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Trotter transition in Bardeen-Cooper-Schrieffer pairing dynamics
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We study universal aspects of thermalization induced by Trotterization, a procedure routinely used in gate-
based quantum computation. We use the reduced-Bardeen-Cooper-Schrieffer model-—quantum integrable with

a classically integrable mean-field limit—where the effects of Trotter chaos are expected to be particularly stark.
The resulting Trotterized chaotic dynamics is characterized by its Lyapunov spectrum and rescaled Kolmogorov-
Sinai entropy. The chaos quantifiers depend on the Trotterization time step . We observe a Trotter transition at
a finite step value 7, &~ +/N. While the dynamics is weakly chaotic for time steps T < T, the regime of large
Trotterization steps is characterized by short temporal correlations. We derive two different scaling laws for the
two different regimes by numerically fitting the maximum Lyapunov exponent data. The scaling law of the large
T limit agrees well with the one derived from the kicked top map. Beyond its relevance to current quantum
computers, our work opens other directions—such as probing observables like the Loschmidt echo, which lie
beyond standard mean-field description—across the Trotter transition we uncover.
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Since the inception of von Neumann architecture, com-
puting machines have employed time-discretized numerical
methods to approximate solutions for ordinary differential
equations [1,2], notably Hamilton’s equations of motion. A
similar philosophy is adopted in digital quantum simulation
(DQS) [3-6] to discretize quantum time evolution operators
using the Suzuki-Trotter decomposition [7-20]. In such al-
gorithms, a.k.a. “Trotterizations,” a sharp transition in Trotter
errors has been reported [21-29]. The very existence of a Trot-
ter transition in strongly interacting quantum chaotic systems
has subsequently been called into question [30]. In contrast
to classical nonlinear dynamics, where the Lyapunov spec-
trum (LS) provides a universal measure of chaos [31-34], no
comparable indicator exists for quantum many-body systems.
Estimates of quantum chaos depend sensitively on the chosen
observables [35,36], while finite system sizes further limit the
reliability of such analyses.

We investigate the onset of Trotter chaos through the
LS of the reduced-Bardeen-Cooper-Schrieffer (BCS) model
[37-48], which possesses a well-defined mean-field limit
amenable to such analysis. Because both the quantum [40] and
mean-field formulations in the thermodynamic limit [42—-44]
are integrable, this fine-tuned Hamiltonian offers complete
analytical control and a fully accessible spectrum of solutions,
providing a controlled setting in which the effects of Trotter
chaos are expected to appear with particular sharpness. In this
paper, we show that when the mean-field reduced-BCS dy-
namics are simulated using symplectic integrators, the system
exhibits a Trotter transition—from a weakly nonintegrable
regime to a memoryless, fully ergodic one—as the Trotter
step size increases. Our approach relies on the equivalence
between Trotterization and a class of classical symplectic
integrators, in which the full Hamiltonian is divided into
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exactly solvable components and time evolution is constructed
through successive applications of their individual propaga-
tors [49-57]. In implementing this scheme, we partition the
Hamiltonian into two parts—one containing no interactions
and the other encompassing all-to-all interactions—so
that each part remains consistent with the mean-field
approximation applied to the full BCS Hamiltonian.

In classical numerical simulations of integrable systems,
chaos induced by time discretization is a computational
artifact. Discretized integrators break integrability and can
generate chaotic behavior even for finite step sizes. While
such effects may be relevant to questions of long-time pre-
dictability and to certain esoteric yet fundamental issues in
classical mechanics—such as the possible relation between
discretization-induced chaos, the KAM theorem, and the
shadowing lemma—they carry no direct physical significance.
In digital quantum simulation (DQS), however, Trotterization
constitutes the physical protocol for time evolution. As a re-
sult, the emergent Trotter chaos becomes an experimentally
observable phenomenon that not only sets bounds on reliable
simulation regimes and the class of observables measurable
on quantum hardware, but also provides insight into how
thermalization takes place in such devices—insight that can
be accessed through the classical-quantum correspondence,
as demonstrated in this paper in the context of the reduced-
BCS model. Moreover, the information encoded in the LS
is universal, offering a general framework for characterizing
thermalization and chaos across quantum platforms, and can
even be exploited for state preparation—for instance, enabling
the initialization of fully chaotic, entangled states in the mem-
oryless, ergodic Trotter regime.

We demonstrated that symplectic integrators intro-
duce a hidden, time-dependent driving force, leading to
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chaos—signaled by a positive maximum Lyapunov charac-
teristic exponent (mLCE)—in systems that are originally
integrable, such as the Toda chain [58]. There, we were unable
to analyze the scaling properties of the full LS, which are
essential to understand the underlying thermalization mech-
anism. The simulations exhibited transient Floquet heating
[59-67], which eventually led to numerical breakdowns due to
the noncompact phase space and the exponential Toda poten-
tial. In contrast, the mean-field reduced-BCS model evolves
on a compact phase space of fixed-length spins and contains
no exponential interactions, thereby avoiding such instabili-
ties and allowing a complete exploration of the post-Trotter
transition regime. In this context, one also needs to mention
prior studies that have examined how numerical integration
schemes can induce chaos in integrable systems such as the
sine-Gordon model, nonlinear Schrodinger equations, and the
spatially discrete Ablowitz-Ladik chains [68-75]. However,
these latter investigations often lack a systematic analysis of
Lyapunov exponents, which is crucial to quantify the onset
and degree of chaos.

In prior instances [22-25], the Trotter transition has
marked the onset of quantum chaos characterized by uncon-
trolled Trotter errors, aligning with predictions from random
matrix theory (RMT). Additional clarity of knowledge about
this dynamical phase transition is gained in models like the
kicked top, where the presence of a well-defined classical
limit helps bridge quantum complexity with classical intuition
[76-79]. The kicked top emerges during the Trotterization of
the Lipkin-Meshkov-Glick model [80], an integrable system
characterized by a single degree of freedom represented by the
collective spin of N spin-1/2 particles. Naturally, the kicked
top dynamics can be analyzed using the established tools
of single-body chaos theory. In contrast, the reduced-BCS
model considered here is a many-body quantum model that
can be realized in isolated mesoscopic grains [41], or using
ultracold atomic setups [47,48]. In both the quantum and
mean-field classical descriptions, strong interactions play a
central role, making this model a natural testbed for exploring
Trotter-induced thermalization in strongly interacting many-
body systems.

The two distinct Trotter regimes are marked by differing
thermalization mechanisms. One approach to discern these
mechanisms involves observing how typical observables relax
over time to their ensemble-averaged values [35]. However,
identifying such suitable variables is nontrivial [36]. There-
fore, we use the mLCE and the LS as our primary diagnostic
tools, which, in addition to being coordinate independent,
remain invariant under a wide class of transformations [34].
To determine the LS [31-33], we start by evaluating the
finite-time maximal Lyapunov characteristic exponent of or-
der p, denoted A”(¢). This exponent quantifies the exponential
rate at which the volume of a p-dimensional parallelo-
gram, formed by p linearly independent deviation vectors
wi (1), wa(t), ..., wy(t), evolves over time. Mathematically,
it is expressed as

AP(H) = lln ( vol,[w;(t), wa(?), ..., wy(t)] )
t

vol,[w;(0), wx(0), ..., w,(0)]

Here, vol,[-] is the volume of the p-parallelogram spanned
by the given vectors. The infinite-time limit of this quan-
tity, A7 =1lim,_,o AP(t), provides the maximal Lyapunov
characteristic exponent of order p. To extract the indi-
vidual Lyapunov characteristic exponents (LCEs), which
collectively constitute the full LS, we utilize the relation
A, =A] - Afﬁl, where A = A; is the mLCE, which is
obtained using

i L RGOl
A _klinolo kt Zln lw((j — D7)l

j=1

ey

Here, ||w(j7)| is the magnitude of the deviation vector w
at time ¢ = jr, and 7 is the step size used to calculate
all AY.

In the small 7 regime, the integrability of the consid-
ered model is broken only slightly. Kolmogorov, Arnold, and
Moser initiated the study—now known as KAM theory—of
weakly perturbed integrable dynamics [81-83]. KAM theory
predicts that certain invariant tori from the integrable dy-
namics survive and the dynamics remain quasiperiodic (i.e.,
near integrable) if the perturbation to the integrable system
is weaker than a critical strength < exp(—N InN) [81-89].
Hence, one expects a perturbed integrable system with a
large number of degrees of freedom to go out of this KAM
regime very quickly. Nevertheless, such weakly nonintegrable
macroscopic systems were observed to fall into two classes
based on their mixing properties [90-100]: (i) long-range
network (LRN) and (ii) short-range network (SRN). In LRN,
the conserved actions of the corresponding integrable system
undergo long-range coupling upon weak breaking of integra-
bility, whereas the coupling is local in SRN. Our analysis
indicates that the small T regime aligns with the characteristics
of the LRN class.

We now describe the reduced-BCS Hamiltonian as

N N

A _ A A A A A AT A A

Hpcs = E gj(CijT —i—cNCN)—g E ¢4y 8q18q1, 2)
Jj=1 J:q=1

which describes the Cooper pairing between time reversed
single particle states |j 1) and |j |) with energy ¢; in finite-
sized systems, e.g., dirty superconductors [39] and isolated
metallic grains [41]. We consider equidistant single-particle
energies ¢; in the range [—1/2,+1/2], and the coupling
g=1/(N —1) to be the same as the single-particle level
spacing—as in [41]. This choice sets the bandwidth as the
unit of energy, thereby fixing the dimensionless energy scale;
correspondingly, all times—including the Trotter step—are
measured in units of the inverse bandwidth. To obtain the
mean-field approximation, this Hamiltonian (2) is first written
using the Anderson pseudospin-1/2 operators: S‘} = (6%6 i+
5j¢éj¢ —1)/2 and S‘j’ = (S‘f)T = ¢;,¢;4. These pseudospins
are defined on the unoccupied and the doubly occupied time
reversed pairs corresponding to energy &;. The states where
one of these states are occupied do not participate in the
dynamics. In the limit N — oo, we then replace the operators
S; by classical spins S, to obtain the following mean-field
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Hamiltonian [42—46]:

N N
HBCS = Z 28]S§ —8 Z S;FS/: = Hfree + Him‘ (3)
j=1 k=1
—— e — ——
Hiree Hin
Solving the classical equations of motion for Hyee and Hiy,
we obtain

e=TS; = R (2¢;7) - S},
€S = Ry (28J5T) - Ruyy (—2|Aror|T) - S 4)

where L. and Ly are the Liouvillian operators correspond-
ing to Hgee and Hiy, respectively [101]. In Eq. (4), we desig-
nate an anticlockwise rotation matrix about a unit vector n by
an angle 6 by R, (6). The total spin components are written as
J* = Zj S;’f for « = x, y, and z. Note that J* is a constant of
motion for Hgcs, Hiree, and Hi,.. We denote its initial value as
J§. We introduce the vector A = gJ*x + g/”y corresponding
to the BCS order parameter A = g/~ = g(J* — iJ”). We note
that Ao having the direction n, defined as

Arot
|Ar0t| '

remains unchanged while we consider the evolution due to
I-Iint-

Using the above split of Hpcs in Eq. (3) and the Baker-
Campbell-Hausdorff formula, a symplectic integrator using
Lie formalism approximates the operator e*25¢s as

Aror = A(0) + /52,

®)

Rt =

k
etlecs — He"f’rL“’“ebf'fLi“‘ + O(t?), (6)
j=1

with ) a; =}, b; = 1, where Lycs is the Liouvillian oper-
ator corresponding to Hgcs. The precision and order (p — 1)
of the integrator depend on k and on the specific values of
{a;} and {b;}. In our numerics, we use the 2nd order SABA,
integrator, for which p = 3 [55,101].

We establish the Trotter transition, e.g., in Fig. 1, using typ-
ical spin configurations where each spin is randomly oriented.
To compute A; for the reduced-BCS model, we use 3N-
dimensional deviation vectors w(z) = [6S8(¢), ..., 8Sx ()] in
Eq. (1). We extract a power law for the LRN regime: A «
" where n = 1.40 £ 0.06 for N = 32, and n = 1.29 £ 0.09
for N = 64. This exponent being very close to the exponent
(n = 1.36) obtained for the Toda chain dynamics [58]—also
simulated using the SABA, integrator—strongly hints at a
universal physics. In the memoryless regime, we obtain 1 =
—0.85 £ 0.02 both for N = 32 and N = 64. Later we obtain
a more accurate scaling for A; by comparing the memo-
ryless large t reduced-BCS dynamics with the kicked top
dynamics—cf. Fig. 5.

We study how the scaling of the LS with T changes across
the Trotter transition in Fig. 2 using the completely random
initial spin configurations of Fig. 1. Since ||S;(¢)|| = 1/2 for
all i at any #, N LCE values {Ay, An+1, ..., Aoy} always
remain equal to zero. Symplecticity ensures that each positive
Lyapunov exponent A; has a corresponding negative exponent
Asn—it1 = — A, reflecting the system’s phase-space volume
preservation. As a result, it is sufficient to analyze the rescaled

-1
92t
< -3¢
& 4}
-5t ——N = 32
-8 N =64
-6 . . . : ‘ ‘ ‘ ‘
-1 0 1 2 3 4 5 6 7
long

FIG. 1. We show log,, A; as a function of log;, T for N =32
and 64. We have included the error bars [102]. For a fixed N, we
choose a configuration where all the spins point in random directions.
The linear fits for N = 32 and N = 64 to the first few points in the
small 7 regime are givenby y = 1.40x — 3.7l andy = 1.29x — 4.22,
respectively. On the other hand, the linear fit to the last few points
in the large 7 regime for both N =32 and N = 64 is given by
y = —0.85x 4+ 0.39. In the memoryless regime, the N dependence
of A, is indeed quite weak; see Fig. 4.

positive LCEs A; = A;/A; to capture the characteristics of
the Trotter transition in Fig. 2, where we show how the spectra
evolve from the weakly chaotic regime to the large t regime.
In the small 7 regime, the rescaled LS exhibits a power-law
decay, consistent with prior findings—cf. [98]. Conversely,
in the memoryless regime, the decay of A; is sharper than
exponential. The normalized spectrum A(p) versus p = i/N
appears to reach saturation in both regimes.

To classify the two Trotter phases, we obtain the rescaled
Kolmogorov-Sinai (KS) entropy,

T

1
= - Kiz 1_\ d, 7
K No12 /0 (p)dp (7

from the LS. In the LRN regime, k saturates to a positive
value close to xkrn =~ 0.3 in Fig. 3. With the increase of ,
the KS entropy saturates to a very small value «y, < kLrN In
the memoryless regime.

Although integrability is broken by our symplectic integra-
tion scheme, it still conserves Jg. In our model, Trotter chaos
depends only weakly on J; for small 7, and this dependence
weakens further in the memoryless regime [101]. To show
this, we first determine the energy extrema for a given J3; see
the E£(J;§) spectrum in [101]. Given the rotational symmetry
of the BCS Hamiltonian (3) about the z axis, we can, without
loss of generality, consider extremal spin configurations to lie
in the xz plane. The energy maxima are obtained by making
the first N/2 — J§ spins point down and the rest pointing up. In
the minimum E configuration, the spin with the lowest single-
particle energy exhibits the largest positive z component;
subsequent spins progressively tilt, resulting in the spin with
the highest single-particle energy possessing the largest neg-
ative z component. Completely random spin configurations
with E ~ 0, J§ ~ 0, and A ~ O(1/+/N) also lie in the middle
of this £ (J§) spectrum. The MLE is maximum for initial spin
configurations that lie in the middle of the £'(J§) spectrum.

In the following, we analyze the dependence of A
on 7 in the large 7 regime. Beyond offering insight into
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FIG. 2. Initiating from a fully random spin configuration where each spin points in a random direction, we show rescaled Lyapunov spectra

for various step sizes T for N = 32 in panels (a) and (c) and for N =

64 in panels (b) and (d). The small t regime spectra in panels (a) and

(b) A(p) = A;/ A, are obtained for end time T, = 107 and for step sizes T = 0.359 (lime green), 0.464, 0.599, 0.774, and 1.0 (dodger blue).
They show an approximate power law dependence on the normalized index p = i/N, e.g., compare with the LRN spectra shown in Ref. [98].

The large t regime spectra in panels (c) and (d) A(p) are obtained for
number of time steps Nyeps = 107 and 10°, respectively. They show a

step sizes T = 10° (lime green), 10', .. ., and 107 (dodger blue) and for
faster than exponential decay as a function of the normalized index p.

The transition from one regime to another takes place at 7, ~ +/N. As seen in panels (c) and (d), the rescaled spectra remain similar to those
of the small t regime up to T =~ 10 but beyond this point their behavior changes abruptly.

thermalization processes relevant to quantum computation,
this analysis identifies the step size at which the Trotter tran-
sition occurs. The large T behavior is captured by the kicked
top map [76-79], from which the analytical scaling of A; is
obtained. This scaling provides a key criterion for determining
the critical step size t.: its breakdown signals the onset of the
Trotter transition.

In Fig. 4, we show a log-log plot of A versus T > 50 for
several values of N > 2. Here, in the initial configuration,
the spins point in random directions on the xy plane and
J§ = 0. These curves exhibit minimal dependence on N and
are independent of initial conditions. Therefore, we consider
the system with two spins and particle-hole symmetry [101].
Due to symmetry, the interacting system can be effectively
described by a single spin. Based on our numerical simula-
tions, the mLCE reaches saturation after just one time step
[101]. In contrast, within the LRN regime, the mLCE curve
requires numerous time steps to reach saturation, reflecting
the system’s persistent memory effects. This behavior justifies
referring to the large t strongly chaotic regime as “memory-
less.” Using this and the ergodic hypothesis [77], we calculate
the mLCE for the N = 2 particle-hole symmetric case from
the Jacobian of the SABA, map. We obtain A for large N
by repeating the same calculation for the coupling constant
gnv = 1//13N/3 in Hj——cf. the inset of Fig. 4 and [101].

log o

FIG. 3. We show the rescaled Kolmogorov-Sinai entropy « as
a function of log;, v for N =32 and 64. In the inset, we show a
magnified « versus t plot for the small ¢ LRN regime.

Analytically determining the mLCE for a dynamical system
is generally challenging. However, in the memoryless regime
characterized by strong global chaos, an analytical scaling be-
comes feasible. This exception underscores the unique nature
of this regime.

Applying the SABA; map repeatedly for the N =2
particle-hole symmetric system is approximately equivalent
to applying the kicked top map [76-79],

H =A(S")* +BS* Y _8(t —n), ®)
twice within the same time step with anisotropy parameter
A =4b,gr. The first and second kicks correspond to the
magnetic field strengths B =2a;7 mod 7/2 and B =
a,t mod 1 /2, respectively. The values of {a;, as, b;} for the
SABA, integrator are provided in [101]. Edge effects in
the initial and final time steps have negligible influence on

0 : , :
—1r
i
<© g ,,,,\j\\\\\ \’.\‘
—
o0 —2[| 8873 175 |
@) ON-14
— @O@N=5
@N=6
$ic :
—3' @N-16
@ N =32
@ N =64
X N = 2, Analytical
2 4 )
log T
g10

FIG. 4. We show the log-log plot of A; versus t for
N =2,3,4,56,7,8,16,32, and 64 with 50 < v < 5 x 10*. The
numerical values of A; (dark blue circles) for N = 2 at different
t values coincide with the data (black cross) obtained from our
semianalytic method requiring only ensemble averaging and no time
averaging for N = 2 with particle-hole symmetric initial condition.
In the inset, we show the log-log plot of A; versus N for 7 =
5 x 10*. Here lime green circles represent values obtained from
our numerical calculation (linear fit: y = —0.076x — 3.45), whereas
black crosses indicate results from our semianalytic method (linear
fit: y = —0.067x — 3.45).
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25

20

2 4 6 8 10 12 14
In(r/Y N)
FIG. 5. We show tA; (obtained from numerics) as a function
of In(t/+/N) for N = 16, 32, 64, and 128 with completely random
initial spin configurations. The slope of the linear fit to the N = 16

data is 1.96 4= 0.02, whereas the slope for the N = 32, 64, and 128
datais 1.99 £ 0.01.

the scaling behavior of the mLCE. For A >> 1, using the
approach of Refs. [77] and [78], and noting that g=§ = 1
for N = 2, we find

Ay ~ In[(27)?| sin(2a; 7) sin(az7)|] + Ca, 9)

where C; is a T independent constant. This indeed agrees with
the mLCE obtained from the numerics in Fig. 4 [101].

This analysis can be generalized for large N with J§ =0,
where we have |Ay| o< 1/4/N and the anisotropy parameter
A ~ 2b;7/+/N. Using Eq. (9) and neglecting the subleading
terms, we obtain

A, ~ 2In(t/v/N) + Cy, (10)

where Cy is a t independent constant. We verify this scal-
ing in Fig. 5. This scaling (10) explains the approximate
power law n = —0.85 4 0.02 and the weak N dependence in
the memoryless regime. Recognizing that the scaling applies
when the anisotropy parameter A = t/+/N >> 1, we estimate
the Trotter transition point as 7. &~ +/N. This aligns with our
numerical findings for N = 32 and 64 in Figs. 1 and 3. Recall

that the step size is measured in inverse bandwidth. If the
bandwidth is rescaled from 1 to o while keeping N fixed, the
single-particle energies transform as £; — o¢;. Upon simul-
taneously rescaling the coupling g — «g, the critical step size
for the Trotter transition should scale as /N /a.

In conclusion, we examined the Trotterized BCS dynam-
ics, identifying a Trotter transition via Lyapunov spectra. For
small Trotter steps, the system exhibits weakly nonintegrable
long-range network behavior. In contrast, large steps lead to
a memoryless regime characterized by strong global chaos,
where analytical scaling becomes tractable. These findings
suggest several research directions. The exactness of mean-
field theory for local observables in the reduced-BCS model
[46] implies potential realizability on quantum computers,
particularly those with all-to-all qubit connectivity [6]. Ow-
ing to this classical-quantum correspondence, the Lyapunov
spectrum analysis is directly applicable to understanding
thermalization processes on quantum hardware. Furthermore,
its universality makes the approach broadly relevant across
different quantum platforms. Additionally, simulating such
symplectic dynamics in ultracold atom setups could provide
further insights [47,48]. Future investigations might explore
the dependence of the emergent power-law exponent 7 in
LRN on different integrable and nonintegrable models, as
well as on various symplectic integrators. Studying the effects
of disorder and noise on the Trotter transition could also be
illuminating. Moreover, examining nonlocal quantities—such
as entanglement entropy and the Loschmidt echo—for which
the standard BCS mean-field theory breaks down, may reveal
additional aspects of the transition in the quantum dynamics
of the BCS model.

A.P. and S.F. acknowledge the financial support from the
Institute for Basic Science (IBS) in the Republic of Korea
through Project No. IBS-R024-D1. A.P. also thanks Miguel de
Jests Gonzélez Martinez for several illuminating discussions.

Data availability. The data that support the findings of this
article are not publicly available. The data are available from
the authors upon reasonable request.

[1] D. W. Heermann, Computer-Simulation Methods (Springer-
Verlag, Berlin, 1990).

[2] M. Abramowitz and I. Stegun, Abramowitz and Stegun Hand-
book of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (Dover, New York, 1964).

[3] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[4] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[5] 1. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[6] R. Haghshenas, E. Chertkov, M. Mills, W. Kadow, S.-H. Lin,
Y. H. Chen, C. Cade, 1. Niesen, Begusi¢, M. S. Rudolph,
et al., Digital quantum magnetism at the frontier of classical
simulations, arXiv:2503.20870.

[7] H. E. Trotter, General theory of fractal path integrals with ap-
plications to many-body theories and statistical physics, Proc.
Amer. Math. Soc. 10, 545 (1959).

[8] M. Suzuki, General theory of fractal path integrals with appli-
cations to many-body theories and statistical physics, J. Math.
Phys. 32, 400 (1991).

[9] M. Suzuki, General theory of higher-order decomposition of
exponential operators and symplectic integrators, Phys. Lett.
A 165, 387 (1992).

[10] D. W. Berry, G. Ahokas, R. Cleve, and B. C.
Sanders, Efficient quantum algorithms for simulating
sparse Hamiltonians, Commun. Math. Phys. 270, 359
(2007).

[11] D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C.
Doherty, and M. Troyer, The Trotter step size required for
accurate quantum simulation of quantum chemistry, Quantum
Info. Comput. 15, 361 (2015).

[12] R. Babbush, D. W. Berry, 1. D. Kivlichan, A. Y. Wei, P. J. Love,
and A. Aspuru-Guzik, Exponentially more precise quantum
simulation of fermions in second quantization, New J. Phys.
18, 033032 (2016).

L012201-5


https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/RevModPhys.86.153
https://arxiv.org/abs/2503.20870
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1063/1.529425
https://doi.org/10.1016/0375-9601(92)90335-J
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.26421/QIC15.5-6-1
https://doi.org/10.1088/1367-2630/18/3/033032

PATRA, YUZBASHYAN, ALTSHULER, AND FLACH

PHYSICAL REVIEW E 113, L012201 (2026)

[13] I Pitsios, L. Banchi, A. S. Rab, M. Bentivegna, D. Caprara, A.
Crespi, N. Spagnolo, S. Bose, P. Mataloni, and R. Osellame,
Photonic simulation of entanglement growth and engineering
after a spin chain quench, Nat. Commun. 8, 1569 (2017).

[14] A. Tranter, P. J. Love, E. Mintert, N. Wiebe, and P. V. Coveney,
Ordering of trotterization: Impact on errors in quantum simu-
lation of electronic structure, Entropy 21, 1218 (2019).

[15] C. Cirstoiu, Z. Holmes, J. Iosue, L. Cincio, P. J. Coles, and
A. Sornborger, Variational fast forwarding for quantum sim-
ulation beyond the coherence time, npj Quantum Inf. 6, 82
(2020).

[16] A. Bolens and M. Heyl, Reinforcement learning for digital
quantum simulation, Phys. Rev. Lett. 127, 110502 (2021).

[17] S.-H. Lin, R. Dilip, A. G. Green, A. Smith, and F. Pollmann,
Real- and imaginary-time evolution with compressed quantum
circuits, PRX Quantum 2, 010342 (2021).

[18] J. Richter, A palsimulating hydrodynamics on noisy
intermediate-scale quantum devices with random circuits,
Phys. Rev. Lett. 126, 230501 (2021).

[19] M. S. Tepaske, D. Hahn, and D. J. Luitz, Optimal compression
of quantum many-body time evolution operators into brickwall
circuits, SciPost Phys. 14, 073 (2023).

[20] H. Zhao, M. Bukov, M. Heyl, and R. Moessner, Making
trotterization adaptive and energy-self-correcting for NISQ
devices and beyond, PRX Quantum 4, 030319 (2023).

[21] T. Ishii, T. Kuwahara, T. Mori, and N. Hatano, Heating in
integrable time-periodic systems, Phys. Rev. Lett. 120, 220602
(2018).

[22] M. Heyl, P. Hauke, and P. Zoller, Quantum localization bounds
Trotter errors in digital quantum simulation, Sci. Adv. S,
eaau8342 (2019).

[23] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke,
F. Haake, and P. Zoller, Digital quantum simulation, Trotter
errors, and quantum chaos of the kicked top, npj Quantum Inf.
5,78 (2019).

[24] C. Kargi, J. P. Dehollain, F. Henriques, L. M. Sieberer,
T. Olsacher, P. Hauke, M. Heyl, P. Zoller, and N. K.
Langford, Quantum information and measurement VI (2021),
in Quantum Chaos and Universal Trotterisation Performance
Behaviours in Digital Quantum Simulation, edited by F. Scia-
rrino, N. Treps, M. Giustina, and C. Silberhorn, Technical
Digest Series (Optica Publishing Group, Washington, 2021).

[25] K. Chinni, M. H. Muifioz-Arias, 1. H. Deutsch, and P. M. Poggi,
Trotter errors from dynamical structural instabilities of floquet
maps in quantum simulation, PRX Quantum 3, 010351 (2022).

[26] E. Vernier, B. Bertini, G. Giudici, and L. Piroli, Integrable
digital quantum simulation: Generalized Gibbs ensembles and
Trotter transitions, Phys. Rev. Lett. 130, 260401 (2023).

[27] T. N. Ikeda, S. Sugiura, and A. Polkovnikov, Robust effective
ground state in a nonintegrable Floquet quantum circuit, Phys.
Rev. Lett. 133, 030401 (2024).

[28] P. Suchsland, R. Moessner, and P. W. Claeys, Krylov complex-
ity and Trotter transitions in unitary circuit dynamics, Phys.
Rev. B 111, 014309 (2025).

[29] P. M. Schindler and M. Bukov, Geometric Floquet theory,
Phys. Rev. X 15, 031037 (2025).

[30] M. Znidari&, Prethermalization, shadowing breakdown, and
the absence of Trotterization transition in quantum circuits,
arXiv:2505.15521.

[31] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lya-
punov characteristic exponents for smooth dynamical systems
and for Hamiltonian systems; A method for computing all of
them Part 1: Theory, Meccanica 15, 9 (1980).

[32] C. Skokos and E. Gerlach, Numerical integration of variational
equations, Phys. Rev. E 82, 036704 (2010).

[33] C. Skokos, in The Lyapunov Characteristic Exponents and
Their Computation, edited by J. Souchay and R. Dvorak
(Springer, Berlin, Heidelberg, 2010), Vol. 790.

[34] R. Eichhorn, S. J. Linz, and P. Hanggi, Transformation invari-
ance of Lyapunov exponents, Chaos Solit. Fractals 12, 1377
(2001).

[35] A. Ya Khunchin, Mathematical Foundations of Statistical Me-
chanics (Dover, New York, 1949).

[36] M. Baldovin, A. Vulpiani, and G. Gradenigo, Statistical me-
chanics of an integrable system, J. Stat. Phys. 183, 41 (2021).

[37] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[38] P. W. Anderson, Random-phase approximation in the theory
of superconductivity, Phys. Rev. 112, 1900 (1958).

[39] P. W. Anderson, Theory of dirty superconductors, J. Phys.
Chem. Solids 11, 26 (1959).

[40] R. W. Richardson, Pairing in the limit of a large number of
particles, J. Math. Phys. 18, 1802 (1977).

[41] I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Mesoscopic
magnetization fluctuations for metallic grains close to the
stoner instability, Phys. Rev. B 62, 14886 (2000).

[42] E. A. Yuzbashyan, A. A. Baytin, and B. L. Altshuler, Finite-
size corrections for the pairing Hamiltonian, Phys. Rev. B 71,
094505 (2005).

[43] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Solution for the dynamics of the BCS and central
spin problems, J. Phys. A 38, 7831 (2005).

[44] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Nonequilibrium Cooper pairing in the nonadiabatic
regime, Phys. Rev. B 72, 220503(R) (2005).

[45] E. A. Yuzbashyan, O. Tsyplyatyev, and B. Altshuler, Re-
laxation and persistent oscillations of the order parameter in
fermionic condensates, Phys. Rev. Lett. 96, 097005 (2006).

[46] A. Zabalo, A.-K. Wu, J. H. Pixley, and E. A. Yuzbashyan,
Nonlocality as the source of purely quantum dynamics of BCS
superconductors, Phys. Rev. B 106, 104513 (2022).

[47] S. Smale, P. He, B. A. Olsen, K. G. Jackson, H. Sharum, S.
Trotzky, J. Marino, A. M. Rey, and J. H. Thywissen, Obser-
vation of a transition between dynamical phases in a quantum
degenerate Fermi gas, Sci. Adv. 5, eaax1568 (2019).

[48] A. Shankar, E. A. Yuzbashyan, V. Gurarie, P. Zoller, J. J.
Bollinger, and A. M. Rey, Simulating dynamical phases of
chiral p + ip superconductors with a trapped ion magnet, PRX
Quantum 3, 040324 (2022).

[49] F. Neri, Lie Algebras and Canonical Integration, Department
of Physics, University of Maryland, 1988.

[50] H. Yoshida, Construction of higher order symplectic integra-
tors, Phys. Lett. A 150, 262 (1990).

[51] P.-V. Koseleff, Relations among lie formal series and construc-
tion of symplectic integrators, edited by G. Cohen, T. Mora,
O. Moreno, in Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, Lecture Notes in Computer Science
(Springer, Berlin, Heidelberg, 1993).

L012201-6


https://doi.org/10.1038/s41467-017-01589-y
https://doi.org/10.3390/e21121218
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1103/PhysRevLett.127.110502
https://doi.org/10.1103/PRXQuantum.2.010342
https://doi.org/10.1103/PhysRevLett.126.230501
https://doi.org/10.21468/SciPostPhys.14.4.073
https://doi.org/10.1103/PRXQuantum.4.030319
https://doi.org/10.1103/PhysRevLett.120.220602
https://doi.org/10.1126/sciadv.aau8342
https://doi.org/10.1038/s41534-019-0192-5
https://doi.org/10.1103/PRXQuantum.3.010351
https://doi.org/10.1103/PhysRevLett.130.260401
https://doi.org/10.1103/PhysRevLett.133.030401
https://doi.org/10.1103/PhysRevB.111.014309
https://doi.org/10.1103/7l91-gw77
https://arxiv.org/abs/2505.15521
https://doi.org/10.1007/BF02128236
https://doi.org/10.1103/PhysRevE.82.036704
https://doi.org/10.1016/S0960-0779(00)00120-X
https://doi.org/10.1007/s10955-021-02781-7
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1063/1.523493
https://doi.org/10.1103/PhysRevB.62.14886
https://doi.org/10.1103/PhysRevB.71.094505
https://doi.org/10.1088/0305-4470/38/36/003
https://doi.org/10.1103/PhysRevB.72.220503
https://doi.org/10.1103/PhysRevLett.96.097005
https://doi.org/10.1103/PhysRevB.106.104513
https://doi.org/10.1126/sciadv.aax1568
https://doi.org/10.1103/PRXQuantum.3.040324
https://doi.org/10.1016/0375-9601(90)90092-3

TROTTER TRANSITION IN BARDEEN-COOPER-SCHRIEFFER ...

PHYSICAL REVIEW E 113, 1012201 (2026)

[52] R. I. McLachlan, Composition methods in the presence of
small parameters, BIT Numer. Math. 35, 258 (1995).

[53] P-V. Koseleff, Exhaustive search of symplectic integrators
using computer algebra, integration algorithms and classical
mechanics, Fields Inst. Commun. 10, 103 (1996).

[54] R. I. McLachlan, G. R. W. Quispel, and G. S. Turner, Nu-
merical integrators that preserve symmetries and reversing
symmetries, SIAM J. Numer. Anal. 35, 586 (1998).

[55] J. Laskar and P. Robutel, High order symplectic integrators for
perturbed Hamiltonian systems, Celest. Mech. Dyn. Astron.
80, 39 (2001).

[56] M. Tao, Explicit symplectic approximation of nonseparable
Hamiltonians: Algorithm and long time performance, Phys.
Lett. E 94, 043303 (2016).

[57] C. Danieli, B. M. Manda, T. Mithun, and C. Skokos, Com-
putational efficiency of numerical integration methods for the
tangent dynamics of many-body Hamiltonian systems in one
and two spatial dimensions, Math. Eng. 1, 447 (2019).

[58] C. Danieli, E. A. Yuzbashyan, B. L. Altshuler, A. Patra, and S.
Flach, Dynamical chaos in the integrable Toda chain induced
by time discretization, Chaos 34, 033107 (2024).

[59] L. D’Alessio, and M. Rigol, Long-time behavior of isolated
periodically driven interacting lattice systems, Phys. Rev. X 4,
041048 (2014).

[60] A. Lazarides, A. Das, and R. Moessner, Equilibrium states
of generic quantum systems subject to periodic driving, Phys.
Rev. E 90, 012110 (2014).

[61] P. Ponte, A. Chandran, Z. Papi¢, and D. A. Abanin, Peri-
odically driven ergodic and many-body localized quantum
systems, Ann. Phys. 353, 196 (2015).

[62] D. A. Abanin, W. De Roeck, and F. Huveneers, Exponentially
slow heating in periodically driven many-body systems, Phys.
Rev. Lett. 115, 256803 (2015).

[63] T. Mori, T. Kuwahara, and K. Saito, Rigorous bound on en-
ergy absorption and generic relaxation in periodically driven
quantum systems, Phys. Rev. Lett. 116, 120401 (2016).

[64] T. Mori, T. Kuwahara, and K. Saito, Floquet-Magnus theory
and generic transient dynamics in periodically driven many-
body quantum systems, Ann. Phys. 367, 96 (2016).

[65] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers,
Effective Hamiltonians, prethermalization, and slow energy
absorption in periodically driven many-body systems, Phys.
Rev. B 95, 014112 (2017).

[66] D. A. Abanin, W. De Roeck, and F. Huveneers, A rigorous
theory of many-body prethermalization for periodically driven
and closed quantum systems, Commun. Math. Phys. 354, 809
(2017).

[67] D.J. Luitz, Y. B. Lev, and A. Lazarides, Absence of dynamical
localization in interacting driven systems, SciPost Phys. 3, 029
(2017).

[68] M. Ablowitz, B. Herbst, and C. Schober, Computational chaos
in the nonlinear Schrodinger equation without Homoclinic
crossings, Physica A 228, 212 (1996).

[69] A. Calini, N. Ercolani, D. McLaughlin, and C. Schober,
Mel’nikov analysis of numerically induced chaos in the non-
linear Schrodinger equation, Physica D 89, 227 (1996).

[70] M. Ablowitz, B. Herbst, and C. Schober, On the numerical
solution of the Sine-Gordon equation, J. Comput. Phys. 131,
354 (1997).

[71] M. J. Ablowitz, Y. Ohta, and A. D. Trubatch, On integrability
and chaos in discrete systems, Chaos Solit. Fractals 11, 159
(2000).

[72] M. Ablowitz, B. Herbst, and C. Schober, Discretizations, in-
tegrable systems and computation, J. Phys. A: Math. Gen. 34,
10671 (2001).

[73] A. Islas, D. Karpeev, and C. Schober, Geometric integrators
for the nonlinear Schrodinger equation, J. Comput. Phys. 173,
116 (2001).

[74] B.J. Sung, J. H. Moon, and M. S. Kim, Checking the influence
of numerically induced chaos in the computational study of
intramolecular dynamics using trajectory equivalence, Chem.
Phys. Lett. 342, 610 (2001).

[75] D. Triadis, P. Broadbridge, K. Kajiwara, and K. Maruno,
Integrable discrete model for one-dimensional soil water in-
filtration, Stud. Appl. Math. 140, 483 (2018).

[76] F. Haake, M. Kus$, and R. Scharf, Classical and quantum chaos
for a kicked top, Z. Phys. B 65, 381 (1987).

[77] V. Constantoudis and N. Theodorakopoulos, Lyapunov expo-
nent, stretching numbers, and islands of stability of the kicked
top, Phys. Rev. E 56, 5189 (1997).

[78] M. H. Muiioz-Arias, P. M. Poggi, and I. H. Deutsch, Nonlinear
dynamics and quantum chaos of a family of kicked p-spin
models, Phys. Rev. E 103, 052212 (2021).

[79] A. Anand, R. B. Mann, and S. Ghose, Non-linearity and chaos
in the kicked top, Physica D 471, 134455 (2025).

[80] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of
many-body approximation methods for a solvable model: (I),
Exact solutions and perturbation theory, Nucl. Phys. 62, 188
(1965).

[81] A. A. N. Kolmogorov, Preservation of conditionally periodic
movements with small change in the Hamilton function, edited
by G. Casati, J. Ford, in Stochastic Behavior in Classical
and Quantum Hamiltonian Systems, Lecture Notes in Physics,
Vol. 93 (Springer, Berlin, Heidelberg, 1979).

[82] V.I. Arnol’d, Mathematical Methods of Classical Mechanics
(Springer, New York, NY, 2013).

[83] J. Moser, On invariant curves of area-preserving mapping of
an annulus, Matematika 6, 51 (1962).

[84] A. M. O. De Almeida, Hamiltonian Systems: Chaos
and Quantization (Cambridge University Press, Cambridge,
1988).

[85] J. Poschel, A lecture on the classical KAM theorem, Proc.
Symp. Pure Math 69, 707 (2000).

[86] C. E. Wayne, The KAM theory of systems with short range
interactions, I, Commun. Math. Phys. 96, 311 (1984).

[87] L. Chierchia and G. Gallavotti, Smooth prime integrals for
quasi-integrable Hamiltonian systems, Nuov. Cim. B 67, 277
(1982).

[88] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, A
proof of Kolmogorov’s theorem on invariant tori using canon-
ical transformations defined by the lie method, Nuov. Cim. B
79,201 (1984).

[89] M. Falcioni, U. Marini Bettolo Marconi, and A. Vulpiani,
Ergodic properties of high-dimensional symplectic maps,
Phys. Rev. A 44, 2263 (1991).

[90] V. Constantoudis and N. Theodorakopoulos, Nonlinear dy-
namics of classical Heisenberg chains, Phys. Rev. E 55, 7612
(1997).

L012201-7


https://doi.org/10.1007/BF01737165
https://doi.org/10.1090/fic/010/07
https://doi.org/10.1137/S0036142995295807
https://doi.org/10.1023/A:1012098603882
https://doi.org/10.1103/PhysRevE.94.043303
https://doi.org/10.3934/mine.2019.3.447
https://doi.org/10.1063/5.0171261
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1103/PhysRevLett.116.120401
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1007/s00220-017-2930-x
https://doi.org/10.21468/SciPostPhys.3.4.029
https://doi.org/10.1016/0378-4371(95)00434-3
https://doi.org/10.1016/0167-2789(95)00223-5
https://doi.org/10.1006/jcph.1996.5606
https://doi.org/10.1016/S0960-0779(98)00280-X
https://doi.org/10.1088/0305-4470/34/48/330
https://doi.org/10.1006/jcph.2001.6854
https://doi.org/10.1016/S0009-2614(01)00624-8
https://doi.org/10.1111/sapm.12208
https://doi.org/10.1007/BF01303727
https://doi.org/10.1103/PhysRevE.56.5189
https://doi.org/10.1103/PhysRevE.103.052212
https://doi.org/10.1016/j.physd.2024.134455
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1090/pspum/069/1858551
https://doi.org/10.1007/BF01214577
https://doi.org/10.1007/BF02721167
https://doi.org/10.1007/BF02748972
https://doi.org/10.1103/PhysRevA.44.2263
https://doi.org/10.1103/PhysRevE.55.7612

PATRA, YUZBASHYAN, ALTSHULER, AND FLACH

PHYSICAL REVIEW E 113, L012201 (2026)

[91] T. Mithun, Y. Kati, C. Danieli, and S. Flach, Weakly noner-
godic dynamics in the Gross-Pitaevskii lattice, Phys. Rev. Lett.
120, 184101 (2018).

[92] C. Danieli, T. Mithun, Y. Kati, D. K. Campbell, and S.
Flach, Dynamical glass in weakly nonintegrable Klein-Gordon
chains, Phys. Rev. E 100, 032217 (2019).

[93] T. Mithun, C. Danieli, Y. Kati, and S. Flach, Dynamical glass
and ergodization times in classical Josephson junction chains,
Phys. Rev. Lett. 122, 054102 (2019).

[94] S. Iubini and A. Politi, Chaos and localization in the discrete
nonlinear Schrodinger equation, Chaos Solit. Fractals 147,
110954 (2021).

[95] T. Mithun, C. Danieli, M. V. Fistul, B. L. Altshuler, and S.
Flach, Fragile many-body ergodicity from action diffusion,
Phys. Rev. E 104, 014218 (2021).

[96] M. Malishava and S. Flach, Lyapunov spectrum scaling for
classical many-body dynamics close to integrability, Phys.
Rev. Lett. 128, 134102 (2022); 130, 199901(E) (2023).

[97] M. Malishava and S. Flach, Thermalization dynamics of
macroscopic weakly nonintegrable maps, Chaos 32, 063113
(2022).

[98] G. M. Lando and S. Flach, Thermalization slowing down in
multidimensional Josephson junction networks, Phys. Rev. E
108, L062301 (2023).

[99] W. Zhang, G. M. Lando, B. Dietz, and S. Flach, Ther-
malization universality-class transition induced by Anderson
localization, Phys. Rev. Res. 6, L012064 (2024).

[100] X.Zhang, G. M. Lando, B. Dietz, and S. Flach, Observation of
prethermalization in weakly nonintegrable unitary maps, Fyz.
Nyz. Temp./Low Temp. Phys. 51, 870 (2025).

[101] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/gn7q-9byy for a detailed description of the BCS
Hamiltonian, the symplectic integration scheme used in this
Letter, and additional Lyapunovspectrum (LS) and maximal
Lyapunov exponent (mLCE) data for various initial conditions
and step sizes.

[102] Errors in the lyapunov characteristic exponents (LCEs) A;
are obtained as the standard deviation of A;(t) over t €
[Tena/10, Tenal. In log,, A; plots, error bars show the rel-
ative uncertainties 8A;/A;. For rescaled spectra, we plot
8A; = (A18A; — AiSA )/ A% For the rescaled KS entropy,
Sk = 35 S0, A,

L012201-8


https://doi.org/10.1103/PhysRevLett.120.184101
https://doi.org/10.1103/PhysRevE.100.032217
https://doi.org/10.1103/PhysRevLett.122.054102
https://doi.org/10.1016/j.chaos.2021.110954
https://doi.org/10.1103/PhysRevE.104.014218
https://doi.org/10.1103/PhysRevLett.128.134102
https://doi.org/10.1103/PhysRevLett.130.199901
https://doi.org/10.1063/5.0092032
https://doi.org/10.1103/PhysRevE.108.L062301
https://doi.org/10.1103/PhysRevResearch.6.L012064
https://doi.org/10.1063/10.0036932
http://link.aps.org/supplemental/10.1103/gn7q-9byy

