1. multifractality and the distribution of the kondo temperature at the anderson transition

Keith Slevin

Osaka University, Japan

15 April 2021 Thu 5 pm

                                      IBS Center for Theoretical Physics of Complex Systems (PCS), Administrative Office (B349), Theory Wing, 3rd floor

                                      Expo-ro 55, Yuseong-gu, Daejeon, South Korea, 34126 Tel: +82-42-878-8633                     

Using numerical simulations, we investigate the distribution of Kondo temperatures at the Anderson transition. In agreement with previous work, we find that the distribution has a long tail at small Kondo temperatures. Recently, an approximation for the tail of the distribution was derived analytically. This approximation takes into account the multifractal distribution of the wavefunction amplitudes (in the parabolic approximation), and power law correlations between wave function intensities, at the Anderson transition. It was predicted that the distribution of Kondo temperatures has a power law tail with a universal exponent. Here, we attempt to check that this prediction holds in a numerical simulation of Anderson's model of localisation in three dimensions.