗

m exp[i(En − Em)t]〈m|O|n〉

−
∑

n

|cn|2〈n|O|n〉, (D8)

where the terms corresponding to degeneracies were dropped.
This captures the behavior of the off-diagonal elements of the
time-evolved operator.

We evaluate the distribution of the zeros of the function
fO(t ) and determine how they are spaced. The moments of
the distribution of this spacing can be interpreted as another
natural timescale. Note that, for random uniform initial state
(i.e., cn are uniform random numbers), this distribution is de-
termined by the level spacing distribution of the Hamiltonian
and the off-diagonal elements of the initial operator [89].

The passage or excursion times are then defined as the
interval τi between the zeros ti and ti+1 of the function fO(t ).
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FIG. 11. Mean and variance of ergodization times for the av-
eraged operator N−1

∑
k I (k) and the short-range network (SRN)

operator σ z, as a function of g and h, respectively. (a) Mean of er-
godization times μ(τ ) and (b) Variance of ergodization times σ 2(τ ).

There are two passage times which are extracted from this
information. The first is the positive passage time τi,+ which
corresponds to fO(t ) being positive in the interval ti to ti+1.
The negative passage time τ j,− corresponds to fO(t ) being
negative in the interval t j to t j+1. In this paper, we study the
statistical distribution of τi,± through their mean and variance
(and combinations thereof).

APPENDIX E: DETAILS OF THE NUMERICS

In this section, we discuss the details of the numerical com-
putations and present some of the results that are mentioned
in the main text.

While determining the passage times, our approach in-
volved first diagonalizing the Hamiltonian H in Eq. (1)
to find its eigenvalues and eigenvectors. The next step is
determining the coefficients cn corresponding to the ini-
tial state ψ , drawn from a uniform distribution, and the
components of the initial operator 〈m|O|n〉 and then plug-
ging it into the expression in Eq. (D8). Then this function
was evaluated numerically by varying t in steps of t0 =
minm �=n

1
4(Em−En ) and the values t = ti for which f (ti ) = 0

were collected. Finally, the difference τi = ti+1 − ti was com-
puted to determine the excursion times. We collected ∼104

passages.
The results for the SRNs and LRNs are discussed in the

main text. For the SRNs and LRNs, the appropriate choice
of ergodization time is the ratio of variance and mean of the
excursion times as supported by the data shown in Figs. 10
and 11. The exponentially larger scale of σ 2 than μ sug-
gests that the fluctuations dominate the dynamics. Therefore,
the appropriate choice of a timescale would be a ratio of
the fluctuation to the mean, given by σ 2

μ
. This is found to be

the case in both LRN and SRN.
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