Shivalika Sharma

Nicolaus Copernicus University, Poland

10 April 2025 Thu 4 pm

                                      IBS Center for Theoretical Physics of Complex Systems (PCS), Administrative Office (B349), Theory Wing, 3rd floor

                                      Expo-ro 55, Yuseong-gu, Daejeon, South Korea, 34126 Tel: +82-42-878-8633                     

In recent years, Kagome metals have emerged as pivotal materials in condensed matter physics due to their unique geometric arrangement and intriguing electronic properties [1]. Understanding the origin of magnetism in these materials, particularly in iron rich Fe-Sn binary compounds like Fe3Sn, holds significant importance as they represent potential candidates for permanent magnets with a high Curie temperature (743K) and a strong in-plane ferromagnetic order [2–4]. In the present study, we analyze the electronic structure and magnetic exchange couplings of Fe3Sn by employing two ab-inito approaches, namely standard Density-Functional Theory (DFT) and its combination with Dynamical Mean-Field Theory (DMFT) [5, 6]. Our investigation reveals that the interplay between Coulomb correlations and unique lattice geometry influences the positioning of nearly-flat bands and Weyl nodes near the Fermi level at low excitation energies [7-9]. Additionally, our detailed analysis of the magnetic exchange interactions with inclusion of spin orbit coupling indicates a significant contribution from the antisymmetric exchange interaction i.e. Dzyaloshinskii- Moriya interaction (DMI), which showcases the existence of magnetic chirality in the system [9]. Our findings shed light on the intricate relationship between electronic structure, magnetism, and geometric configuration, paving the way for the design and development of novel magnetic materials with tailored properties.


References:

[1] M. N. Hasan, R. Bharati, J. Hellsvik, A. Delin, S. K. Pal, A. Bergman, S. Sharma, I. Di Marco, M. Pereiro, P. Thunström, P. M. Oppeneer, O. Eriksson, and D. Karmakar, Phys. Rev. Lett. 131, 196702 (2023).

[2] B. Sales, B. Saparov, M. McGuire, D. Singh, and D. Parker, Scientific reports 4, 7024 (2014).

[3] L. Prodan, D. M. Evans, S. M. Griffin, A. Östlin, M. Altthaler, E. Lysne, I. G. Filippova, S. Shova, L. Chioncel, V. Tsurkan, and I. Kézsmárki, Applied Physics Letters 123, 021901 (2023).

[4] O. Y. Vekilova, B. Fayyazi, K. P. Skokov, O. Gutfleisch, C. Echevarria-Bonet, J. M. Barandiarán, A. Kovacs, J. Fischbacher, T. Schrefl, O. Eriksson, and H. C.Herper, Phys. Rev. B 99, 024421 (2019).

[5] L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 72, 115106 (2005).

[6] A. Grechnev, I. Di Marco, M. I. Katsnelson, A. I. Lichtenstein, J. Wills, and O. Eriksson, Phys. Rev. B 76, 035107(2007).

[7] B. P. Belbase, L. Ye, B. Karki, J. I. Facio, J.-S. You, J. G.Checkelsky, J. van den Brink, and M. P. Ghimire, Phys.Rev. B 108, 075164 (2023).

[8] Z. Lin, J.-H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang,L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang,T. Guo, Q. Lu, J.-H. Cho, C. Zeng, and Z. Zhang, Phys.Rev. Lett. 121, 096401 (2018).

[9] S. Sharma, L. Chioncel, and I. D. Marco, arXiv:2501.03039, (2025).

  1. exploring electron correlations in the breathing kagome metal fe3sn

Activities